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1. Introduction

MnzO,/graphene nanocomposites: outstanding
performances as highly efficient photocatalysts and
microwave absorberst

Ahmed A. Amer, S. M. Reda, M. A. Mousa and Mohamed Mokhtar Mohamed*

MnzO4 (M) incorporated graphenes (G) synthesized by a deposition—solvothermal process, formed at
various nominal weight percentages (GIM1, G3M1 and GIM3), were efficiently used for the
photodegradation of methylene blue dye (MB) under visible light illumination (A > 420 nm, 88 W,
20 ppm, 298 K) and under microwave irradiation (800 W, 2.45 GHz, 373 K). These materials were
characterized using XRD, TEM-SAED, UV-Vis diffuse reflectance, N, sorptiometry, FTIR and Raman
techniques. Amongst the nanocomposites, G3M1 of polyhedral structure and an average domain equal
to 10-12 nm has presented unique photo-degradation performance (100% degradation, 60 min, 0.0791
min~! and TOC of 60%) exceeding the rest of the materials. This was mainly due to the extraordinary
optical properties and to the strong interaction between MnzO,4 and graphene through which charge
recombination is hampered. Based on the conduction and valence band edges together with the studied
reactive species, it has been shown that ‘OH was the dominant species responsible for the MB
degradation. Interestingly, the G3M1 nanocomposite has shown fascinating microwave absorption
properties and is capable of degrading MB at a faster rate (0.287 min~Y) than the one conducted via
photocatalysis. Scavenger studies have shown that *OH and electrons were responsible for the excellent
performance of the MB microwave degradation. The microwave results were discussed in view of the
marked increase in dielectric constant (¢7) and dielectric loss (¢”) in the studied frequency range of
1.0 Hz to 100 kHz, in addition to the electronic conductivity measurements. This work offers an
exceptional approach for exploring high-performance microwave absorption as well as distinctive visible
light photocatalytic reaction for organics degradation.

information devices.® Nanosized Mn;O, was also reported as
a high-capacity anode material for rechargeable lithium
batteries.” In spite of the high catalytic performance of Mn;0,

The advances in industrial processes generate enormous
amounts of highly toxic organics that pollute the aquatic envi-
ronment. Photocatalysis as one of the promising green tech-
nologies,"” has attracted the attention of many researchers due
to its ability to decompose organic pollutants into CO, and
water. So far, TiO, is a widely employed photocatalyst due to its
superiority in oxidation power, nontoxicity, durability and
stability.> However, TiO, limitation due to its restricted activa-
tion in near UV region as well as the high recombination of its
electron-hole pair hinders its photocatalytic applications under
visible irradiation.* Thus, great effort has been dedicated to
develop unique photocatalysts, which could exhibit higher
activity under visible light illumination.® Among them, Mn-
based catalysts especially Mn;O, is known to be an effective
catalyst for de-NOx reactions, raw materials for electronics and
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nanoparticles (NPs), poor chemical and thermal stabilities of
the material have stimulated the aggregation of NPs and thus,
lessening their catalytic efficiencies.® In addition, increasing the
band-gap energy of Mn3;0O, was generally uncontrollable and
used to change as a function of the structure and/or the support.
To get over these obstacles, carbonaceous materials especially
graphene was exploited to support Mn;O, due to its high
surface area and high electrical conductivity value.*** This
hybrid between graphene and Mn;0, has generated remarkable
interest because of their synergistic effects in activating the
electrocatalytic reduction of oxygen, catalytic decomposition
of organics, and as storage of charges in supercapacitors.'>**
However, some limitations affected the performances of this
hybrid most importantly, rapid and reversible transformation
of the reduced phase (Mnz;0,) with the other oxidized forms
(Mn,03, MnO,)* and the morphological deficiencies based on
preparing various structures of Mnz;O, with high particles
domain.'® As a consequence, the hybrid Mn;O,/graphene never
shows a photocatalytic oxidation to a dye under visible light

This journal is © The Royal Society of Chemistry 2017
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irradiation as well as without oxidants such as H,0, and per-
oxymonosulfate (PMS).”** Although these oxidants are envi-
ronmentally friendly, they have some drawbacks such as cost-
effective, transport, storage, and pH adjusting requirements."”
In view of the mentioned deficiencies, we synthesized magnif-
icent photocatalysts composed of Mn;O,/graphene nano-
composites via a facile non-template deposition-solvothermal
route for the purpose of increasing the contacts between the 2D
graphene nano-sheets and Mn;0, moieties. This indeed is ex-
pected to facilitate the electron transfer from the latter to that of
the former; hindering e -h" recombination, and thus can be
employed in methylene blue oxidation in the absence of any
oxidants under visible light illumination.

It has been shown that microwave (MW) absorption for some
materials can play significant role in wastewater treatment and
thus can save time and energy. During the previous decade, MW
absorbing materials known as dielectrics have been the subject
of great interest particularly for their marked roles in waste-
water treatment. Materials, such as activated carbon,***?
CNTs**** and polymers* are frequently employed in microwave-
assisted degradation of organic pollutants. Among MW absor-
bents, MFe,0, are the most capable* because of the chemical
properties of M>* and Fe®" and to the high magnetic perme-
ability or electrical resistivity.>* Accordingly, MnFe,0,-SiC has
shown high MW absorption that assisted the degradation of
RBR X-3B with an efficiency equal 92%. However, this catalyst
suffers low stability.*® Therefore, looking for other materials of
higher MW absorbers and higher degradation performances is
an essential task. Manganese oxides [MnOg| have shown good
degradation performances for methylene blue under microwave
irradiation based on the significant difference in the oxidative
removal ability between akhtenskite and birnessite phases.*
However, the hybrid between graphene and Mn;0,; the most
common dielectric and microwave attenuation material, has
rarely been reported. Herein, we demonstrate the interfacial
coupling between Mn;O, and graphene for the purpose of
improving the dielectric properties of the nanocomposites and
for microwave-enhanced oxidation of the MB dye with high
reaction rates, short reaction times and great energy efficiency.
These findings may open up an efficient improvement in the
MW absorbers for rapid degradation of organic pollutants.

2. Catalyst preparation

2.1. Reduction of GO

Graphene oxide that was synthesized based on the modified
Hummer's method was first dispersed in 30 mL distilled water
and sonicated for 30 min.*” This suspension was then heated to
100 °C followed by the addition of 3 mL hydrazine hydrate. The
suspension was then kept at the latter temperature for 24 h.
Consequently, the reduced graphene was collected by filtration
in the form of black powders. The obtained material was thor-
oughly washed using distilled water for several times followed
by sonication to remove the excessive hydrazine amounts. The
final product was collected by vacuum filtration and dried at
80 °C.

This journal is © The Royal Society of Chemistry 2017
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2.2. Preparation of Mn;0,

4.9018 g (20 mmol) of Mn(CH3;COO),-4H,0 was dissolved in
100 mL ethanol. Then, 40 mL of NH;-H,0 (25-28 wt%) was
added into the previous solution to indicate changing of the
colourless solution into to a light red without precipitation. An
air purge at a rate equal 1.5 L min~ " was blown into the solution
that heated up into 50 °C for 5 min. During this process, the
solution colour changes gradually into a deep black with
a consequent decomposition to form a colloidal solution of
high dispersion and stability. Centrifugation and drying at
50 °C was then performed to produce the nano-sized Mn;O,
crystals.

2.3. Synthesis of RGO/Mn;0,

The RGO/Mn;0, composites were synthesized by solvothermal
method via dispersing 20 mg RGO in 200 mL DMF followed by
sonication for 30 min and heating to 80 °C. Addition of 20 mL of
0.2 M Mn(Ac),-4H,0 was attained while stirring that extends
about 1 h to prepare different composite loadings. The as-made
composites were treated as above via using both the ammonia
solution and purging air followed by the heating step carried
out at 50 °C for 5 min. These nanocomposites contained in 200
mL solution were autoclaved at 180 °C for 10 h. Then, the
products were collected by centrifugation using ethanol, fol-
lowed by drying at 60 °C for 48 h. The as-synthesized catalysts
were denoted as G1M1, G3M1 and G1M3 where the numbers
are denoted to the weight ratios.

2.4. Materials characterization

The X-ray powder diffraction patterns of various nano-
composites were carried out using a Philips 321/00 instrument
and were run with Ni-filtered Cu Ka. radiation (1 = 1.541 A) at 36
kv. The surface properties specifically BET surface area, total
pore volume (V) and mean pore radius (r) were determined
from N, adsorption isotherms measured at —196 °C using
conventional volumetric apparatus. The pore size distribution
was determined from desorption branch of the isotherm using
the BJH analysis. Diffuse Reflectance Ultraviolet-Visible Spec-
troscopy (UV-Vis DRS) of nanocomposites together with the
edge energy (Eg) for allowed transitions were carried out at room
temperature using a Perkin Elmer Lamda-900 spectrophotom-
eter in the range of 200-800 nm. The Fourier transform infrared
(FT-IR) spectra were recorded via a double beam Perkin Elmer
Spectrometer with a resolution of 2 cm™ " using the KBr method.
Raman spectra were measured with a U-1000 laser Raman
spectrometer using the 514.5 nm line of an ArC laser as the
excitation beam. Selected area electron diffraction (SAED)
images and TEM micrographs were measured using a FEI;
model Tecnai G20, super twin at an accelerating voltage of 200
kv.

2.5. Photocatalytic degradation experiments

A high pressure Hg lamp of 88 W with a special UV cut off filter
(A > 420 nm) offering visible light source; with an average light
intensity equal 40 mW cm ™, was placed at a specified position
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using a special rod in the reactor. The photocatalyst (100 mg)
was suspended in 100 mL aqueous solution of 20 mg L'
methylene blue (MB). The solution was stirred in the dark for
60 min to ensure the establishment of an adsorption-desorp-
tion equilibrium. During irradiations, 2 mL aliquots were
removed at definite time intervals and analyzed with a Shi-
madzu UV-2350 spectrophotometer to measure MB concentra-
tions. The degradation percentages were calculated based on
the following equation: removal (%) = C, — C,/Cy x 100; where
Cy, and C, correspond to the initial concentration and that at
time ¢, respectively.

For exploring the reactive species might produced in the
photocatalytic reaction,”® we used different scavengers
including isopropanol (a quencher of ‘OH), p-benzoquinone (a
quencher of "0,7), triethanol-amine TEOA (a quencher of h"),
and carbon tetrachloride (a quencher of e”) at a concentration
of 1.0 mM.

2.6. Microwave degradation of MB

A quartz vessel containing 100 mL of MB solution (20 ppm) and
0.1 g catalysts was inserted into a Milestone Start D Microwave
Digestion System operating at 800 W and 2.45 GHz. The
samples are heated from room temperature to 100 °C in 5 min.
This temperature was maintained while performing the reac-
tion and then the samples were left to cool down to room
temperature. The samples were then forwarded to the UV/Vis
Spectrophotometer to analyze the residual MB in the wave-
length region of 200-700 nm. The degradation percentages
were calculated as above.

2.7. Electrical properties

The electrical properties of the prepared composites were
demonstrated via compressing the powder of the sample under
a pressure of 5 tons cm ™~ to build up pellets. The two equivalent
surfaces of the pellets (7 mm diameter and 1 mm thickness)
were coated with silver paste to ensure good electrical contact.
The electrical measurements were carried out at a constant
voltage (1 volt) in a frequency range from 1.0 kHz to 300 kHz and
at the temperature of 25 °C; and if necessary raised to 100 °C,
using a programmable automatic LCR bridge (HIOKI: 3532-50).
The dc electrical resistivity was measured with an electrical
circuit consists of an electrometer (model 6517, Keithley), vol-
tammeter (Keithley, 2182) and 5 kV dc power supply. The dc-
conductivity ¢4, of the material was calculated by the
following equation o4, = (1/A)(1/Rqc) Where Ry, is the sample
resistance, [ is the length of the sample and A is the cross-
sectional area. The complex dielectric permittivity was investi-
gated through LCR meter (HIOKI: 3532-50) using the relation
e*(w) = ¢(w) — j¢"(w); where ¢'is the real part of the permittivity
and ¢” is the imaginary part of the permittivity with j = y/—1. The
dielectric constant of samples was measured using the equiva-
lent capacitance (C). The values for ¢ and ¢’ were estimated
using the relations ¢ = (C/¢°)(d/Aq) and ¢”(w) = ¢/(w) tan ¢; where
C is the capacitance of the sample, ¢° is the permittivity of the
vacuum, d is the thickness, A is the cross-sectional area of the
specimen, tan ¢ is the dissipative factor where 3-phase angle is
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determined via w = 27tf, where fis the frequency of the applied
electric field.

3. Results and discussion

3.1. Bulk and morphology study

Fig. 1 presents the X-ray diffraction (XRD) patterns of reduced
graphene (RG), bare Mns;O, nanoparticles as well as the
as-prepared RG-Mn;0, nanocomposites. The diffraction peaks
of RG seen at 26 = 24.5° and 43.8° due to 002 and 100 reflections
of graphitic carbon were depicted evidencing the reduction of
graphene oxide to graphene during the hydrazine-thermal
process. The calculated average interlayer distance was found
to be 3.63 A. Broadening of graphene peaks after reduction is
diagnostic for lowering RG stacking defaults. On the other
hand, the XRD pattern of Mn;0, shows plenty of sharp peaks
matched well with JCPDS no. 24-0734, indicating the formation
of tetragonal Hausmannite-type Mn;O, with space group 14,/
amd. No peaks of any other phases or impurities are observed
demonstrating that the adopted method is suitable for the
preparation of pure Mn;O, phase. The latter phase elaborates
diffraction peaks correspond to 101, 112, 200, 103, 211, 004,
220, 204, 105, 312, 303, 321, 224 and 400 planes. According to
Scherrer analysis, the size of Mn;0, is estimated to be ~15 nm.
The nanocomposites RG-Mn;0O, patterns indicate the coexis-
tence of both RG diffraction lines; especially the 002 line, as well
as those of the Mn;0, phase. Vanishing of the 100 peak related
to RG in all nanocomposites is indicative to the activity of the in-
plane crystallite site. Increasing the Mn;O, ratio relative to RG
indicated more disordered graphene sheets as noticed via
deterioration and splitting of the 002 peak, evidenced in G1M1
and G1M3 samples. The XRD patterns of G3M1 and G1M1

« 110

— G1M1

Relative Intensity

—Mn30,

g

100

——RGO

5 10 15 20 25 30 35 40 45 S0 S5 60 65 70 75 80

20 (degree)

Fig.1 XRD patterns of RGO, Mnz0,4, G3M1, GIM1 and GIM3.
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exhibited an increase in the Hausmannite Mn;O, crystallinity.
Where in G1M3, a significant decrease rather than increase in
the phase forming Mn;O, was depicted. A new peak at 20 =
28.7° corresponding to the 110 plane is appeared in G1IM1 and
indexed to the a-MnO, phase.*® Another peak at 26 = 75° is seen
in GIM1 and G1M3 samples ascribed to the 413 plane of
Mn;0,; never depicted in their bare forms. Accordingly, the
lines intensification observed in G1IM1 and G3M1 compared to
the bare Mn;0, might give a hint about presence of other Mn
species at similar positions of Mn;O,4. The crystallite size of
G1M3, G1M1 and G3M1 were respectively 12, 65 and 23 nm
based of the calculation made on using the Debye-Scherer
formula of the 211 plane.

The surface morphology of the bare Mn;O, and the nano-
composites GIM1 and G3M1 was investigated using HR-TEM
and SAED analyses (Fig. 2). The image formation of the bare
Mn;0, shows spherical-like particles with an average size of
12 nm (Fig. 2A). The selected-area electron-diffraction pattern
(SAED) of the nanoparticles is in harmony with the Haus-
mannite Mn;O, phase and exposes strong ring patterns due to
(101), (103), (211) and (220) planes. The spherical like particles
were well distributed with a little tendency of forming clusters
probably due to increasing the surface free energy of the
nanoparticles. The TEM image shown in Fig. 2B for G1M1
reveals the existence of two types of morphological crystals for
Mn;0, including square and spherical architectures decorating
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graphene nanosheets. The square shape indicates an average
dimension of 44 nm where the spherical ones reveal a dimen-
sion equal 10 nm. The inset figure confirmed the formation of
the Hausmannite Mn;O, phase via the selected area electron
diffraction (SAED) pattern and thus exposed visible rings
ascribed to 101, 103 and 211 lines. Another diffraction spot in
the latter SAED pattern is also recognized and correlated to the
002 facet of graphene, giving a hint about the intimate contact
between Mn;0O, and graphene nanosheets. The TEM image of
the G3M1 sample (Fig. 2C) shows polyhedral structures
including spherical, regular tetrahedron and rectangular, as
illustrated in the high resolution TEM image shown as inset in
Fig. 2C. They have an average diameter in the 10-12 nm range.
The selected area electron diffraction pattern indicates visible
rings that expose lattice fringes 101, 103, 211, 220 and 002
extended from exterior to interior and indexed respectively to
Hausmannite Mn;O, phase and graphene (002). This pattern
indicates the well dispersion of Mn;0, nanoarchitectures and
its overlaying on graphene and rather emphasizes the strong
interaction between them. That high dispersion of Mn;O,
within the great percentage of graphene sheets (G3M1) induces
strong interaction between them and thus governs the particles
size enlargement. A criterion about that interaction and
consequences thereof concerning the agglomeration prevention
of Mn;0, nanoparticles as a result of its distribution between
graphene nanosheets, is indeed comes through varying the

Fig.2 TEMimages of (A) MnzO,4 (B) GIM1 (C) G3M1 and (D) G1IM3 together with the corresponding magnified HRTEM images and SAED patterns,

as insets.

This journal is © The Royal Society of Chemistry 2017
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morphology of the parent Mn;O, and when it interacts with
graphenes. That particle growth inhibition preserves the high-
surface-area interface between Mn;O, and graphenes. The
images of G3M1 (Fig. 2D) indicated SAED pattern typical to all
nanocomposites and rather shows spherical and square nano-
architectures of dimension 12 nm and 50 nm, respectively.

3.2. FTIR and UV-Vis spectroscopy

The FTIR spectra of the synthesized samples are presented in
Fig. 3. Apparently RG spectrum indicates small bands at 1710,
1632, 1581, 1415, 1383, 1112 and 1039 cm ' confirming the
presence of residual oxide moieties on its surface. The bands at
1710 and 1632 cm ™' are respectively, assigned to vibrations of
C=0 stretching®® and absorbed water molecules.** Whereas,
the bands at 1415, 1383, 1112 and 1039 cm ' are assigned to
O-H deformation vibrations of tertiary C-OH,*” bending
absorption of carboxyl group,*® C-OH stretching®* and C-O
stretching vibration of the epoxy groups,* respectively. The
band at 1580 cm ™! is indicative to the GO reduction since it's
correlated to the aromatic C=C skeletal vibrations of unoxi-
dized graphitic carbon.**** On the other hand, the Mn;O,
spectrum indicates prominent small bands at 1632, 1495, 1383,
1112 and 1039 cm ™' beside bands at 614 and 498 cm™'. The
former bands assigned respectively, to adsorbed water mole-
cules (1632 cm™ "), OH deformation vibrations (1495 cm™') and
C-OH vibrations (1383-1039 cm ). These bands are indicative
of the prominent existence of some residual acetate moieties
attached to the Mn precursor. The band at 614 cm ™' charac-
teristics of the Mn-O bending mode at tetrahedral sites together
with the band at 498 cm™" correlated to the distortion vibra-
tions of Mn-O in an octahedral position was observed. The
G3M1 spectrum exhibits a combination of the bands existed for
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Fig. 3 FTIR spectra of RGO, Mnz0,4, G3M1, GIM1 and G1M3.
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RG and Mn;0, with revealing a reduction in intensity of the
latter when compared with the bare Mn;O,4. This gives a hint
about the strong interaction between the moieties forming the
G3M1 sample. Furthermore, shifting the Mn-O vibrations in
the latter into longer wavenumbers (624 and 524 cm ')
compared to the bare Mn;O, (613, 490 cm ') reflects consid-
erably the strong interaction exhibited between GO and Mn;0,.
It is shown that the band area ratio of tetrahedral/octahedral in
G3M1 is higher than that in the bare, which showed the reverse
behaviour. In case of G1M1, the bands are somehow typical to
those seen on G3M1 with slight shifting the low IR bands seen
at 624 and 524 cm™'; in G3M1, into 631 and 527 cm?,
respectively. A new tiny band at 405 cm ™' is developed. This
latter band is more close to Mn-O vibrations of MnOg shown in
a-MnO, species,*® confirming the previously observed XRD
results of G1M1. Interestingly, the G1IM1 sample presented
equal intensity ratio for tetrahedral and octahedral band
structure. It appears also that the band at 1627 cm ™" undergoes
splitting in G1IM1 and G3M1 samples to give doublet and thus
exposes in addition a band at 1580 cm ™. This gives a hint about
the reduction of GO at such Mn;O, loadings. However,
increasing the ratio of Mn3;O, to GO (as in G1M3) has
substantiated the intensities of the Mn-O bands, those exhibi-
ted at 610 and 488 cm ™" together with evolution of small bands
at 444 and 400 cm " due to Mn** in octahedral sites.*”*® This
highlights that increasing the concentration of Mn;0, species
(G1M3) indicates not only different geometrical structural of
Mn;0, but also specifies lower strength compared to other
nanocomposites. Exposing the tetrahedral structure in G3M1
exceeding that of the thermodynamically favourable octahedral
one may substantiate the high cationic mobility of Mn;0y,, its
superior electronic properties and its decreased particles sizes.
In G1M3, the bands in the C-OH region have been substanti-
ated (1050-1400 cm™ ") together with OH stretching band at
3420 cm ™" with disappearing that at 1580 cm™ . This reflects
the oxidation effect of Mn;O, on RGO at such high loadings of
Mn;0, (G1M3). Existence of bands correlated to MnO, in G1M1
and Mn,0; in G1IM3 might reflect the thermodynamic differ-
ences in surface energies that under wet conditions was
amenable to expose MnO, and Mn,0; moieties together with
the most prominent Mn;O, mostly obtained under dry condi-
tions.*>** This has been ascertained via increasing the broad-
ness of the OH stretching band as well as C-OH ones in G1M3.
The absence of the more oxidized Mn,0O; species in the XRD
pattern of GIM1 comprehends its small amounts and indeed
raises the sensitivity of the FTIR technique. However, exceeding
the XRD crystallinity of Mn;O, peaks in G1M1 relative to pure
Mn;0, lines might indicate overlaying of other phase(s).

The UV-Vis absorption spectra of pure Mn;O, and GM
hybrids are compared in Fig. 4. The Mn;0, spectrum shows
a strong band at 210 nm due to the allowed O, — Mn*" and/or
0,~ — Mn’" charge transfer transitions with almost no
absorption in the visible light region. In comparison with the
latter sample, the nanocomposite samples show strong
absorption in the visible light region. The nanocomposites
exhibit a band at 230 nm; besides the mentioned one at 210 nm,
due to w-m* transitions of the aromatic C=C bonds in

This journal is © The Royal Society of Chemistry 2017
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Fig.4 UV-Vis absorption spectra of RGO, MnzO,4, G3M1, GIM1 and GIM3, and their corresponding plots of (ah)? versus (hv) for energy bandgap

(Eg) determination.

graphene structure. The nanocomposites containing graphene
that showed absorption enhancement in the whole region were
in the order; G3M1 > G1M1 > G1M3. This indeed maximized the
effect of graphene appropriate percentages relative to Mnz;O,
along with the color changes from black to grey. This was in
concordance with the reported results of other GR-including
nanocomposites.”* The electronic absorption spectra of the
nanocomposites also show broad bands from 390 to 530 nm in
G1M3 where it extends into 600 nm in GIM1 and G3M1. This
indeed is correlated to d-d crystal field transitions on octahe-
dral Mn?" species*? and rather proposes the strong interaction
between the moieties forming the composite. This is expected
to increase the harvesting capability of the nanocomposites to
have a great impact on their photocatalytic performances
probably in the same sequence under visible illumination. The
band gap energy of the samples is calculated via using the
equation:

1)

where v, «, E, and A is respectively light frequency, absorption
coefficient, band-gap energy and a constant.*® The part n is
a constant fits with 1/2 to comprehend that the optical

ahy = A(hv — Ep)",

This journal is © The Royal Society of Chemistry 2017

transition is of a direct allowed type.** Accordingly, the esti-
mated band-gap energies of G, Mn;0,4, G1IM1, G3M1 and G1M3
based on the latter equation are 1.39 eV, 3.1 eV, 1.44 €V, 1.41 eV
and 2.05 eV, respectively (Fig. 4 inset). All the GM nano-
composite samples have band gap energies in the region
between those of graphene and Mn;O, accomplishing the
strong interaction devoted between them.

3.3. Raman spectroscopy

To gain more information about the structure of the graphene
sheets and its interaction with Mn;0O,, Raman spectra were
recorded (Fig. 5). The Raman spectrum of the bare Mn;0,
shows a strong peak at 641 cm™' ascribed to the A;, mode
correlated to the oxygen vibrations in the MnOg unit.** The
Raman spectrum of GIM1 displays the G peak at 1570 cm™*
correlated to the ordered sp> bonded carbon together with the D
peak at 1347 cm ' due to edges or disordered layers.* The small
peaks in the margin 200-400 cm ™" ascribed to Mn;O, modes*’
were intensified in the G1IM1 spectrum compared to the pristine
Mn;0, to comprehend the proposed weak interaction between
the moieties forming G1M1. Conversely, the G3M1 spectrum
illustrates in addition to D and G peaks a very small peak due to
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Fig. 5 Raman spectra of MnzO4, G3M1, GIM1 and G1M3.

the free Mn;0, (641 cm™") that constitutes 1/5 of its intensity in
G1M1 and 1/4 to that in the bare Mn;0,. Taking into consid-
eration the Mn to G ratios, one easily confirms that the inter-
action between Mn;0, with graphene was more intense in
G3M1 compared to the other nanocomposites. Shifting the G
band from 1570 ecm™' in GIM1 and G1M3 to 1580 cm ' in
G3M1 confirms the devoted strong interaction of Mn;0O, with
graphene and rather announces lowering of graphene layer
thickness in the latter sample than those in the former.**** Both
of the nanocomposites show the 2D band; characteristics of two
phonon lattice vibration process,*® of the same shape and
position extending from 2550 to 2850 cm™'. Accordingly, the
synthesized graphene is multilayered given that D in RG is very
strong than the 2D. The intensity ratio of D and G peaks (Ip/Ig)
offers a precise measure of the disorder and crystallite size of
the graphitic layers. The Ip/I; intensity ratio of RG (1.34)
exceeded those of G3M1 (1.31), GIM1 (1.26) and G1M3 (1.12)
confirming a relative lower density of imperfection in RG
following the Mn;0, incorporation.

3.4. Surface texturing

Fig. S1f presented the N, adsorption-desorption isotherms of
some synthesized samples in conjunction with their pore size
distribution (PSD) curves. They demonstrate type II isotherm
with H3 hysteresis loops characterizing aggregates of plate-like
or slit-shaped pores.* Incorporation of Mn;O, into RG
decreases the Sggr value from 142.6 m* g~ ; in pristine RG, into
116 m® g ' in GIM1 and 105.6 m”* ¢~ ! in G3M1. The hysteresis
loops of the samples close at P/P, values of 0.46, 0.46 and 0.45
for RG, G1IM1 and G3M1, respectively. This signifies the pres-
ence of alike large pores in all the samples except RG that shows
another hysteresis closes at P/P, = 0.84, representing the
involvement of micropores as well. That hysteresis is dis-
appeared following Mn;O, involvement illustrating the well
incorporation of the latter between RG sheets. As a confirmation
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for the mentioned order in surface area, the pore volume values
indicate alike trend via giving values equal 0.1124, 0.0912 and
0.0818 ¢cm® g~ ' for RG, GIM1 and G3M1, respectively. This
elaborates that the pore volumes are reduced where the pore
radii are only narrowed for the GIM1 sample (27.67 A) and it
was reluctant in G3M1 (28.9 A). The pore size distribution (PSD)
curves of all the samples have shown the existence of trimodal
type of pores (2 nm, 2.9 nm and 4.2 nm) all occur in the low
margin of mesopores. The relative intensity of the peaks;
correspond to different types of the pores, suffered a decrease in
the order; G3M1 > G1M1 > RG. This elaborates the well inclu-
sion of Mn;0, between RGO sheets in G3M1 and G1M1 samples
accomplishing the strong interaction between the moieties
forming these samples. Decreasing the pore volume of the
G3M1 sample compared to rest of samples while keeping its
pore radius unaffected reflects the dispersion of Mn;0, deep
between RG sheets.

3.5. Photocatalytic degradation of the MB dye

The photocatalytic degradation of as-synthesized nano-
composites RG-Mn;0, (G3M1, GIM1 and G1M3) was studied
via using the methylene blue (MB) dye at a concentration of
20 ppm and at room temperature. These samples were initially
left for 60 min in MB solutions before irradiation for ascer-
taining equilibrium adsorption. Upon visible light irradiation
(88 W, 1> 420 nm), the G1M3 sample did not exhibit any activity
apart from that related to the dye absorption and comprised of
30% (Fig. 6). The photocatalyst GIM1 exhibits MB degradation
equal 92%, showing fast oxidative decomposition upon
increasing the RG ratio. It seems also that the RG ratio affected
the adsorption process to reach 52% in this latter sample. A
further increase in the RG ratio as in the G3M1 sample has
indicated an efficient MB degradation via achieving 100% in
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Fig. 6 Photocatalytic degradation of the MB dye by MnzO4, G3M1,
G1M1 and G1M3 photocatalysts under visible light irradiation: reaction
conditions: (lamp power = 88 W, filter A = 420 nm, catalyst weight

100 mag, dye conc. 20 ppm). Insets are the kinetic fits for MB degra-
dation via the as-synthesized photocatalysts.
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only 60 min. Although the latter catalyst contains the highest
RG ratio, it indicates low absorption percentages under dark
condition comprised of 24%. It is necessarily declaring that this
reaction proceeds without any oxidizing agent unlike those
devoted by Chunxiang He et al® and Shaobin Wang et al.**
whom used H,0, and peroxymonosulfate, respectively with the
composites of Mn;0,/GO. This reveals an increase of our
samples oxidizability under photo-irradiation. On the other
hand, the bare Mn;0, indicates dark adsorption comprised of
30% that continues to give 58% degradation under visible light
irradiation after 120 min. Accordingly, it seems that the synergy
between Mn;O, and RG plays a significant role in the dye
degradation via photocatalysis. Concisely, the RG/Mn;0, ratio
and specifically G3M1 manipulates the efficient decomposition
of the MB dye since the individual components showed lower
catalytic activity than the nanocomposites. Plotting In C,/C vs.
time (min) indicates straight lines (see the inset in Fig. 6) with
slopes indicative to the reaction rate constants. These lines
indicate that the oxidation reaction follows pseudo-first order
rate kinetics. The rate constant values that performed at 298 K
were in the order: G3M1 (0.0791 min~") > G1IM1 (0.0428 min~")
> Mnz0,4 (0.0114 min~") > GIM3 (0.0005 min~"). Since, the
nanocomposite G3M1 presented the most promising photo-
activity result, it has been used for performing further reac-
tions. At certain reaction intervals, the UV-Vis absorption
spectra of the MB dye were undertaken while tracing its pho-
tocatalytic degradation using the nanocomposite G3M1. As
shown in Fig. S2,1 two absorption peaks at 615 and 664 nm are
observed characterizing the MB typical peaks.** These absorp-
tion peaks diminish with time and the solution turns colourless
gradually within 60 min irradiation time. The TOC% of the
same sample taken during the 60 min reaction time; inset in
Fig. S2,t indicates 60% elemental carbon representing the
photodegradation ratio of the dye organic carbons. However,
the difference between C/C, and TOC% values; typical of 40%,
are mostly correlated to the presence of non-degradable inter-
mediates produced during the photo-degradation process.
However, extending the time into 120 min has accomplished
the 100% TOC degradation verifying the complete trans-
formation of organic carbons into elemental carbons.

To shed an idea about the reactive species could be involved
in the oxidation process, some recognized scavengers were
added to investigate their role on the reaction rate. Accordingly,
the effects of the addition of benzoquinone; BQ, isopropanol;
IPA, triethanolamine; TEOA, and carbon tetrachloride; CCl,, on
the catalytic oxidation of the MB dye over the photocatalyst
G3M1 have been investigated under identical experimental
conditions (Fig. 7). It has been shown that the reaction rate was
relatively retained upon using BQ reflecting the small effect of
the ‘O,  species. The experiment with IPA has indicated
a higher decrease than that evoked via BQ, proposing the
influential effect of ‘OH. A significant decrease was obtained for
the MB oxidation following the addition of TEOA and CCl,
comprehending the efficacy of both holes and electrons in the
MB oxidation mechanism. This suggests that the intimate
contact between Mn;0, and graphene in G3M1; as confirmed
from HRTEM-SAED, Raman and FTIR, is beneficial for the
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Fig. 7 Effect of reactive scavengers on the degradation activity of the
G3M1 photocatalyst towards MB under visible light irradiation and
under the mentioned reaction conditions.

production of the main reactive species "OH resulted due to the
visible light absorption. Indeed, the produced photogenerated
holes from the VB of Mn;0, were responsible for creating the
latter reactive species as a consequent of its interaction with
OH /H,0O species. Hypothetically, based on conduction and
valence band edge energy calculation,” the photoexcited elec-
trons in the CB of Mn;0, in G3M1 can reduce O, to "0, since
the CB edge potential (of —4.01 eV vs. NHE) is more negative
compared to the standard redox potentials of Eg (0,/'O,")
(—0.33 eV vs. NHE). However, the scavenger study indicates the
negligible effect of the latter reactive species. Compatibly, ‘OH
can be created by ‘O, rather than h" in the VB of Mn;0O,
because of the more negative Mn3;O, VB potential (—0.2.6 eV)
relative to the standard redox potential of OH /°OH (Eg = 2.4
eV).**2 Hence, the generation of ‘OH and the involvement of
'O, in the synthesis of the latter can be proposed via the
following equations.

ECB™ + 0, — "0, )

‘0,” + ECB™ + 2H" — H,0, and/or ‘O,” + H" — HOO" —
'OH + O and H,O + photon — ‘OH + 'H (3)
'0,” + H,0, - 'OH+ OH™ + O, (4)

H,0, + hv — 2'OH (5)

OH  — 'OH +e— (6)

Based on the presented results, the photocatalytic mecha-
nism can be proposed as follows (Scheme 1). In the Mn;0,/RG
composites, Mn;0, attached on the surface of RG produces
electron-hole pairs as a result of photons absorption when
exposed to visible light irradiation. Effective separation of the
charges is attained given that RG acts as an effective scavenger
for the produced electrons. Herein, electrons absorbed by RG
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can react with the adsorbed O, to yield ‘O, that by its turn
transferred into 'OH together with the OH™ ions dedicated as
well to produce "OH. Also, "OH can be obtained via direct water
oxidation or reduction of H,0,. Investigation that the latter
moieties is in situ formed is traced by measuring the light
absorption of the titanic-hydrogen peroxide compound.®*
Accordingly, ‘OH moieties compile their definite effects in
effective MB dye oxidization. Nevertheless, one must bear in
mind that our RG is functionalized by residual oxygen moieties
on its surface; in conformity with E, data ascertaining its sem-
iconducting property, enabling it to take part in the photore-
action products. Accordingly, the photo-generated holes could
be capture by not only the lattice oxygen in Mn3;O, but also
those on RG sheets to form "OH active species. On the other
hand, the photogenerated h* in the VB is also amenable for
generating "OH via the reaction with H,O.

In addition, it is very important to confirm that the photo-
degradation obtained for the nanocomposites is consistent with
the values estimated from incident photon to current efficiency
(IPCE) spectra (Fig. 8). This is because photodegradation is
entirely dependent on the incident light and the consequences
thereof concerning the impinged photons. As shown in Fig. 8,
the G3M1 electrode possessed the highest IPCE values over the
wide range from 350 to 750 nm compared to rest of the samples.
This result was in harmony with the devoted UV-Vis absorption
spectra (Fig. 4) in which G3M1 has indicated the highest
absorption throughout all the studied range (200-800 nm) and
rather it indicates the lowest E, value (1.41 eV). Increasing IPCE
of the G3M1 electrode in the wavelength range of 600-700 nm
could also be due to increasing the absorption capacity of the
MB dye (Fig. 8). Increasing the IPCE of same sample in the
narrow wavelength range of 470-490 nm; in which the MB dye
has a low absorption for incident light, reflects that this
promotion is directly correlated to the phenomenon of light
scattering. This result further confirmed the superior light
absorption and scattering properties of the G3M1 electrode in
the long wavelength region. This explains the higher efficiency
of G3M1 in photodegrading the MB dye compared to rest of the
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catalysts. Exposing the tetrahedral structure of Mn;0, in G3M1
than the octahedral one; as deduced from FTIR results, may
substantiate the facile mobility of Mn;O, in enhancing the
photocatalysis of this specific sample together with its
decreased particles size.

It's of important notifying that at the 25 wt% of RGO loading
(as in G1M3), no photoactivity is exhibited where after increasing
the weight ratio of RGO compared to Mn a superior photoactivity
is attained. This is due to at the former ratio, an oxidized GO is
obtained due to the excessive amounts of Mn;O, (75 wt%) and
this prohibits the facile electron transfer due to its scavenger
throughout oxygen functional groups leading to high loss of
charges. Conversely, increasing the ratio into 75% graphene (as
in G3M1) reduces tremendously the residual oxygen, as reveled
from IR results, and thus acts as an electron acceptor/donor
capable of performing magnificent role in the dye degradation.
Convincingly, the strong adhering of Mn;O, into RG; which
retained the particles size of the former at ~12 nm, has shown
exceptional optical and texturing properties those in turn caused
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Fig. 8 Incident-photon-conversion efficiencies (IPCE%) of MnzO,,
G3M1, GIM1 and GIM3.
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Fig. 9 The recycle test during degradation of MB using G3M1 under
visible light illumination.

high oxidative decomposition for the MB dye in the absence any
oxidants unlike many comparable nanocomposites.*****

The stability and recyclability of the G3M1 nanocomposite
was evaluated by successive tests for the MB decolorization
(Fig. 9). It is established that the G3M1 photocatalyst can work
at least four cycles without noticeable loss in the catalytic
activity, demonstrating the long-term durability of this nano-
composite. Whereas, the fifth run indicates retaining of the
85% of the catalyst activity proposing an excellent stability while
reusing for 300 min.

3.6. Microwave absorption of Mn;0,/graphene for MB
degradation

Fig. 10 shows the normalized degradation curves of MB treated
in the microwave reactor; for 30 min at 373 K and under 1 atm
pressure, with the nanocomposite catalysts as well as with the
free Mn;O, catalyst. During the microwave treatment, the
nanocomposite G3M1 catalyst indicates the best MB degrada-
tion performance by signifying 100% color removal. This only
takes 10 min compared to 60 min in the photocatalytic reaction
performed for the same sample. Accordingly, the consequence
of the studied nanocomposites was in the order; G3M1 > G >
G1M1 > Mn > G1M3. These results maximized the role of the
synergistic effects between Mn;O, and graphene at high
percentages of the latter (G3M1) since, it shows higher degra-
dation percentages than pristine Mn;O, and graphene nano-
architectures. It was found that the G1IM1 catalyst exhibits
a microwave catalytic activity comprised of 70% degradation
whereas that of G1M3 indicates 40%, both in 30 min irradiation
time. The microwave degradation of MB by a direct microwave
irradiation in the absence of a catalyst was almost zero. Addi-
tionally, to exclude that the degradation has nothing to do with
the sample heating, the nanocomposites were heated to 373 K
with the MB solution for 1 h away from microwave irradiations
to comprehend zero degradation. Whereas, the microwave
degradation of MB in presence of nanocomposites was found to
follow pseudo-first-order decay kinetics.”® Based on the Lang-
muir-Hinshelwood model, the estimated reaction rate (Fig. 10

This journal is © The Royal Society of Chemistry 2017
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are the kinetic fits of MB degradation via the as-synthesized
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inset) was in the order G3M1 (0.287 min~ ') > G (0.085 min ') >
G1M1 (0.045 min~") > Mn (0.026 min~') > GIM3 (0.016 min ™)
(Fig. 11). It's interesting notifying that the activity of microwave
irradiation of G3M1 while degrading MB exceeded that ob-
tained via photocatalysis by 3.5 times.

The scavenger studies for detecting the reactive species
could be responsible for MB degradation while employing the
microwave absorption property of nanocomposites were per-
formed (Fig. 11). Notably, when TEOA and BQ used, the
degradation efficiency is overall similar to that of the blank
without scavengers and thus nullifies the influence of holes and
'O, species. Whereas, upon using IPA and CCl, a significant
decrease in activity is perceived relative to that of the blank
implying that "OH and electrons are the major reactive species
for G3M1. This advocates that the coupling effect between
microwave and the active ‘OH species on Mn;0, incorporated
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Fig. 11 Effect of reactive scavengers on the degradation activity of the
G3M1 nanocomposite towards MB under microwave irradiation and
under the mentioned reaction conditions.
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graphenes is participated in the MB degradation. It has been
notified that ‘OH is produced considerably by h* in the VB of
Mn;0,/graphene (G3M1) owing to its more negative potential
than the standard redox potential of OH/'OH (Eg = 2.4 eV).*®
The violent motion of polar materials; exerted due to collisions
between reactant molecules due to microwave irradiation, can
compete with the catalytic reactive species to accelerate degra-
dation of the MB dye.

To configure the role of electrons during the microwave MB
degradation performance; as committed from the trapping
experiments, the electrical conductivity of as-synthesized
nanocomposites as well as the bare Mn;O, was measured at
temperature range from room temperature to 373 K (Fig. 12).
The electrical conductivity values were found to decrease from
0.033 Q" 'em™, 0.028 Q' em Y, 0.002 Q' em ! and 6.0 x
107° Q' em ™' for G3M1, GIM1, GIM3, and Mn;O,, respec-
tively. This indicates that the combination of graphene with
Mn;0, nanocomposites can strongly increase the electronic
conductivity compared to the bare Mn;O,. It also indicates the
potentiality of graphene specifically in the nanocomposite
G3M1, reflecting the synergism between the components
forming this composite. Based on the high absorptivity of
carbon containing materials including graphenes to microwave,
hot-spots are formed to act as oxidation centres for the pollut-
ants oxidation.”® That selective heating stimulates molecular
rotation causing a decrease in the activation energy (see Fig. 10).

Since microwave assists the rise of temperature of the
samples thus, an increase in the number of carriers and lattice
vibrations is expected to be obtained.** Indeed, increasing the
temperature increases the number of carriers and consequently
it leads to conductivity elevation (inset in Fig. 12). Scheme 1 also
illustrates the effect of "OH and electrons evoked while micro-
wave irradiation on the MB degradation. Of particular interest,
although the nanocomposites GIM1 and G1M3; of alike thick-
ness, show the presence of small amounts of MnO, and Mn,0;
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Fig. 12 Conductivity results of MnsO4 G3M1, GIM1 and G1M3
samples measured at room temperature and at 373 K. Inset is the ¢ vs.
T for exploring the effect of increasing temperature on the
conductivity.
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species; as devoted from XRD and IR results, they still indicate
lower conductivity values than G3M1. This declares that the
geometric defects obtained in G1M1 and G1M3 samples such as
dislocations and grain boundaries® are great; as exactly devoted
from surface properties and TEM results. Consequently, such
grain boundaries in graphene can disrupt the electron transfer
and thus being trapped causing the depletion in charge carriers.
The strong interaction devoted between Mn;0, and graphene in
G3M1; confirmed via IR, Raman, TEM-SAED and surface
texturing data, minimizes the presence of discrete boundaries,
structural disorders and surface imperfections between the
moieties forming this sample. On the other hand, the lattice
vibrations create phonons and thus an expected interaction
between electron-phonon can be perceived.>® Undoubtedly,
G1M1 and G1M3 must have shown more charge carriers than
G3M1 due to evoking Mn*" and Mn®" species on their surfaces;
as depicted via XRD and IR results. However, the devoted
decrease in their conductivities explains the possibility of
hampering the electrons by phonons and as a result affecting
the oscillation mode occurs in their lattice structures influ-
encing their conductivities (Fig. 12).

Increasing the microwave catalytic activity of G3M1 was due
to enhancement of the microwave absorption as a result of the
change occurring in dielectric constant and dielectric loss
caused by the addition of Mn;0, to graphene. Under the alter-
nating electromagnetic field, interfacial and space-charge
polarization can easily be formed at the interface of Mn;0,/
graphene and also due to the conducting nature of graphene
and the dielectric nature of Mn;0,. Fig. 13a shows that the
nanocomposites dielectric constant (¢”); inferred to the storage
ability of electric current, decrease continuously with increasing
frequencies to be in the order; G3M1 > G1M1 > G1M3 > Mn. The
monotonous decline in dielectric constants on increasing
frequencies may be attributed to the combined contribution
caused by electronic, ionic, and interfacial polarization.*® The
observed dielectric distribution at low frequencies can be
explained on the basis of the Maxwell-Wagner theory of inter-
facial polarization® by which the dielectric structure of the
composite consists of two layers. The number one layer stands
for a large number of grains that act as conducting layer at lower
frequencies and the other layer consists of grain boundaries
that act as highly resistive medium at higher frequencies. At low
frequencies, the polarization process in composites of high
percentages of Mnz;0O, (G1M3) can be described as a local
displacement of electrons via hopping mechanism between
Mn*" and Mn*" and an orientation of electric dipole in the
direction of the applied field. Nevertheless, the monitored
decrease in the latter sample dielectric constant is in part due to
the presence of residual oxygenated functional groups; depicted
via IR results. That presumably lessens the direct contact
between graphene nanosheets and thus facilitates the electron
transfer through oxygen functional groups leading to high
dielectric loss (Fig. 13b). Increasing the microwave absorption
property of G3M1 could also be caused by dielectric relaxation
and interfacial scattering.>>*® The dielectric relaxation and
polarization was mainly induced by interfacial multipoles,
which took place along the boundaries between graphene

This journal is © The Royal Society of Chemistry 2017
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frequency change in the margin from 1.0 Hz to 100 kHz.

sheets and Mn;0, moieties.””*® It has been documented that
charges would transfer throughout the interface in a metal
graphene heteroarchitecture due to their different work func-
tion and thus an electron transfer from Mn3;0, to graphene can
be anticipated. Accordingly, a charge transfer process can
rationally be assumed at the interface of G3M1, leading to the
introduction of the free carriers into graphene sheets. The latter
carriers would vibrate with the microwave motivation giving rise
to electric polarization in graphene and thus increase the value
of ¢ in G3M1 compared to rest of the composites (Fig. 13a).
Furthermore, ¢ of all nanocomposites decreases with
increasing frequency (Fig. 13a;) owing to the relaxation of
polarization and thus shows a dielectric dispersion. The small-
size particles (12 nm) observed in G3M1 involves large number
of particles per unit volume resulting in an increase of the
dipole moment per unit volume and thus induces the highest
dielectric constant. In the meantime, the motion of the intro-
duced free carriers would attenuate the microwave energy,
resulting in the enhancement of the dielectric loss ¢’ (Fig. 13b).
Attenuation of dielectric loss with increasing frequencies was
also attained; as seen in the corresponding Fig. 13b;. Dimin-
ishing the dielectric constant with increasing frequency is
dedicated to the polarization decrease of the dipoles when the
electric field propagates with high frequencies. Interestingly,
the G3M1 sample has indicated the lowest decrease in dielectric

This journal is © The Royal Society of Chemistry 2017

loss with increasing frequency between all samples. This latter
behaviour is explained on the basis that in dielectric nano-
structured materials, interfaces are produced with large volume
fractions involving great number of defects such as vacancies,
dangling bonds and microporosities.”® These can cause
a change in negative and positive space charge distribution at
the interfaces. Such space charges when subjected to an electric
field, they trapped by defects to form lots of dipole moments.
On the other hand, these dipole moments at low frequencies
follow the change of the electric field®® and thus both the
dielectric loss and the dielectric constant display high values.
The dielectric properties of the composites are usually
correlated to the surface morphology of reduced graphene
nanosheets, since it increases as the graphene ratio increase
(Fig. 13a and b). Accordingly, the random distribution of the
conserved sp> and distorted sp® carbons decorated by various
oxygen containing functional groups can be anticipated.®® Such
distribution in RGO works as a nanocapacitor electrode sepa-
rated by the Mn;O, dielectric material. Thus, the revealed
considerable improvement in dielectric constant can be attrib-
uted to the formation of huge number of nanocapacitors inside
the composite.®* This is believed to originate due to the pres-
ence of residual oxygenated functional groups that apparently
lessen the direct contact between graphene nanosheets.®
Consequently, the large capacitance caused by each
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nanocapacitor results in a noticeably high local electric field. An
environment is afterwards created which is conducive for
migration and accumulation of charge carriers at the RGO/
Mn;0, interface. That interfacial polarization named Maxwell-
Wagnar effect is considered to be responsible for the large
dielectric constant at low frequency region.®® Conversely, the
escape current is principally responsible for the high dielectric
loss in nanocomposites, as validated in G1M1 and G1M3. This
explains that oxygenated functional groups on RGO are not as
an insulating layer or intrinsic barriers that limits the current
leakage® but facilitates the electron transfer through oxygen
functional group leading to high dielectric loss.

4. Conclusions

The polyhedral nanoarchitecture graphene/Mn;0, formed at
the ratio of G3M1 has shown fascinating photocatalytic
performances; under visible light illumination without any
oxidants, and microwave irradiation for the purpose of the MB
degradation. The experimental results of this type of smart
material evokes some important factors by which the
enhancement was revealed such as (i) high optical properties
explained via exceeding the visible light absorption of the
sample in the 400-800 nm region as well as increasing the
IPCE% value (ii) the devoted strong interaction between the
moieties forming G3M1 and the consequence thereof con-
cerning the decrease in E, as well as the delay in the charges
recombination (iii) increasing the conductivity of this sample at
room temperature (Z.e. indicative to photocatalysis) and rather
its enhancement at 373 K (i.e. indicative to microwave irradia-
tion) (iv) the superior increase in the dielectric constant at the
low frequency margin, at which microwave absorption takes
place, explained the extraordinary photocatalytic MB degrada-
tion. The excellent microwave absorption seen in G3M1 was
attributed to the charge transfer at the latter nanocomposite
interface as well as the interfacial polarization that well
explained in view of the Maxwell-Wagnar effect.
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