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Rapidly and correctly identifying eye irritants or corrosive chemicals is an important issue in health hazard

assessment. The purpose of this study is to describe the development of in silico methods for the

classification of chemicals into irritants/corrosives or non-irritants/non-corrosives. A total of 5220

chemicals for a serious eye irritation (EI) dataset and 2299 chemicals as an eye corrosion (EC) dataset

were collected from available databases and literature. Structure–activity relationship (SAR) models were

developed to separately predict serious EI or EC via machine learning methods. According to the overall

prediction accuracy, the Pub-SVM model gave the best results for both serious EI (overall classification

accuracy CA ¼ 0.946) and EC (CA ¼ 0.959). The sensitivity and specificity of serious EI were 97.3% and

86.7% for the training set, and 96.9% and 82.7% for the external validation set, respectively. Similarly, the

sensitivity and specificity of EC were 95.5% and 96.2% for the training set, and 94.9% and 96.2% for the

external validation set, respectively. The high specificity and sensitivity indicated that our models were

reliable and robust, which can be used to predict the potential seriousness of EI/EC of compounds.

Moreover, several structural alerts for characterizing serious EI/EC were identified using the combination

of information gain and substructure frequency analysis.
1 Introduction

Assessing the eye irritation/corrosion (EI/EC) potential of
a chemical is a necessary component of risk assessment. Cornea
and conjunctiva tissues comprise the anterior surface of the eye,
and hence cornea and conjunctiva tissues are directly exposed
to the air and easily suffer injury by chemicals. There are several
substances, such as chemicals used in manufacturing, agri-
culture and warfare, ocular pharmaceuticals, cosmetic prod-
ucts, and household products, that can cause EI or EC.1 To
safeguard public health, toxicological assessments to the eye
must be conducted prior to the production, transportation, and
sale of chemicals and nished products.2

Historically, the Draize in vivo rabbit test was used as
a standard protocol to assess the EI potential of a chemical.3

However, it has several limitations such as being expensive,
time-consuming and has been criticized for its cruelty. Hence,
alternative methods to evaluate chemical toxicity of EI/EC are in
high demand.
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Since the 1990s, enormous efforts have been made to develop
alternative in vitro and in silico methods to predict EI/EC
responses. Currently, three methods have been adopted by the
Organization for Economic Cooperation and Development
(OECD) as partial replacement of the Draize test, according to the
OECD test guidelines (TG) 437,4 438 5 and 460.6 Although these
methods appeared more efficient and cost effective than an in
vivo animal test, no single in vitro assay has been fully accepted as
a regulatory replacement for the Draize test. In addition, in vitro
EI tests have several limitations including being time-consuming
and resource-intensive because they require samples of
compounds as the test materials and animal eyes as the test
tissues.

Compared with experimental testing protocols, in silico
methods save time and are applicable for virtual molecules
before they are synthesized. Previously, several QSAR (quanti-
tative structure–activity relationship) models7–12 have been
constructed to predict eye irritants, and those models are
mainly local models based on one chemical category or several
chemical categories of the European Center for Ecotoxicology
and Toxicology of Chemicals (ECETOC). The number of those
datasets was very small. For a summary of QSAR studies in
ocular toxicity, three previously published reviews13–15 were
recommended. Until two years ago,16 a larger database of 1860
chemicals was compiled from in vivo rabbit EI data. However, it
is not available publicly.
RSC Adv., 2017, 7, 6697–6703 | 6697
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Table 1 Statistical data of chemicals used in the training sets and the
external validation sets of eye corrosion (EC) and eye irritation (EI)

Total number

Training set External validation set

Positive Negative Positive Negative

EC 2299 691 1148 196 264
EI 5220 3107 1069 767 277
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The United Nation Globally Harmonized System (GHS) of
Classication and Labeling of Chemicals provides a foundation
that is used for internationally harmonization of regulations
and rules on chemicals.17 Two separatemodels were built in this
investigation to classify the labels H314 (severe eye damage)/
H318 (serious eye damage) and H319 as described below,
which are referred to as eye corrosion (EC) and serious eye
irritation (EI) in this study.

According to the list of GHS hazard statements,17 the de-
nition that is used for modeling in this study is as follows:

(1) H314: causes severe skin burns and eye damage
(corrosion).

H318: serious eye damage; the production of tissue damage
in the eye, or serious physical decay of vision, following appli-
cation of a test substance to the anterior surface of the eye,
which is not fully reversible within 21 days of application.

(2) H319: causes serious eye irritation; the production of
changes in the eye following the application of a test substance
to the anterior surface of the eye, which are fully reversible
within 21 days of application.

The main goal of this study was to develop in silico methods
for estimating the potential of serious EI/EC of substantial
various chemicals. In this study, we collected high-quality
diverse data of EC and EI from the databases and literature.
Then, nine chemical ngerprints were used to represent the
chemicals, and six machine learning methods were applied to
build binary classication models for the prediction of EI/EC.
Five-fold cross validation and external validation were used to
determine the predictive ability of those models. Moreover,
structural alerts18 of an eye irritant or corrosive were analyzed by
information gain and substructure frequency analysis methods,
and several important structural alerts were obtained.

2 Materials and methods
2.1 Data collection and preparation

Chemicals were collected with their Chemical Abstracts Service
(CAS) registry numbers and SimpliedMolecular Input Line Entry
System (SMILES) codes from 20 databases of QSAR Toolbox 3.3
(https://www.qsartoolbox.org/home). Those with the same or
wrong CAS numbers were deleted by EXCEL. All the SMILES of
positive chemicals (corrosives/irritants) were double checked with
ChemIDplus Advanced (http://chem.sis.nlm.nih.gov/chemidplus).
Then, to search toxicological information of those chemicals, we
mapped CAS numbers to X-MOL (http://www.x-mol.com/). Nega-
tive chemicals were extracted from one article.19 The SMILES of
negative chemicals were collected from ChemIDplus Advanced.

All of the data (including positive and negative chemicals)
were prepared by removing all false SMILES strings, inorganic
substances, organometallic salts, ammonium salts, mixtures
and duplicated compounds. When curating the data set, the
compounds that existed in both negative chemicals and positive
chemicals were removed. Finally, 2299 chemicals (including
887 positive and 1412 negative chemicals) for eye corrosion (EC)
models, and 5220 chemicals (including 3874 positive and 1346
negative chemicals) for eye irritation (EI) models were obtained.
Then, both the datasets (Table 1) were randomly divided into
6698 | RSC Adv., 2017, 7, 6697–6703
the training set and the external validation set in the ratio of
80 : 20 by Discovery Studio 3.5 Client.
2.2 Molecular description

In this study, molecular ngerprints were used to represent
molecules. Each molecule was described as a binary string of
structural keys. Nine molecular ngerprints of all the chemicals
were calculated by PaDEL-Descriptor,20 including the Atom Pair
2D ngerprint (AP2D, 780 bits), Estate ngerprint (Estate, 79
bits), CDK extended ngerprint (Extended, 1024 bits), CDK
ngerprint (FP, 1024 bits), CDK graph only ngerprint (Graph,
1024 bits), Klekota–Roth ngerprint (KR, 4860 bits), MACCS
ngerprint (MACCS, 166 bits), PubChem ngerprint (PubChem,
881 bits) and Substructure ngerprint (SubFP, 307 bits). The
detailed description of these ngerprints can be found in the
original publication.20
2.3 Model building

Among a multitude of available binary classication methods,
we applied six machine learning methods that are highly
effective, robust and extensively successful in the eld of drug
discovery that include the support vector machine (SVM),21

articial neural network (ANN),22 C4.5 decision tree (C4.5),23

random forest (RF),24Näıve Bayes (NB),25 and k-nearest neighbor
(kNN).26

The SVM algorithm was employed in the open source
LIBSVM 3.2 package,27 while the others were implemented in
Orange 2.7 (freely available at http://orange.biolab.si/orange2/).
The parameters of SVM (C and gamma) were optimized through
a python script in the LIBSVM 3.2 package. The number of trees
of RF was set to 50, the k parameter of kNN was set to 15, and
other parameters were set by default in Orange.
2.4 Evaluation of model performance

In this study, the robustness of all the models was assessed by
ve-fold cross validation, and the prediction accuracy of the
models was evaluated by the external validation set. In addition,
all models were evaluated using the counts of true positives
(TP), true negatives (TN), false positives (FP), and false negatives
(FN). The sensitivity (SE), specicity (SP) and the overall classi-
cation accuracy (CA) of the models were calculated using the
following equations:28

SE ¼ TP/(TP + FN) (1)

SP ¼ TN/(TN + FP) (2)
This journal is © The Royal Society of Chemistry 2017
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CA ¼ (TP + TN)/(TP + TN + FP + FN) (3)

The binary classication models were also evaluated by the
receiver operating characteristic (ROC). The principle is that if
the plot has a surface area (AUC) of 1, the classier is perfect,
and if the area equals 0.5, the classier is a useless random
classier.29
2.5 Analysis of structural alerts

Structural alerts are known as molecular functional groups that
make chemicals toxic. They are of importance for predicting
toxicity because they are directly derived from mechanistic
knowledge.30 In this study, structural alerts were analyzed using
the methods of information gain31 and substructure frequency
analysis.32

If a substructure is more frequently presented in the corro-
sive or irritant chemical class, this substructure is called
a structural alert involved in chemical corrosion or irritation.
The frequency of a fragment in toxic chemicals was determined
by the frequency of a fragment enrichment factor, which is
dened as follows:33

Frequency of a fragment ¼
�
NB

fragment �Ntotal

�
�
Nfragment_total �NB

� (4)

where NB
fragment is the number of corrosive or irritant chemicals

that contain this fragment, Ntotal is the total number of
compounds in the dataset, Nfragment_total is the total number of
compounds containing this fragment, and NB is the total
number of corrosive or irritant chemicals in the dataset.
3 Results
3.1 The datasets of EC and EI

Aer processing original databases, we obtained 887 positive
chemicals for EC and 3874 positive chemicals for the EI model.
We also extracted 1412 negative chemicals for EC and 1346
negative chemicals for EI from the literature. A total of 5220
chemicals for eye irritation models and 2299 chemicals for eye
corrosion models were collected from available databases and
the literature. Then, the data set was randomly divided into
a training set and an external validation set in the ratio of
80 : 20 by Discovery Studio 3.5 Client. The detailed statistical
descriptions of the EC and EI datasets are listed in Table 1.

For the ECmodel, chemicals of EC were represented as 1 and
negative chemicals as 0. For the EI model, chemicals of EI were
represented as 1 and negative chemicals as 0.

The SMILES strings and classication of all chemicals for EC
and EI models can be found in Tables S1 and S2 of ESI,†
respectively.
Fig. 1 Chemical space distribution of the training sets and the external
validation sets of EC (N1 ¼ 1839, N2 ¼ 460) and EI (N1 ¼ 4176, N2 ¼
1044). N represents the number of chemicals in different datasets.
Green dots represent the training set and red dots represent the
external validation set. The chemical space was defined by molecular
weight (MW) and Ghose–Crippen log Kow (A log P).
3.2 Chemical diversity analysis

The sums of the chemicals in the EC and serious EI datasets
were 2299 and 5220, respectively, as shown in Table 1. To build
a robust prediction model, chemical diversity of a data set is
This journal is © The Royal Society of Chemistry 2017
a key issue. Therefore, the chemical space and Tanimoto simi-
larity were used to investigate the chemical diversity.

We used the molecule weight (MW) and Ghose–Crippen
log Kow (A log P) of each class in the database to investigate the
chemical space distribution. The chemical space distribution
scatter diagrams of the two datasets are presented in Fig. 1,
which illustrated that the external validation set shared similar
chemical space with the training set.

The Tanimoto coefficient was used to evaluate the diversity
of chemicals in the two datasets. The heat maps of the Tani-
moto similarity index of EC and EI datasets are shown in Fig. 2.
Colors close to red in the heat map (with high Tanimoto simi-
larity index) indicate that the compounds are more similar. On
the contrary, colors close to dark blue (with low Tanimoto
similarity index) indicate that the compounds have higher
diversity. The average Tanimoto similarity indexes were 0.24 for
the EC training set and 0.23 for the external validation set. The
indexes were 0.21 for the EI training set and 0.21 for the external
validation set. For the entire EC and EI datasets, the indexes
were 0.24 and 0.21, respectively. From these values, we know
that the datasets were chemically diverse.

3.3 Performance of ve-fold cross validation

In this study, the EC and EI binary classication models were
built using nine chemical ngerprints combined with six
RSC Adv., 2017, 7, 6697–6703 | 6699
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Fig. 2 Tanimoto similarity index for the EC-training set (A), EC-
external validation set (B), EI-training set (C) and EI-external validation
set (D).

Table 2 Performance of top 5 binary classificationmodels of EC/EI for
the external validation set

Type Model CA AUC SE SP

EC Pub-SVM 0.957 0.994 0.949 0.962
MACCS-ANN 0.950 0.991 0.939 0.958
MACCS-SVM 0.957 0.991 0.939 0.970
FP-SVM 0.959 0.991 0.964 0.955
FP-ANN 0.954 0.989 0.949 0.958

EI Pub-SVM 0.931 0.968 0.969 0.827
MACCS-SVM 0.938 0.972 0.967 0.856
Pub-ANN 0.929 0.962 0.960 0.845
FP-SVM 0.933 0.969 0.971 0.827
KR-SVM 0.936 0.958 0.967 0.848
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machine learning methods, including NB, ANN, kNN, C4.5 DT,
SVM and RF. The models were validated using ve-fold cross
validation and external set validation. The detailed values of CA,
AUC, SE and SP for the ve-fold cross validation of EC and
EI models are summarized in Tables S3 and S4 of ESI,†
respectively.

As shown in Table S3,† for the models of EC, the CA values in
all models ranged from 81.9% to 95.9%, the AUC values in all
models ranged from 88.1% to 99.2%, the SE values in all models
ranged from 80.6% to 99.0%, and the SP values in all models
ranged from 72.0% to 96.9%. It was encouraging that the SP
values in only two models were less than 80%. Among these
models, Pub-SVM gave the best result (CA¼ 0.959, AUC¼ 0.992,
SE ¼ 0.955, SP ¼ 0.962). According to the overall prediction
accuracy, the top ve models were Pub-SVM, MACCS-ANN,
MACCS-SVM, FP-SVM and FP-ANN.

As shown in Table S4,† for the models of EI, the CA values in
all models ranged from 83.8% to 94.6%, the AUC values in all
models ranged from 77.9% to 97.6%, the SE values in all models
ranged from 84.0% to 99.2%, and the SP values in all models
ranged from 59.3% to 91.7%. Although the SP values were less
than the SE values, according to the SP values ranging from
maximum to minimum, the CA values in the top 10 models
ranged from 83.8% to 94.6%, the AUC values in the top 10
models ranged from 88.1% to 97.6%, the SE values ranged from
84.0% to 97.5%, and the SP values in the top 10 models ranged
from 82.8% to 91.7%. It was encouraging that there were
numerous models with SP values more than 80%. Among these
54 models, Pub-SVM gave the best result (CA ¼ 0.946, AUC ¼
0.976, SE ¼ 0.973, SP ¼ 0.867). According to the overall
prediction accuracy, the top ve models were Pub-SVM, MACCS-
SVM, Pub-ANN, FP-SVM and KR-SVM.

According to the results of the ve-fold cross validation of EC
and EI, three conclusions could be obtained. The rst one was
6700 | RSC Adv., 2017, 7, 6697–6703
that most of the models exhibited good overall predictive
performance for the training set. The second one was that six
machine learning methods greatly differed in prediction ability.
The third one was that the models with good performance were
mainly developed via the SVM machine learning method
combined with PubChem and MACCS as attributes.
3.4 Performance of external validation

The external validation set was used to evaluate the perfor-
mance of the best ve binary classication models, and the
detailed results are given in Table 2. As shown in Table 2, for the
external validation set of the EC models, the best result with the
highest accuracy of 95.9%was the FP ngerprint combined with
the SVM algorithm, and the other four models also exhibited
excellent overall predictive performance for the external vali-
dation set. The model performing the best (Pub-SVM) in the
ve-fold cross validation was the second best in the external
validation set. As shown in Table 2, for the external validation
set of EI models, the best result was with the highest accuracy of
93.8% using the MACCS ngerprint combined with the SVM
algorithm. The model (MACCS-SVM) was the second best in the
ve-fold cross validation. Considering the values of SP and SE,
although SP values were lower than SE values for EI models, SP
values were higher than 82% for all the external validation
results of the ve models (Table 2). Therefore, we can conclude
that the prediction results demonstrated the stable robustness
and precise prediction accuracy of the models.
3.5 Identication of structural alerts

To investigate structural features between ocular toxic and
nontoxic compounds, substructure frequency analysis and
information gain methods were applied on the entire datasets
of EC and EI (containing the training set and the external vali-
dation set) using the PubChem ngerprint. Four and ve
important structural alerts (Table 3) were identied to appear
more frequently in corrosive/irritant chemicals than in non-
corrosive/non-irritant chemicals, respectively.

As shown in Table 3, the rst structural alert is an acylating
agent. Recently, acylation was one reaction mechanism of elec-
trophilic reactivity-based proling which was used to conrm
serious eye irritants or corrosives.34 The second structural alert
This journal is © The Royal Society of Chemistry 2017
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Table 3 Representative structural alerts obtained from PubChem fingerprint responsible for corrosive chemicals (EC)/irritant chemicals (EI)

Type Structural alert Positive frequencya Negative frequencya Limits

EC

2.51 (90)b 0 (0)c R1 ¼ –OR/–aryl/–alkyl

2.45 (37) 0.04 (1) R1 ¼ –H/–OH/–NH2/–OR/–aryl/–X, R2–3 ¼ any

2.14 (29) 0.23 (5) R1 ¼ –H/–OH/–NH2/–OR/–aryl/–X, R2–3 ¼ any

2.51 (31) 0 (0) R1–3 ¼ any (e.g., further halogen)

EI

1.24 (189)b 0.32 (17)c R1–5 ¼ –OH/–NH2/–X/–alkyl/–aryl

1.23 (182) 0.35 (18) R1 ¼ –OR/–aryl/–alkyl

1.24 (138) 0.31 (12) R1–5 ¼ –H/–X/–OH/–COOH/–alkyl/–aryl

1.21 (90) 0.38 (10)
R1–2 ¼ –H/–alkyl/–aryl, R3 ¼ –H/–alkyl/–X
(C]C double bond may be –aryl)

1.23 (172) 0.33 (16) R1–3 ¼ any, R4–5 ¼ –H/–alkyl

a Positive frequency and negative frequency represent the “frequency of a fragment” in positive chemicals and negative chemicals respectively,
which were used to pick structural alerts. b The number in the parenthesis means the number of the fragment-containing chemicals in the
positive class. c The number in the parenthesis means the number of the fragment-containing chemicals in the negative class.
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View Article Online
has a bromine methyl that can abstract an electron and conse-
quently accelerate acylation. The last structural alert is in agree-
ment with a previously published study.35 Therefore, the former
three structural alerts were proven as new structural alerts.

For the structural alerts for ocular irritant chemicals, the
basic skeleton of the rst structural alert was the irritant, phe-
nylacetylene. When R1–5 of phenylacetylene was replaced by
other substituents excluding hydrogen, the new chemicals may
produce EI via multiple mechanisms. For instance, if R is
a hydroxyl, this chemical is a phenol. Thus, it refers to alcohols
that may cause serious EI.36 It is easy for the second structural
This journal is © The Royal Society of Chemistry 2017
alert to undergo a Michael addition reaction, which has been
mentioned in a previously published study.34 Aer checking our
entire data set, we found 138 positive chemicals that have the
bromine atom together with an aromatic ring. Therefore, the
third structural alert could be proven as a new structural alert.
4 Discussion
4.1 Diversity of dataset

The diversity of the dataset plays an important role for the
results of classication prediction models. Previously, several
RSC Adv., 2017, 7, 6697–6703 | 6701
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QSARmodels have been constructed to predict eye irritants, and
those models were mainly local models based on one chemical
category or several chemical categories, including organic acids,
salicylates, and alcohols.7–12 The number of congeneric sets of
chemicals or diverse chemical structures of those data sets
ranged from 7 to 54. We could say that those models only
provided reliable predictions within a limited chemical space.
Only most recently, Verma and Matthews developed c-QSAR
(classication QSAR) models using an articial neural
network for the prediction of EI based on 2928 substances.19

However, they only had 917 positive chemicals.
In our study, we collected diverse chemicals from databases

and the literature (1839 compounds for EC and 4176 ones for
EI) to build global models. The training sets shared a similar
chemical space with the external validation sets, as shown in
Fig. 1. In addition, the average Tanimoto similarity indexes of
the entire datasets were about 0.2, indicating that our datasets
were very diverse. Therefore, our models would have a wide
range of applicability domain.
4.2 Performance of the binary classication models

Six modeling methods combined with nine ngerprints were
used to develop binary classication models for predicting eye
corrosives and eye irritants. Despite the imbalance of corrosives
and non-corrosives (corrosives are less than non-corrosives), it
was clear that the values of SE were nearly the same with SP in
almost 54 binary classication models of EC (Table S3†). In
addition, the lowest AUC value was 0.88, and hence we can
conclude that the quality of the datasets of EC was very high.
The results of 54 binary classication models of EI showed that
the values of SE were higher than SP. We deduced that this
phenomenon might be caused due to the imbalance of the eye
irritants and non-irritants since the number of eye irritants (N¼
3107) was more than non-irritants (N ¼ 1069) in the training
sets. Thus, the values of SE and SP may be improved by
adjusting the ratio of eye irritants and non-irritants in the
datasets. In addition, we found that the overall performance of
SVM was almost better than that of ve other algorithms, which
was consistent with the conclusion in our previous study that
SVM is a better method for chemical toxicity prediction.33 As
mentioned above, Verma and Matthews developed c-QSAR
models for the prediction of EI based on 2928 substances
along with sensitivities in the 80–90% range, which were lower
than our results ranging from 90–97% for the top ve models.
Among the EC models, Pub-SVM gave the best result (CA ¼
0.959, AUC ¼ 0.992, SE ¼ 0.955, SP ¼ 0.962), which was
comparable to the result of c-QSAR models for corrosion
potential based on 504 substances.37

In this study, nine chemical ngerprints were used to build
binary classication prediction models unlike the traditional
models that were always built with molecular descriptors. The
method of ngerprints made a direct connection between the
chemical 2D structure and the toxicity endpoint of chemicals.
From the results of Table S4,† it was found that different
chemical ngerprints, along with the same algorithm or
different algorithms along with the same ngerprint, can
6702 | RSC Adv., 2017, 7, 6697–6703
produce different predictions. Therefore, it is necessary to pick
a suitable algorithm and suitable ngerprint to characterize an
entire dataset.
4.3 Advantages and limitations of our models

To the best of our knowledge, we have collected the biggest
database of EC or EI for the construction of classication
prediction models. The average Tanimoto similarity indexes of
the entire datasets were about 0.2, indicating that our datasets
were very diverse. The predictive ability of EC or EI classication
prediction models, in this study, was comparable to those in
any of the previous studies. The results of classication
prediction models suggested that the constructed classication
models could be reliably used for industry and regulatory
agencies in initial prediction of EC or EI potential for diverse
chemicals. Moreover, several structural alerts for characterizing
serious eye irritation/corrosion were identied using the
combination of information gain and substructure frequency
analysis. These structural alerts can be used for structural
optimization in future drug design and ocular toxicity safety
assessment of chemicals.

In this study, inorganic salts, organometallic salts and
ammonium salts were removed. Clearly, pH values play
important roles in EC or EI potential of chemicals. In general,
salts and their relevant chemicals have different pH values.
Therefore, we cannot directly transfer the 2D structures of salts
into their corresponding acids or bases, and the models could
not predict ocular toxicity of salts. Although small part of salts
could not be predicted, in the future we will try to combine
other in silico methods to solve this problem.
5 Conclusions

In this study, nine chemical ngerprints combined with six
machine learning methods were used to build binary classi-
cation models based on datasets of 2299/5220 organic chem-
icals for predicting the potential EC/EI of compounds. Based on
the values of CA and AUC, Pub-SVM models were the best for
both EC and EI, which could provide robust and reliable
predictions for EC and EI potentials of chemicals. Moreover, the
structural alerts were identied, which could be used to
distinguish eye corrosives/irritants and non-corrosives/non-
irritants, by means of information gain and substructure
frequency analysis. These structural alerts appear more
frequently in compounds with EC/EI, and thus they should be
responsible for acute eye toxicity, which would be helpful for
understanding the reactionmechanism. In summary, this study
provided a series of predictive models and toxic substructures
for EC/EI, which might be helpful for drug screening in early
drug discovery.
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