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orescence imaging of HeLa cells
using ROS generating SiO2-coated lanthanide-
doped NaYF4 nanoconstructs
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Inorganic nanomaterials able to generate reactive oxygen species (ROS) are promising components for

modern medical applications. Activated by near-infrared light, up-converting b-NaYF4 doped with Er3+–

Yb3+ and Tm3+–Yb3+ pair ions nanoparticles (UCNPs), have a wide range of applications in biological

imaging as compared to traditional reagents excited by ultra-violet or visible light. We analysed the

green-red and the blue-red luminescence to explain the mechanism of the upconversion depended on

the surface condition. The influence of SiO2 coating on the cytotoxicity of the as-produced UCNPs

towards HeLa cancer cells was reported. We demonstrated a possibility of a direct UCNPs application to

photodynamic therapy, without need to attach additional molecules to their surface. The presence of

Tm3+–Yb3+ pair ions, thus ROS generation capability, renders the SiO2 shell coated nanoparticles to

become potentially useful theranostic agent.
1 Introduction

Presently, cancer is one of the most prevalent diseases. In
Europe, this pathology is responsible for 20% of deaths, with
more than 3 million new cases and 1.7 million deaths every
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year. Actually, aer cardiovascular diseases, cancer is the most
important cause of deaths and morbidity in Europe (WHO).
Fluorescent techniques are known as ultra-sensitive diagnostic
tools to identify some pathogenic cells at the molecular level.
Optical imaging is extremely useful in biomedical research for
early detection of pathogenic cells as well as for therapy. Many
types of luminophores are currently applied in bioimaging (e.g.
quantum dots, uorescent proteins, organic dyes, dye doped
silica nanoparticles, metallic nanoparticles). However, applica-
tion of organic probes for luminescence imaging of living
organism has some limitations. For instance, the excitation of
the traditional bio-labels usually requires UV or VIS light,
leading to: (I) low signal-to-noise ratio due to high biological
autouorescence, (II) small light penetration depth, and (III)
possible cell photodamages.1,2

Therefore, it is desirable to use uorescent biolabels that can
be excited by near infrared (NIR) light. In particular, NIR light is
safe to the human body and can penetrate into tissues up to
several centimetres.3,4 Upconversion nanoparticles (UCNPs),
which can convert photons of lower energy (e.g. NIR light) to
higher energy (e.g. visible light) via a two-photon or multiphoton
upconverssion mechanisms,5 represent a new class of uores-
cent biolabels. UCNPs have a relatively high quantum yield, as
compared to a two-photon excitation of organic dyes, or
quantum dots used in two-photon microscopy, narrow emission
This journal is © The Royal Society of Chemistry 2017
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peak, large anti-Stokes shi, good chemical stability, and rela-
tively low toxicity.6,7 Since UCNPs are NIR light active, the signal-
to-noise ratio and sensitivity of the optical detection can be
improved due to the absence of autouorescence.8–10 Therefore,
UCNPs are promising alternatives to traditional uorescent
biolabels for cell imaging and possess prominent potential in
biological and clinical applications such as photodynamic
therapy (PDT). In this therapy as a lethal factor are using reactive
oxygen species (ROS).11 In traditional case of PDT, photosensi-
tizer is activate by visible light to generate ROS, as described
above this kind of light has limitation at tissues penetration.
Materials with upconverting properties could be used to activa-
tion of photosensitizer directly in the environment of tumor.
UCNPs excited by NIR light transfer absorbed energy to photo-
sensitizer molecules and cause generation of ROS.12,13

The most efficient host material for the 980 nm upconver-
sion is the hexagonal-phase (b-phase) NaYF4. The b-NaYF4 host
is frequently doped with rare-earth (RE) ions, as for instance
Yb3+–Er3+ or Yb3+–Tm3+ ion pair.14–17 Monodisperse UCNPs are
usually synthesized in organic solvents at high-temperatures.
However, the most commonly used hydrophobic capping
agent, namely oleic acid, limits their biological applications.17–22

The coating of the nanoparticles (NPs) by thin silica (SiO2)
layer or metal oxides makes them dispersible in water. The use
of SiO2 for external coating of lanthanide-doped UCNPs is an
attractive alternative because the surface chemistry of silica
spheres is well documented and silica is known to be relatively
harmless while using in biological systems.23–25 Moreover, the
thickness and the surface properties of SiO2 shell can be easily
adjusted to favour secretion of SiO2-coated UCNPs through the
kidneys.26

Both types of materials, surface unmodied UCNPs and
core–shell with solid oxide, have a potential to attach some
molecules.27 This fact enhances their application in selected
cancer therapy called photodynamic therapy. In this case
UCNPs must be connect with photosensitizer molecules.28,29

Presented nanoparticles, doped with thulium ions, are an
alternative system, avoiding unstable (photobleaching) mole-
cules of photosensitizers.30 Wide emission spectrum, depen-
dent on the ions pair (Yb3+–Tm3+), allows to apply the
upconverting system for generation of reactive oxygen species
without any additional reagents like photosensitizer molecules
present in the traditional photodynamic therapy.31 High energy
emitted UV light is capable to decompose water molecules to
toxic radicals.

Herein, we report on a general method of silica-coating b-
NaYF4:20%Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,0.2%Tm3+ NPs.
The NaYF4 host matrix has a very low phonon energy and
therefore minimizes the quenching of the lanthanide ions
excited-state, which results in a high quantum yield for
upconversion luminescence (UCL).32–39 Depending on the RE
doping, under NIR excitation UCL emission of different colours
is obtained, thus making the obtained UCNPs interesting for
multicolour bioimaging, basic material in modern photody-
namic therapy.

In brief, we report on the synthesis of functionalized SiO2-
coated UCNPs with sizes smaller than 20 nm, which form stable
This journal is © The Royal Society of Chemistry 2017
aqueous suspensions and therefore can be applied for biolog-
ical optical imaging. The SiO2-coating improves the overall
biocompatibility of the UCNPs and makes them suitable for
functionalization with biologically-active molecules.

2 Methods
2.1. Materials

Triuoroacetic acid (99%, Sigma-Aldrich), sodium triuoroacetate
(>99%, Sigma-Aldrich), yttrium(III) oxide (99.99%, Sigma-Aldrich),
ytterbium(III) oxide (99.9%, Sigma-Aldrich), erbium(III) oxide
(99.9%, Sigma-Aldrich), thulium(III) oxide (99.9%, Sigma-Aldrich),
1-octadecene (>95%, Sigma-Aldrich), oleic acid (99%, Chempur),
cyclohexane (99%, Chempur), ethanol (99.8%, Chempur), poly-
oxyethylene(5)nonylphenylether IGEPAL CO-520 (Sigma-Aldrich),
ammonium hydroxide solution (30%, Sigma-Aldrich) and tet-
raethyl orthosilicate TEOS (98%, Sigma-Aldrich) were used without
further purication.

2.2. Synthesis of b-NaYF4:20%Yb3+,2%Er3+ and
b-NaYF4:20%Yb3+,0.2%Tm3+ nanoparticles

The upconverting NPs were synthesized by homogeneous
solution coprecipitation method. The nanoparticles were
prepared from precursors (triuoroacetate salts of yttrium,
ytterbium, and erbium or thulium). The triuoroacetate salts
were chemically prepared according to method reported
previously.40

The main synthesis was carried out at non-oxide waterless
reaction environment using solution of oleic acid and octade-
cene, at 330 �C for 30 minutes.41

2.3. Synthesis of b-NaYF4:20%Yb3+,2%Er3+@SiO2

nanoparticles

The b-NaYF4:20%Yb3+,2%Er3+ NPs were surface coated with
silica to improve their functionality. Solution of NPs suspended
in cyclohexane was mixed with IGEPAL CO-520 and the mixture
was sonicated for 10 min. Next ammonia was added dropwise
and stirred for 30 min. Then, TEOS was added and the solution
was stirred for 24 h at room temperature. The NPS was cleaned
by mixture of ethanol/water solution (1 : 1) ve times aer the
reaction.42

2.4. Characterization of NaYF4:20%Yb3+,2%Er3+, NaYF4:20%
Yb3+,0.2%Tm3+, and NaYF4:20%Yb3+,2%Er3+@SiO2

nanoparticles

The size distribution and morphology of both b-NaYF4:20%
Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,0.2%Tm3+ NPs were
assessed by scanning electron microscopy (SEM) using a Zeiss
Auriga Neon 40 microscope at an acceleration voltage of 5 kV.
For SEM imaging samples were prepared by dropping the NPs'
solution onto the surface of a 0.5 � 0.5 cm2 silicon wafer. The
presence of the SiO2 shell was conrmed using high-resolution
transmission electronmicroscopy (HRTEM). Elemental analysis
of the NPs was performed using the energy-dispersive spec-
troscopy (EDX) accessory connected to the TEM system (FEI
Tecnai Osiris operating at 80 kV acceleration voltage).
RSC Adv., 2017, 7, 30262–30273 | 30263
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The crystal structure of the NPs was determined using TEM
and X-ray diffraction (XRD). XRD measurements were con-
ducted in a Philips X'Pert Pro Alpha1 MPD (Panalytical)
diffractometer in the 2q range of 10–150� (15 h pattern scanning
at 1.5406 nm wavelength).

The upconversion luminescence of the NPs was measured in
an optical system comprising a 980 nm continuous wave (CW)
laser (Lumics model LU0980D300-DNA014) as the optical exci-
tation source and a Jobin Yvon-SPEX 270 M monochromator
equipped with a CCD camera. Luminescence spectra were
measured in the 500 to 700 nm range. A shortpass lter cut-off
750 nm (ThorLabs FESH0750) was employed while recording
the luminescence data.

2.5. Incubation of HeLa cells with b-NaYF4:20%Yb3+,2%Er3+

and b-NaYF4:20%Yb3+,2%Er3+@SiO2 nanoparticles

The standard HeLa cell line derived from cervical cancer was
used in this study. The HeLa cells were routinely cultured with
DMEM (Dulbecco's modied eagle medium) containing 10%
fetal calf serum (FCS). Cell cultures were kept at 37 �C in
a humidied atmosphere containing 5% of CO2. Cells were
cultured in 6-well plate dishes (6 � 10 cm2) at a density of
100 000 per plate. The cells were incubated with b-NaYF4:20%
Yb3+,2%Er3+ NPs without oleic acid (procedure describe in
Section 2.4.1) and with b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs.
291 ml of the sonicated initial aqueous colloidal suspension of b-
NaYF4:20%Yb3+,2%Er3+ NPs (3.44 mg ml�1) was dissolved in
709 ml miliR water (the initial aqueous colloidal suspension of b-
NaYF4:20%Yb,2%Er@SiO2 NPs contained 3.75 mg ml�1 and
267 ml of this sample was sonicated with 733 ml MiliR water to
obtain 1 mg ml�1 concentration). Next, 2 ml of each diluted
suspension was added to a 10 cm2 dish with HeLa cells and
incubated for 24 h. Then, the medium was changed to DMEM.43

2.6. Procedure of ligand-free b-NaYF4:20%Yb3+,2%Er3+

nanoparticles preparation

Cyclohexane suspension of the NPs was precipitated by ethanol
and washed by several cycles of sonication and centrifugation.
Removal of oleic acid ligand took place through the using of
different solution to dissolve NPs such as: HCl solution (0.1 M),
acidic ethanol solution (pH 4), ethanol. Finally, the NPs were re-
dispersed in 1 ml distilled water.44,45

2.7. Observation of b-NaYF4:20%Yb3+,2%Er3+ and
b-NaYF4:20%Yb3+,2%Er3+@SiO2 nanoparticles inside the
HeLa cells

Themain technique for imaging both b-NaYF4:20%Yb3+,2%Er3+

and b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs was confocal micros-
copy, using a Zeiss 710 NLO system equipped with an infrared
femtosecond laser (Coherent, Chameleon). The three channels
were observed: the rst, with excitation at 980 nm (femtosecond
laser), was used for NP imaging in the 500–730 nm range; the
second, with excitation at 705 nm (femtosecond laser), was used
for imaging the nucleus marked by the Hoechst marker while
detecting in the 425–475 nm range; the third, with excitation at
488 nm (continuous laser), was used to image the actine
30264 | RSC Adv., 2017, 7, 30262–30273
laments build cell's cytoskeleton marked by antibodies
labelled with uorophore AlexaFluor 488 imaging with detec-
tion in the 495–572 nm range. This approach allows for imaging
the marked structures and the UCNPs inside the selected cells.

Samples for confocal microscopy imaging were prepared
according to the following procedure. Cells were inoculated
onto 2 � 2 cm2 slides and placed in the 6-well plate at 100 000
per plate. Aer 24 h incubation materials were separated by
sonication and transfected as previously described (Section 2.4).
Then, the medium was removed and the cells were washed
twice with 2 ml of phosphate-buffered saline (PBS). Firstly, the
cells were xed by adding 2ml of 3.7% formaldehyde in PBS and
incubated for 20 min. Aer xing, the cells were washed twice
using 2 ml of PBS. Secondly, the cell's membrane was per-
meabilizated using 2 ml of 1% solution of TritonX-100 in 5%
FBS/PBS (5% solution of Fetal Bovine Serum in PBS) and incu-
bated for 10 min. Next, the cells were washed twice with 2 ml of
PBS and permeabilization was blocked by adding 2 ml of 5%
FBS/PBS and the samples were incubated for 30 min. Samples
were washed with PBS and the cytoskeleton was stained with the
primary rabbit actine antibody. 25 ml of the antibody in 5% FBS/
PBS solution was dropped onto the slide with cells and covered
with a capping slide. Samples were incubated for 1 h and then
the capping slide was removed. The samples were washed twice
using PBS. Using the same protocol the secondary antibody
connected with AlexaFluor 488 was attached to the primary
antibody. This step of preparation was conducted in dark to
protect the uorescent dye from photobleaching. The nucleus
was marked using the Hoechst 33342 (25 mL) added.

2.8. Cytotoxicity of b-NaYF4:20%Yb3+,2%Er3+ and
b-NaYF4:20%Yb3+,2%Er3+@SiO2 nanoparticles

The cytotoxicity of the b-NaYF4:20%Yb3+,2%Er3+ and b-
NaYF4:20%Yb3+,2%Er3+@SiO2 NPs was evaluated by the MTT
viability assay. The cells (10 000 per well) were incubated in each
well of a 96-well plate with the b-NaYF4:20%Yb3+,2%Er3+ and b-
NaYF4:20%Yb3+,2%Er3+@SiO2 NPs in the following concentra-
tions: 0.1, 1, 5, 10 and 50 mg ml�1 in medium for 24 and 48 h.
Following incubation, the cells were washed three times with
the culture medium. Then, the MTT solution (5.0 mg ml�1) was
added. Aer incubation for another 4 h the MTT medium was
removed from each well, DMSO was added and the mixture was
shaken at room temperature to dissolve the reacted dye. The
optical density (OD) was measured at 570 nm with a microplate
reader. The cytotoxicity was calculated as follows: cytotoxicity ¼
(B � 100%)/A, where A is the absorbance of the cells incubated
with the culture medium (as a control) and B is the absorbance
of the cells incubated with or without the NPs.

2.9. Transmission electron microscopy of the b-NaYF4:20%
Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,2%Er3+@SiO2

nanoparticles inside the HeLa cells

The presence of the NPs' inside the HeLa cells was conrmed by
TEM imaging. Upon incubation with 1 mg ml�1 of b-NaYF4:20%
Yb3+,2%Er3+ or b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs for 24 h
HeLa cells pellets were xed with 2% paraformaldehyde (Sigma
This journal is © The Royal Society of Chemistry 2017
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Aldrich, Germany) and 2.5% glutaraldehyde (Merck KGaA,
Darmstadt, Germany) in 0.1 M cacodylate buffer, pH ¼ 7.4 at
4 �C for 2 h, post-xed with 1% osmium tetroxide (Sigma, USA)
for 1 h, dehydrated in the graded series of ethanol (from 30% to
99.8%) and propylene oxide (ABCR GmbH, Germany),
embedded in Agar 100 resin kit R1031 (Agar, USA) and poly-
merized at 60 �C for 24 h and sectioned (60 nm) using a RMC
ultramicrotome (USA). The ultrathin sections were stained with
uranyl acetate and lead citrate. Grids were examined with a JEM
1200EX electron microscope.
Fig. 1 XRD patterns of: (a) b-NaYF4:20%Yb
3+,2%Er3+ (�15 nm of

diameter); (b) b-NaYF4:20%Yb
3+,0.2%Tm3+ (�20 nm); (c) b-NaYF4:20%

Yb3+,2%Er3+ (�180 nm) and (d) all diffractograms grouped together.
Note that big crystals (c) were taken as reference.
2.10. Reactive oxygen species generation by b-NaYF4:20%
Yb3+,0.2%Tm3+@SiO2 nanoparticles

The potential application of the presented nanoparticles to
generate ROS was proved by electron paramagnetic resonance
spectroscopy (EPR) aer NIR light excitation. Water solution of
NPs at 15 mg ml�1 concentration was mixed with spin trap
buffer, as a spin trap used 1-hydroxy-3-methoxycarbonyl-2,2,5,5-
tetramethylpyrrolidine (CMH), which shows EPR signal aer
reaction with the radicals.

The experiment was performed using as a near infrared
sources: prototype LEDs system with maximum emission by
980 nm developed at University of Braśılia, which worked with
following parameters: 1 W cm�2 of power density, 30 minutes of
irradiation (working cycle: 30 seconds of irradiation, 1 minute
break). EPR signal was measured every ten minutes during 20
minutes of irradiation using Bruker EMX plus EPR spectrom-
eter with X-Band using a 4119HS resonator with 5 G modula-
tion, 200 G sweep width, and 20mWmicrowave power. The ROS
production was performed by spin trapping using by CMH
cyclic hydroxylamine and Krebs Hepes buffer, with controlled
time to air exposure to avoid false positives results.
3 Results and discussion

The structural properties and the phase purity of the b-
NaYF4:20%Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,0.2%Tm3+

UCNPs were examined by XRD measurements. The XRD
patterns of the UCNPs are shown in Fig. 1. As can be observed
the diffraction peaks of both NPs are well dened and the peak
positions and intensities agree well with the values for the
hexagonal NaYF4 crystal.7,46

The size distribution of the UCNPs was determined by using
XRD results and SEM images (Fig. 2a and b). From the line
broadening of the (021) XRD peak of the samples b-NaYF4:20%
Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,0.2%Tm3+ and using the
Debye–Scherrer formula an average crystallite size of 15.0 and
21.6 nm were calculated, respectively. Typical the UCNPs
observed by SEM are well dispersed and very much uniform in
size, with an average diameter of about 20.5 (�2.5) nm for the
Er3+-doped and 22.3 (�0.9) nm for the Tm3+-doped NPs, as
shown in the histograms presented in Fig. 2a and b. The average
size values assessed from the SEM micrographs matched the
average particle size obtained from the XRD data. Deviation in
the average particle size obtained from the SEM and XRD data
can be due to inaccuracy of the size estimation while using the
This journal is © The Royal Society of Chemistry 2017
XRD technique. The as-produced NPs have a regular spherical
shape (Fig. 2), which is benecial to their application in the
cellular imaging.

The SiO2-shell thickness and morphology of the b-
NaYF4:20%Yb3+,2%Er3+@SiO2 UCNPs were assessed by TEM.
Typical TEM images of the NPs are shown in Fig. 2c. Aer
coating with SiO2, the average size of the Er3+-doped NPs
increased to about 24.6 (�3.7) nm. Nevertheless, aer SiO2-
coating the shape and size monodispersity remained almost
unchanged, as it observed on Fig. 2c, where the SiO2-shell
thickness is about 3.0 nm.

The EDX data are shown in Fig. 3. The EDX spectra conrm
the presence of all elements (Na, Y, Yb, Er, F) in the b-
NaYF4:20%Yb3+,2%Er3+ and (Na, Y, Yb, Tm, F) in the b-
NaYF4:20%Yb3+,0.2%Tm3+ NPs (Fig. 3a and b). EDX maps show
homogenous distribution of the elements forming the core and
the shell of the NPs. Fig. 3c presents core, b-NaYF4:20%Yb3+,2%
Er3+ NPs and Fig. 3d shows the SiO2 shell on the NPs.

The EDX data in Fig. 3 reviled homogeneous distribution of
all elements in both types of the NPs. Likewise, a homogeneous
elemental distribution is observed in the b-NaYF4:20%Yb3+,2%
Er3+@SiO2 NPs (see Fig. 3d). Silicon and oxygen are in the same
location as other elements within the NPs. Indeed, silica forms
a shell around the NPs which is visible in the Si EDX map in
Fig. 3d. This nding conrms that the NPs were efficiently
coated by SiO2.

Before the cytotoxicity measurements of b-NaYF4 NPs, the
oleic acid was detached from the surface. Actually, the oleic acid
acts as a surfactant capable to cap ligands while introducing the
hydrophobic character to the NPs. Therefore, the oleic acid-
coated UCNPs are not suitable for biological application, but
can be easily removed out from the NP surface by HCl washing
while the remaining functional groups associated with oleic
acid can be identied by FT-IR spectroscopy (Fig. 4).

The oleic acid exhibits an IR band around 3430 cm�1, cor-
responding to the hydroxyl group's stretching vibration. Two
RSC Adv., 2017, 7, 30262–30273 | 30265
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Fig. 2 SEM images of (a) b-NaYF4:20%Yb
3+,2%Er3+ NPs; (b) b-

NaYF4:20%Yb
3+,0.2%Tm3+ NPs (inserts show particle size histograms

obtained from 200 counting); (c) TEM image of b-NaYF4:20%Yb
3+,2%

Er3+@SiO2 NPs (inserts show particle size histogram and HRTEM
micrograph showing).

Fig. 3 EDX spectra of the (a) b-NaYF4:20%Yb
3+,0.2%Tm3+ and (b) b-

NaYF4:20%Yb
3+,2%Er3+ NPs. EDX elemental distribution maps of the

(c) b-NaYF4:20%Yb
3+,2%Er3+ NPs and (d) b-NaYF4:20%Yb

3+,2%
Er3+@SiO2 NPs.
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features peaking at 1632 and 1460 cm�1 are associated with the
asymmetric and symmetric stretching vibrations of the
carboxylic group (COO�), respectively. The two peaks at 2924
and 2854 cm�1 can be assigned to the asymmetric and
symmetric stretching vibrations of methylene group,
30266 | RSC Adv., 2017, 7, 30262–30273
respectively. As shown in Fig. 4, aer the HCl purication, the
quenching of the features in the FT-IR spectrum in the 4000–
1000 cm�1 range indicates that the pure (oleic acid free)
NaYF4:20%Yb3+,2%Er3+ NPs were obtained.

The upconversion spectra of 1 mg ml�1 suspensions of b-
NaYF4:20%Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,0.2%Tm3+ NPs
in cyclohexane under 980 nm laser diode excitation (power
density 12.14 W cm�2) are shown in Fig. 5a and d. The insets of
Fig. 5a and d show a digital photograph of the total upconver-
sion luminescence of the same solution under the described
excitation condition.
This journal is © The Royal Society of Chemistry 2017

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ra25383k


Fig. 4 FT-IR spectra of oleic acid, b-NaYF4:20%Yb
3+,2%Er3+ NPs with

oleic acid and b-NaYF4:20%Yb
3+,2%Er3+ NPs after HCl washing.
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In order to determine the number of photons responsible for
the upconversion mechanism the intensity of the upconversion
emission (UCL) was recorded as a function of the 980 nm
excitation (Fig. 5c and f).

Stable suspension of the NPs in aqueous medium is very
important for effective bioimaging applications. Therefore, for
the biological applications the silica-coated NPs (b-NaYF4:20%
Yb3+,2%Er3+@SiO2) were produce. As a result of surface modi-
cation the b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs are stable in
water and emit strong upconverting uorescence (Fig. 5b and e).
Fig. 5 Luminescence spectra of the NPs suspensions (1 mg ml�1) in cy
cm�2): (a) b-NaYF4:20%Yb

3+,2%Er3+, (d) b-NaYF4:20%Yb
3+,0.2%Tm3+ and

aand (e) b-NaYF4:20%Yb
3+,0.2%Tm3+@SiO2 NPs excited with a 980 nm

dependence of the upconverted emissions of 1 mgml�1 suspensions of t
and (f) b-NaYF4:20%Yb

3+,0.2%Tm3+. Symbols are experimental data whi

This journal is © The Royal Society of Chemistry 2017
The emission bands of the b-NaYF4:20%Yb3+,2%Er3+ and the
b-NaYF4:20%Yb3+,0.2%Tm3+ NPs aer NIR light excitation are
shown in Fig. 5a and d. They can be assigned to the transitions
between the 4f–4f levels of the Er3+ and Tm3+ ions. The spec-
trum of the b-NaYF4:20%Yb3+,2%Er3+ NPs (see Fig. 5a) exhibits
three emission bands. The two strong green emissions at 540
and 550 nm originate from the 2H11/2 to

4I15/2 and from 4S3/2 to
4I15/2 transitions, respectively. The red emission at 654 nm can
be assigned to the transition from 4F9/2 to

4I15/2 levels.47,48

Four Tm3+ emission bands were observed in the b-
NaYF4:20%Yb3+,0.2%Tm3+ NPs (Fig. 5d) with maximum posi-
tion of peaks at 474, 645, 697 and 800 nm.

In order to determine the number of photons responsible for
the upconversion mechanism, the intensity of the upconversion
luminescence (UCL) was recorded as a function of the power of
980 nm excitation (see Fig. 5c and f). The UCL intensity (Iup) in
the lanthanide-doped UCNPs depends on the laser power (P)
excitation. This dependence can be expressed as: Iup� Pn, where
n describes the quantity of absorbed photons in the lumines-
cence process. Fig. 5c shows the green and red Er3+ upconver-
sion emission intensities in quadratic power dependence at low
excitation, indicating the two-photon upconversion mecha-
nisms. For the Tm3+-doped NPs (see Fig. 5f) three- and two-
photon power dependencies were observed for the 1G4 to 3H6

and 3H4 to 3H6 emissions. Similar observation has been re-
ported previously in the literature.47

The upconversion mechanisms for the Er3+/Yb3+ and Tm3+/
Yb3+ ion couples within the b-NaYF4 crystal are well-known49
clohexane excited with a 980 nm laser diode (power density 12.14 W
1 mg ml�1 in water suspension of (b) b-NaYF4:20%Yb

3+,2%Er3+@SiO2

laser diode (power density 12.14 W cm�2). Double log plot of power
he NPs in cyclohexane excited at 980 nm: (c) b-NaYF4:20%Yb

3+,2%Er3+

le the straight lines are least-squares fits to the data points.
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and schematically represented in Fig. 6. In the case of b-
NaYF4:20%Yb3+,2%Er3+ the excitation energy is transferred
from the Yb3+ ion in the 2F5/2 state to the Er3+ ion in the 4I11/2
state. The second energy transfer from the Yb3+ ion can popu-
late the 4F7/2 state of the Er3+ ion. The Er3+ ion can relax non-
radiative (without emission of photons) to the 2H11/2 and 4S3/2
levels before emitting green light via 2H11/2 /

4I15/2 and
4S3/2 /

4I15/2 transitions. Alternatively, the Er3+ ion can relax and
populate the 4F9/2 level, leading to the red 4F9/2 / 4I15/2 emis-
sion. The 4F9/2 level may also be populated from the 4I13/2 level
of the Er3+ ion by absorption of a 980 nm photon, or by energy
transfer from an Yb3+ ion, with the 4I13/2 state being initially
populated via the non-radiative 4I11/2 /

4I13/2 relaxation.47

Nanoparticles doped by Tm3+ ions are characterized by four
main emission bands (see Fig. 5d) with wavelength 474, 645,
697 and 800 nm. Aer absorption of 980 nm by Yb3+ ions,
Fig. 6 The energy level diagrams of the Er3+, Tm3+ and Yb3+ dopant
ions and the corresponding upconversion mechanisms under 980 nm
excitation. The ET interrupted arrows represent energy transfer (non-
radiative transition), EX – excitation and EM – emission of visible
photons (radiative transition).51–53

Fig. 7 EPR spectroscopy graph of CMH signal. Spin trap was activated
by reactive oxygen species from decomposition of water by NPs
emitted high energy light. Control group shows non irradiated solu-
tion. Tested group was irradiated during 30 minutes with 980 nm NIR
sources at 1 W cm�2 power density, respectively by LEDs system. Insert
shows example spectrum (after 20minute of irradiation) using tomake
a graph.

30268 | RSC Adv., 2017, 7, 30262–30273
energy is transferred from 2F5/2 ytterbium state to 3H6,
3H5,

3F2
and 1G4 states, respectively. In consequence of energy transfers
and non-radiative transitions between the levels followed the
emission from states: 1G4/

3H6,
1G4/

3F4,
3F3/

3H6 and
3H4

/ 3H6 respectively. These emission bands are described above
(Fig. 6).52,53

As shown in Fig. 5a and e presence of the SiO2 shell, has an
impact to the physical aspect of the luminescence. Analysis of
the core NaYF4:20%Yb3+,2%Er3+ NPs emission spectrum points
to the higher luminescence intensity of the green area
compared to the red area. The ratio of the two luminescence
areas has different characteristic for the NPs coated by SiO2. In
this material the intensity of the green luminescence is lower
than the red. This difference is due to the modication of the
NPs surface which offsets the surface effects and contribute to
the energy of phonons relaxation, which takes part in the
upconversion, as we reported previously.54 The silicon oxide
shell enhances the non-radiative decay which causes higher
quantity of the radiative emission from 4F9/2 level than 4S3/2
level (see Fig. 6).
Fig. 8 Cell viability values estimated from the MTT assay versus
concentration of the b-NaYF4:20%Yb

3+,2%Er3+ NPs without oleic acid
(a) and b-NaYF4:20%Yb

3+,2%Er3+@SiO2 NPs (b). Cells were incubated
with 0–50 mg ml�1 of the NPs at 37 �C, for 24 h (a, c) and 48 h (b, d).
Each data point is represented as mean (SD from 4 trials).

This journal is © The Royal Society of Chemistry 2017
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We have synthesized and characterized b-NaYF4:20%
Yb3+,0.2%Tm3+@SiO2 nanoparticles exhibiting several prom-
ising properties useful in medical applications: bio imagining
of cells and tissues and modern PDT. A high efficiency NIR
upconversion and, due to presence of Tm3+–Yb3+ pair ions, ROS
generation capability, renders the SiO2 shell coated nano-
particles to become potentially useful theranostic agent.

The experiment, performed under standard conditions, was
aimed to test the possibility of b-NaYF4:20%Yb3+,0.2%
Tm3+@SiO2 NPs to generate ROS without any additional organic
molecules. Comparison of the control sample-without the LED
irradiation and the NPs suspension exposed to the light, shows
enhanced level of the CMH spin trap signal. Intensity of the EPR
signals for the control and LED illuminated samples were
summarized (Fig. 7). We observed the 70% increased in the EPR
signal aer 10 min of irradiation and 70% aer 20 min of
irradiation. The ROS generation from Tm-doped nanoparticles
is potentially promising for the future PDT therapy.

In order to investigate the cytotoxicity of both b-NaYF4:20%
Yb3+,2%Er3+ (without oleic acid) and b-NaYF4:20%Yb3+,2%
Er3+@SiO2 NPs a MTT assay, using HeLa cell line, was per-
formed to determine the effect of the UCNPs on the cell
proliferation aer 24 and 48 h (Fig. 8).

One of the most important aspect in the design and the
synthesis of biomarkers is their toxicity. In order to investigate
Fig. 9 Confocal images of the HeLa cells incubated with the (a) b-NaYF4:
of incubation with 0.001 mg ml�1 of the NPs concentration. The insets in
spectra of the (c) b-NaYF4:20%Yb

3+,2%Er3+ and (d) b-NaYF4:20%Yb
3+,2%

length light at 1.11 W mm�2 laser power. Insets in (c) and (d) show imag
Yb3+,2%Er3+ and (f) b-NaYF4:20%Yb

3+,2%Er3+@SiO2 NPs within HeLa cel

This journal is © The Royal Society of Chemistry 2017
the cytotoxicity of b-NaYF4:20%Yb3+,2%Er3+ (without oleic acid)
and b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs aMTT assay was used.
No signicant difference in the cell proliferation was observed
in the absence or presence of 0.1–50 mg ml�1 UCNPs (see Fig. 8).
The cellular viabilities were estimated to be greater than 90%
aer 24 h and 80% aer 48 h for the b-NaYF4:20%Yb3+,2%Er3+

NPs (Fig. 8a) and almost 100% aer 24 and 48 h for the b-
NaYF4:20%Yb3+,2%Er3+@SiO2 NPs (Fig. 8b). These data show
that the b-NaYF4:20%Yb3+,2%Er3+ NPs have relatively low cyto-
toxicity aer 24 and 48 h of incubation even at relatively high
concentration (50 mg ml�1). The b-NaYF4:20%Yb3+,2%
Er3+@SiO2 NPs have no apparent cytotoxicity (aer 48 h of
incubation, the cellular viabilities were 100% even at the NPs
concentration of 50 mg ml�1).

Cellular uptake of both b-NaYF4:20%Yb3+,2%Er3+ (without
oleic acid) and b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs by HeLa
cells was visualized by multiphoton confocal imaging (Fig. 9a
and b). Cells stained by the NPs were exposed to 980 nm irra-
diation using a femtosecond Ti:sapphire pulsed laser while
their typical upconversion luminescence was measured in 500–
730 nm channel for the green and red emissions. In addition,
the cytoskeleton of the HeLa cells was stained by the antibodies
conjugated with the AlexaFluor 488 for a better visualization of
the cells. The blue color indicates the nucleus stained by
Hoechst 33342 channel (excitation: 705 nm – femtosecond
20%Yb3+,2%Er3+ and (b) b-NaYF4:20%Yb
3+,2%Er3+@SiO2 NPs after 24 h

the panels (a) and (b) show the upconversion channels. Luminescence
Er3+@SiO2 NPs inside the HeLa cells excited with the 980 nm wave-

es with luminescent spots. TEM images showing the (e) b-NaYF4:20%
ls (incubation with 1 mg ml�1 of NPs at 37 �C, for 24 h).

RSC Adv., 2017, 7, 30262–30273 | 30269
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laser, power density: 0.72 W mm�2, detection: 425–475 nm).
Green color indicates the actine cytoskeleton laments marked
by the antibody labeled with AlexaFluor 488 (excitation: 488 nm
– CW, power density: 0.0375 W mm�2, detection: 495–572 nm).
Red color indicates the UCNPs channel (excitation: 980 nm –

femtosecond laser, power density: 1.11 W mm�2; detection: 500–
730 nm). A spectrum recorded from the cells showed that the
luminescence exhibits two emission bands, with maxima at 556
and 653 nm aer 980 nm of excitation (Fig. 9c and d). Fig. 9e
and f shows the TEM images of (e) SiO2-uncoated and (f) SiO2-
coated NPs (without oleic acid) inside the HeLa cells.

The overlay of the upconversion channel and cytoskeleton
channel indicate that the UCL signal distributions are strongly
correlated with the cytoskeleton of HeLa cells, meaning that the
NPs spontaneously enter into the cells and locate within the
cytoplasm. In contrast, the HeLa cells incubated with the b-
NaYF4:20%Yb3+,2%Er3+@SiO2 NPs (Fig. 9b) show weaker
luminescence in the upconverting green channel under the
same conditions, suggesting a lower uptake by the HeLa cells.
This may be due to differences in the NP surface charge. The
spectrum recorded from the HeLa cells shows that the lumi-
nescence exhibits two characteristic emission bands, with
maxima at 556 and 653 nm (Fig. 9d).

It should be pointed out that nomeasurable autouorescence
signal was observed aer 980 nm excitation in the upconverting
channel of the HeLa cells labelled with both b-NaYF4:20%
Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,2%Er3+@SiO2 NPs (insets of
Fig. 9a and b). Moreover, in the upconverting channel a high
signal-to-noise ratio, with relatively high upconversion intensity,
was observed and no background uorescence was noted. As far
as the biological imaging is concerned, the nding is an inter-
esting and useful feature of the UCNPs,50 which has not been
obtained in the traditional single-photon or two-photon uo-
rescent imaging.55–66 While excited with the 980 nm laser light
the biological samples presented weak absorption with no
luminescence in the visible region. Fig. 9e and f shows that SiO2-
coated and SiO2-uncoated NPs (without oleic acid) were trapped
within cytosolic vesicular structures aer being up-taken by the
HeLa cells, suggesting that the NPs' cellular internalization took
place by endocytosis in both cases.

4 Conclusions

The present report describes a successful synthesis and char-
acterization of the b-NaYF4:20%Yb3+,2%Er3+ and b-NaYF4:20%
Yb3+,0.2%Tm3+ NPs. Under NIR light irradiation the b-
NaYF4:20%Yb3+,2%Er3+ NPs exhibited intense green and red
luminescence while the b-NaYF4:20%Yb3+,0.2%Tm3+ NPs
exhibited intense ultra-violet, blue and red luminescence. UV
emission range is capable to generate reactive oxygen species in
aqueous environment. Compared to traditionl therapies based
on ROS generation, we presented materials which could
generate ROS without any other components attached to the
nanoparticles. This property allows to solve a common prob-
lems with traditional systems containing photosensitizers
(photobleaching, dose limitation). The synthesized core NPs
were surface coated with silica, having the silica shell thickness
30270 | RSC Adv., 2017, 7, 30262–30273
about 3 nm. The nanoparticle's core/shell morphology, its
structure and surface modication were conrmed by XRD,
TEM, SEM, EDX, and FTIR measurements. All synthesized
nanomaterials formed stable aqueous colloids exhibiting green
or blue luminescence under NIR laser irradiation (lex ¼ 980
nm). The cytotoxicity assays revealed that all the prepared
nanomaterials are relatively nontoxic even in relatively high
concentration (50 mg ml�1) for 48 h incubation. The b-
NaYF4:20%Yb3+,2%Er3+ and b-NaYF4:20%Yb3+,2%Er3+@SiO2

NPs were visualised inside the cytoplasm of HeLa cells. More-
over, no apparent background uorescence was observed inside
the HeLa cells aer the NIR light excitation with the strong up-
conversion of the nanoparticles. Our report shows several
promising applications of the inorganic, lanthanide-doped
nanophosphors, in particularly, as potential biomarkers,
contrast agents, and drug-delivery systems.
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