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SiO, nanoparticles cause depression and
anxiety-like behavior in adult zebrafish

Xiang Li,;? Xiaodong Liu,? Teng Li,1° Xu Li,; Daofu Feng,i® Xiangyu Kuang,}® Jia Xu,°
Xin Zhao,® Mingzhu Sun,*® Dongyan Chen,*¢ Zhixiang Zhang*“ and Xizeng Feng*?

The extensive employment of engineered nanoparticles (NPs) makes it inevitable that the environment
would be exposed to nano-materials. As a result, their biological effects on the ecosystem and living
organisms are gaining attention. Here, we report that both nano-silica (SiO,-NPs) and reserpine can elicit
depression-like behavior in adult zebrafish in a novel tank test. Nano-silica or reserpine induce the
depressive phenotype by decreasing locomotion, inhibiting exploratory behavior, aggravating the
depressive phenotype and disturbing swimming patterns. Immunohistochemistry reveals that the
dampened locomotion induced by nano-silica and reserpine is associated with the reduced expression
of tyrosine hydroxylase. Inhibited exploratory behavior, aggravated depressive phenotypes, and disturbed
spatiotemporal swimming path patterns are related to the increased expression of serotonin. These
findings imply that the similar behavioral and depression-inducing effect of nano-silica and reserpine
may share a common physiological mechanism. In summary, our results suggest that exposure to silica
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Introduction

With the development of nanotechnology, engineered nano-
materials such as nano-silica (SiO,-NPs) have been extensively
applied in various fields of daily life. Nano-silica is used for
biomedical purposes, for example in targeted drug delivery and
controlled release," bio-imaging,> and cancer treatment.’ In
agriculture and manufacturing, nano-silica also plays an indis-
pensable role in paints and bactericidal agents. Among nanotech-
based consumer products, nano-silica is in the top five of nano-
materials used.* Thus, with the expansive application of silica
nanomaterials, terrestrial or aquatic organisms and humans are
more likely to be exposed. The potential adverse effects of nano-
silica used daily on the ecological environment and on human
health is an urgent problem which needs to be addressed.’
Fortunately, a multitude of research techniques are relevant for
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nanoparticles in the nervous system is a possible depression-inducing factor.

deciphering the side effects of nano-silica.® Substantial work has
already paid attention to evaluate the toxicity in vitro.”** Recently,
a host of researchers have assessed the toxicity in vivo. Xiang, L.
et al. applied AB zebrafish (Danio rerio) as an animal model to
find that nanosilica acted on the retina and dopaminergic (DA)
neurons to change colour preference and to cause potential
Parkinson’s disease-like behavior. Furthermore, Wu, J. et al. used
SD rats to propose that SiO,-NPs may enhance the potential risk
of neurodegenerative disease by exerting a negative impact on the
striatum and DA neurons. Overall, these studies suggest that
nano-silica has a hazardous effect on the nervous system and
stress the importance of fully investigating the neuro-toxicity of
nano-silica.

Because of their genetic and physiological homology with
humans,** a large and variable behavioral repertoire,'* and high
throughput experimental manipulation,® zebrafish have
emerged as a promising efficient animal model for studying
various brain disorders.’”™° In addition, zebrafish have become
the ideal candidate for studying CNS disorders in light of the
conserved mechanism of neuropsychiatric dysfunction with
humans.?*** Reserpine, clinically used as an early anxiolytic-like
antipsychotic, exerts an obvious effect in suppressing bipolar
disorder (BP) symptoms. But it can elicit major depressive
disorder (MDD) by depleting dopamine.* Currently, reserpine
exposure is the widely accepted pharmacological manipulation
method which is reported to induce depression-like phenotypes
in zebrafish.*® Zebrafish exposed to reserpine demonstrated long-
term depressive symptoms, such as elevated baseline whole-body
cortisol, social withdrawal and locomotion retardation.**
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This research aims to discover the potential depressive
effects caused by chronic exposure to nano-silica by behavioral
analysis and immunohistochemistry. Reserpine is used in this
study to induce a depression model in zebrafish. Comparative
analysis of nano-silica vs. reserpine is made to characterize the
potent depression-causing effect of nano-silica. Behavioral tests
exhibit a similarity between nano-silica and reserpine in elicit-
ing depression-like behavior such as decreasing locomotion,
inhibiting exploratory behavior, aggravating the depressive
phenotype and disturbing swimming patterns. Furthermore,
immunohistochemistry reveals the comparability of nano-silica
with reserpine in decreasing the expression of tyrosine
hydroxylase but increasing the expression of serotonin. Thus,
these results demonstrate that in causing depression, nano-
silica may possibly share a common behavioral and physiolog-
ical mechanism with reserpine. In addition, further investiga-
tions should be carried out to decipher specific common genetic
and molecular mechanisms.

Methods and materials
Experiment ethics and animal housing

Zebrafish (12 months old) were maintained in an environ-
mentally controlled room with a 14/10 h light/dark cycle (07:00
AM to 09:00 PM) and a temperature at 25 °C in the State Key
Laboratory of Medicinal Chemical Biology, Nankai University.
Adult zebrafish (Danio rerio) of the wild type (AB strain) were
housed in a recirculating aquatic system at 28.5 °C according to
the typical zebrafish housing standards.® Circulating water in
the aquarium (Shanghai Haisheng Biotech Co. LTD) was filtered
by reverse osmosis (pH 7.0-7.5). To maintain the conductivity of
standard system water to 450-550 nS cm ™" and the pH to 7.0-
7.4, Instant Ocean® salt and sodium bicarbonate were added.
Fish were fed twice a day with a mixture of frozen brine shrimp
(Germurunze bio-product co. LTD) and flakes for aquarium fish
(Shanghai min-ang electronic business co. LTD). All the exper-
imental protocols concerning zebrafish were approved by the
Committee for Animal Experimentation of the College of Life
Science at Nankai University (no. 2008). All the experimental
procedures were performed in accordance with the NIH Guide
for the Care and Use of Laboratory Animals (no. 8023, revised in
1996).

Experimental apparatus

The novel tank, used to assess anxiety and depression behavior
of zebrafish, was a 5 L rectangular box (23 cm length x 15 cm
width x 15 cm depth), which was made from transparent
Plexiglass. The tank was maximally filled with water and divided
into two equal virtual horizontal portions, by a line marking the
outside walls. The area above this mid-line represented the
‘upper half (top)’ of the novel tank, while the region below
represented the ‘lower half (bottom)’ of the novel tank.?® The
novel tank was placed over a light source, an LED array, with an
acrylic diffuser located above (Fig. 1a). The light source was
composed of white light arrays and a transparent platform. The
light intensity of the white light was 500 lux. Acrylic diffusers
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here were used to homogenize the illumination intensity and to
enhance the contrast between the three zebrafish individuals
and chamber background during video tracking. Two CCD
cameras (MV-VS078FM, Microvision, 10 frames per s), were
fixed to obtain the top (dorsal) view and side (lateral) view of the
moving zebrafish (Fig. 1b). A daylight lamp (500 lux) was
mounted above the camera to offer photo-stimulation to trigger
courtship behavior. Experiments were conducted in a relatively
sound-proof room to minimize the effect of noise. A big black
cloak covered all the experimental apparatus to eliminate
environmental interference. All apparatus rested on a level,
stable surface.

Pharmacological manipulation

Reserpine (purity = 98.0%) used in this study was purchased
from Shanghai Macklin Biomedical Co., Ltd, and SiO,-NPs (15
nm) were purchased from Xuan Cheng Jing Rui New Material
Co., Ltd. China. The rationale for the concentration of reserpine
was based on previous research concerning the effective doses
of reserpine on behavior of zebrafish.>® In this study, mild
doses: 1 ug mL™" (low concentration) and 10 pg mL~" (high
concentration) were chosen (Fig. 1c). Also, the chosen concen-
tration of SiO, NPs (15 nm) was according to the dose that eli-
cited a behavioral change.® Subsequently, 100 ug mL™" (low
concentration) and 1000 pg mL ™" (high concentration) were
chosen (Fig. 1c). Before being suspended in a 3 L tank, the
experimental doses of reserpine (1 ug mL ™, 10 pg mL ') or
Si0,-NPs (100 pg mL™', 1000 pg mL™"') were prepared by
weighing and adding dry powder to the system’s water. To
facilitate the suspension of the particles, the solutions were
sonicated for 30 min. The diameters and distributions of the
15 nm nano-silica in the system water were then determined
using dynamic light scattering (DLS) (Fig. 1e).

A total of 80 AB strain adult zebrafish (12 months old,
male : female = 1 : 1) that were experimentally naive were used
in this study. All fish were housed in groups of 2 fish per 4 L tank
(filled with filtered facility water maintained at 27 °C) on
a 14:10 h cycle. Fish were fed with live brine shrimp twice per
day. The fish were separated into five groups according to the
pharmacological manipulations. The five groups were exposed
to tank water (as a control, n = 24), reserpine of low concen-
tration (1 pg mL™", n = 14), reserpine of high concentration (100
pg mL™', n = 14), 15 nm nano-silica of low concentration (100
pg mL ™', n = 14), 15 nm nano-silica of high concentration (1000
pug mL™', n = 14). In order to examine the long term effect of
reserpine or 15 nm SiO,-NPs, the exposure duration of the five
groups was 10 days. Water in each 4 L tank containing standard
tank water, reserpine or nano-silica was refreshed twice a day
after feeding with brine shrimp. All the experimental subjects in
a 4 L tank were offered the same illumination, temperature and
dissolved oxygen conditions identical to those in a standard
aquarium. The zebrafish were euthanized with 500 mg L™ tri-
caine (Sigma-Aldrich, St. Louis, MO), following behavioral
testing. Then the animals were immediately dissected on ice for
further analysis. All surgery was performed under cold anes-
thesia, and all efforts were made to minimize suffering.

This journal is © The Royal Society of Chemistry 2017
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Fig. 1 Experimental paradigm. (a) Experimental setup of three-dimensional behavioral neuro-phenotyping of adult zebrafish in the novel tank
test. (b) Two cameras from a dorsal view and lateral view recorded the behavior of zebrafish in the novel tank. (c) Zebrafish were chronically (for
10 days) exposed to 15 nm SiO,-NPs or reserpine solutions. (d) The depression-causing or anxiogenic effect of nanosilica (15 nm) vs. reserpine
was compared via behavioral analysis. 3D reconstruction of swimming trajectories demonstrated the distinct swimming patterns of zebrafish
exposed to nanosilica vs. reserpine. (e) Characterisation of nanosilica (100 pg mL™ and 1000 ug mL™Y) dispersed in a standard water system using
dynamic light scattering (DLS).

Behavioral testing 2 h. Before the behavioral test, fish were given 1 h to acclimate
to the environment. Behavioral testing was performed between
11.00 am and 15.00 pm with tanks filled with water at
a temperature from 25 °C to 27 °C. Zebrafish behavior was

All fish were given at least 10 days to acclimate to the laboratory
environment. After 10 days of chronic reserpine or SiO,-NPs
treatment, fish were placed into a 3 L beaker with tank water for

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 2953-2963 | 2955
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recorded by two cameras that were fixed vertically and hori-
zontally. Zebrafish behavior was evaluated by recording and
analyzing the following behavioral endpoints: total distance
traveled (m), average velocity (m s™'), turn angle (°), angular
velocity (° s™), meandering (° m ™), average entry duration in
the top (s), distance traveled in the top (m), time spent in the top
(s), latency to enter the top (s), number of entries to the top,
time spent ratio of top : bottom, distance travel ratio of top-
: bottom, entries ratio of top : bottom, tail drop angle (°),
freezing bouts (frequency), freezing duration (s).

Behavioral parameters

The behavioral parameters briefly referred to the definition by
Allan V. Kalueff, in which all the behavioral parameters in the
novel tank test were specified.>*** The specific definitions of
behavioral parameters that describes depression and anxiety
profiles are demonstrated as follows:*

(1) Total distance traveled (m) was defined as the total
distance in the novel tank.*

(2) Average velocity (cm s™') was defined as the direction and
magnitude of zebrafish speed in the novel tank.*

(3) Turn angle (°) was defined as the total turning angle of
zebrafish in the novel tank.*

(4) Angular velocity (° s™') was defined as the direction and
magnitude of zebrafish angular speed in the novel tank.*’

(5) Meandering (° s~ ') was defined as the degree of turning
vs. travel distance.*

(6) Average entry duration in the top (s) was defined as the
amount of time spent at the top of the novel tank during each
crossing.*

(7) Distance traveled in the top (m) was defined as the total
distance moved in the defined top part in the novel tank.*®

(8) Time spent in the top (s) was defined as the total time
spent in the top part of the novel tank.*°

(9) Latency to enter the top (s) was the amount of time to first
cross from the bottom part to the top of the novel tank.*

(10) Number of entries to the top was defined as the number
of crosses from the bottom part to the top of the novel tank.*

(11) Time spent ratio of top : bottom was the ratio of the time
spent on top over bottom.*®

(12) Distance traveled ratio of top : bottom was defined as
the ratio of the total distance moved in the top part versus the
bottom.*’

(13) Entries ratio of top : bottom was defined as the number
of crosses from the bottom part to the top of the novel tank.*®

(14) Freezing bouts (frequency) was defined as the total
number of instances of immobility (>1 s) during the 5 minutes
test in the novel tank.**

(15) Freezing duration (s) was defined as the duration of all
freezing bouts in the novel tank.*

(16) Tail drop angle (°) was defined as the angle of the body
against the horizontal plane (Fig. 5a).">>*%

Immunohistochemistry

The brains were harvested after the silica and RSP treatment for
10 days, and immediately fixed in 4% paraformaldehyde,

2956 | RSC Adv., 2017, 7, 2953-2963

View Article Online

Paper

equilibrated in 30% sucrose/PBS overnight and embedded in
OCT. Sections of 10 pm thickness were mounted on gelatin-
coated slides and air dried at 37 °C for at least 2 h. The tissue
sections were rehydrated with PBS, blocked with 20% NGS and
2% BSA in 0.3% PBS/Triton X-100 (PBST) for 1 h and incubated
with primary antibodies overnight at 4 °C. The following
primary antibodies and concentrations were used: mouse
monoclonal antibody 5-HT (1 : 4000, Sigma) for labelling cones
and mouse monoclonal anti-tyrosine hydroxylase (1 : 400, Mil-
lipore, Billerica, MA) for labelling DA cells. The interpretation of
the neuroanatomy follows the adult zebrafish brain atlas.
Immunoreactions were detected using Cy3-labelled goat anti-
mouse IgG diluted to 1:400 (Millipore). The sections were
counterstained in a 1:1000 dilution of 4/,6-diamidino-2-
phenylindole (DAPI) (Sigma) to label the nuclei. The slides
were viewed with an Olympus BX51 light microscope (Olympus,
Tokyo, Japan). The images were captured by an Olympus CCD
DP71 (Olympus) and processed using Adobe Photoshop CS
(Adobe Systems, San Jose, CA).

Western blotting

The levels of tyrosine hydroxylase in the brain were measured by
western blot analysis. After the treatment, the brains were har-
vested and immediately lysed in a tissue protein extraction
reagent (CWBIO, Beijing, China) with PMSF (Sigma-Aldrich). A
BCA Protein Assay Kit (CWBIO) was used to quantify the protein
concentrations. Then the proteins were subjected to SDS-PAGE
and transferred onto a nitrocellulose membrane blocked with
5% non-fat dry milk in Tris-buffered saline with 0.05% Tween-
20. The membrane was incubated with the following primary
antibodies: mouse anti-TH (1 : 1000; Millipore) and rabbit anti-
actin (1 : 1000; CWBIO). After being washed with Tris-buffered
saline containing 0.05% Tween-20, the membrane was incu-
bated with an anti-mouse or an anti-rabbit peroxidase-
conjugated secondary antibody (1 :3000; CWBIO). Then the
membrane was washed with Tris-buffered saline with 0.05%
Tween-20, and Super Signal West Pico chemiluminescent
substrate (Thermo Scientific) was used for detection.

Data analysis

Histograms were presented as mean + standard error of the
mean (S.E.M.). All the plots were generated by GraphPad Prism
6 for Mac (GraphPad Software, Inc.). P < 0.05 was considered to
indicate a significant difference. One-way ANOVAs were per-
formed to compare the difference among variances, followed by
post hoc Turkey HSD tests using SPSS Statistics 22 for Mac
(IBM). Cluster 3.0 (Stanford University, USA) was used to
perform hierarchical clustering ordered by Euclidean
distances® to link the nano-silica or reserpine treatment to the
alteration of all behaviors. Java Tree View (University of Glas-
gow, UK) was utilized to visualize the clustering result. In the
clustergram, each cell represented the average relative value
and the standard deviation with blue lower than the control, red
higher than the control, and black invariable. Analysis of the
droopy tail angle was performed using MATLAB R2012b
(MathWorks) with the CircStat toolbox.** Circular significance

This journal is © The Royal Society of Chemistry 2017
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was conducted using the Watson-William test.*® 3D-
Reconstruction and 3D spatiotemporal reconstruction of the
swim path were performed in accordance with the method
described before.***%

Result and discussion

Nano-silica or reserpine dampened the locomotion of
zebrafish

The locomotion behavior of zebrafish, which was measured by
the total distance traveled, averaged velocity, turn angle and
angular velocity, has been suppressed by nano-silica or reser-
pine compared with the control. Both nano-silica and reserpine
significantly decrease the total distance traveled (Fig. 2b)
(F4,70 = 4.452, P = 0.0026). In addition, the averaged velocity
(Fig. 2c) has also been suppressed by treatment with both
reserpine and nano-silica (F, 70 = 4.475, P = 0.0026). Besides,
both the reserpine and silica treated manipulations affected the
swimming flexibility of adult zebrafish by decreasing the turn
angle (Fig. 2d) (F4,70 = 5.821, P = 0.0004). The value of angular
velocity in both reserpine and nano-silica treated fish also
declined dramatically (Fig. 2e) (Fy70 = 5.742, P = 0.0005).
Moreover the erratic movements measured by meandering in
the novel tank test (Fig. 2f) revealed a significant reduction in
meandering (F, ;0 = 6.345, P = 0.0002). General results have
indicated that nano-silica suppressed the locomotion profiles of
zebrafish. Locomotion behavior reflects the general motor

a Locomotion Profiles

b Total distance traveled (m)
F (4,70) = 4.452, P=0.0026
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aspects of swimming zebrafish and may be decreased depend-
ing on the anxiogenic effect of certain chemicals.*® Results from
the nano-silica data suggested a potential locomotion-
dampened effect of nano-silica, which is comparable with that
of reserpine.”®

Both nano-silica and reserpine treatment were associated with
inhibited exploratory behavior and disturbed spatiotemporal
swimming patterns of zebrafish

The average entry duration in the top (Fig. 3b) (F4,70 = 3.080, P =
0.0214), distance traveled in the top (Fig. 3c) (Fy 70 = 4.596, P =
0.0024), time spent in the top (Fig. 3d) (F,;0 = 4.635, P =
0.0022), latency to enter the top (Fig. 3e) (Fy30 = 2.236, P =
0.0427), number of entries to the top (Fig. 3f) (F, ;0 = 5.293, P =
0.0009), time spent ratio of top : bottom (Fig. 3g) (F4,70 = 2.101,
P = 0.0498) and distance traveled in the top : bottom (Fig. 3h)
(F4,70 = 1.783, P=0.1420) are all shown in Fig. 3. However, there
is a notable trend in that the ratios of the distance traveled in
the top : bottom and the number of entries in the top : bottom
(Fig. 3i) (F4,70 = 4.464, P = 0.0020) are all significantly decreased
by nano-silica. It has been reported that a high anxiety level in
zebrafish is directly related to a decreased value of the explor-
atory behavioral parameters mentioned above. Therefore, the
behavioral result demonstrated the anxiogenic effect of silica.
The effect of different concentrations of nano-silica or
reserpine on the spatiotemporal swimming patterns are further

investigated by  three-dimensional = swimming path
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serpine in the novel tank test. (a) Diagram of the exploratory behaviors
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zebrafish by decreasing the (b) average entry duration to the top, (c) distance traveled in the top, (d) time spent in the top, (e) latency to enter the
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The data are expressed as the mean + S.E.M. and were analyzed by one-way ANOVA followed by the Turkey post hoc test. Significance was

defined as *p < 0.05, **p < 0.01, and ***p < 0.001.

reconstruction and spatiotemporal swimming trajectory
reconstruction (Fig. 4a). Wild type zebrafish demonstrate
normal locomotion patterns: the spatial scope of wild type
zebrafish is wide and trajectories of wild-type zebrafish are
intensive. However, both nano-silica and reserpine disturb their
swimming path patterns, resulting in sparse trajectories and
decreased locomotive activity. Furthermore, nano-silica and
reserpine inhibit the exploratory behavior of zebrafish in the
novel tank, decreasing their swimming path in the upper part.
To explore the precise effects of silica on instantaneous loco-
motive activities at each location in the swimming path over the
course of 5 min, locomotive activities were colour-coded
(Fig. 4a-c); the legend’s colour scales represent the propor-
tional spectrum across the minimum/maximum ranges of the

2958 | RSC Adv., 2017, 7, 2953-2963

locomotive parameter values (ESI Fig. S1-S57). Interestingly,
100 pg mL™' nano-silica and 1 pug mL™" reserpine exhibited
similar changes in the swimming path patterns and locomotive
activities of the zebrafish.

Both reserpine and nano-silica altered the expression of
serotonin and decreased the level of tyrosine hydroxylase (TH)

The increased anxious behavior and decreased locomotive
activity were detected in the reserpine and nano-silica treated
groups. It is well known that serotonergic systems are involved
in the modulation of fear and/or anxiety.*® The decreased
locomotive activity is a characteristic of Parkinson’s disease in
zebrafish.>” Thus the expression of serotonin and tyrosine

©
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Fig. 4 Three-dimensional-spatial and 3D-spatiotemporal reconstructions of adult zebrafish swim trajectories exposed to nano-silica or
reserpine. (a) “3D reconstruction” indicates the spatial swimming path changes induced by nano-silica or reserpine in the whole novel tank.
“Which half” represents the spatiotemporal swimming path in red indicating trajectories in the top part and in blue indicating trajectories in the
bottom part. The instantaneous locomotion at every point in the trajectories was color-coded according to the value; the legend colour scales
represent the proportional spectrum across the minimum/maximum ranges of the locomotive parameter values. Similar effect of 100 pg mL~!
nano-silica and 1 pg mL~! reserpine in altering the spatiotemporal swimming path (b) and (c) the instantaneous locomotion on trajectories of

zebrafish in the novel tank.

hydroxylase were examined in brain tissues after 10 days
treatment.

As shown in Fig. 6a, reserpine can promote the level of
serotonin in white matter, but the number of the neurons
containing serotonin decreased. In the RSP-10 group, neurons
containing serotonin were hardly detected. In either of the
nano-silica groups, the serotonin disseminated in the white
matter, no 5-HT neurons were found. The expression of tyrosine
hydroxylase (TH) was used to evaluate the number of dopami-
nergic (DA) neurons. The expression of TH in the posterior
tuberculum (TP), which is the substantia nigra of the zebrafish,
decreased in the reserpine groups (Fig. 6b). The decrease of TH
in RSP-1 is much more than in RSP-10. The expression of TH

This journal is © The Royal Society of Chemistry 2017

also decreased in the silicon groups, and the decrease of TH in
nano-silica-100 was smaller than it was in the nano-silica-1000

group.

Depressive phenotype induced by nano-silica or reserpine

Circular statistics indicate that the droopy tail angle increased
by nano-silica and reserpine treatment. The wind rose map
(Fig. 5c) reveals the significance of the droopy tail angle of the
nano-silica and reserpine groups compared with the control
group [(silica-100 vs. wild type): P = 0.036; (silica-1000 vs. wild
type): P < 0.001; (RSP-1 vs. wild type): P < 0.001; (RSP-10 vs. wild
type): P < 0.001]. Both nano-silica and reserpine increase the tail

RSC Adv., 2017, 7, 2953-2963 | 2959
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drop angle compared with the wild type (Fig. 5i), which are
measured by one-way ANOVA (F,;, = 13.94, P < 0.0001). A
multiple T post hoc test reveals that both nano-silica and
reserpine significantly increase the tail drop angle [(silica-100
vs. wild type): ¢ = 2.18, df = 34, P = 0.0360; (silica-1000 vs.
wild type): t = 7.22, df = 33, p < 0.0001; (RSP-1 vs. wild type): t =
7.16, df = 36, p < 0.0001; (RSP-10 vs. wild type): t = 7.68, df = 36,
p < 0.0001].

Furthermore, the instantaneous “droop tail angle” dynamics
are demonstrated by the color-coded angle values in each
location in the swimming path (Fig. 5d-h). The color scales in
the legend represent the proportional spectrum across the
minimum/maximum ranges of the “droop tail angle” values.
Both nano-silica and reserpine inhibit the spatiotemporal
swimming paths of zebrafish. High values of “droopy tail angle”
(color-coded by yellow or red) usually occur in the upper part of
the swimming path (ESI Fig. S6-S107).

a Droopy tail angle b
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Depressive and anxiety behavior such as (Fig. 6c) freezing
bouts have been enhanced by silica or reserpine treatment,
which are revealed by one-way ANOVA (F, ;o = 18.67, P <0.0001).
Multiple T post hoc tests demonstrate that both nano-silica and
reserpine significantly increase the tail drop angle [(silica-100
vs. wild type): ¢t = 2.20, df = 34, P = 0.0348; (RSP-1 vs. wild
type): t = 5.17, df = 36, p < 0.0001; (RSP-10 vs. wild type): t =
8.30, df = 36, p < 0.0001; (silica-100 vs. RSP-1): t = 3.53, df = 24,
P = 0.0017; (silica-1000 vs. RSP-1): ¢ = 5.67, df = 24, p < 0.0001;
(silica-100 vs. RSP-10): t = 5.67, df = 24, p < 0.0001; (silica-1000
vs. RSP-10): t = 5.39, df = 23, P < 0.0001].

One-way ANOVA demonstrates the significant effect of nano-
silica or reserpine on the freezing duration (Fig. 6d) (Fa 0 =
9.425, P < 0.0001). The freezing duration has been enhanced by
both reserpine and nano-silica, which is revealed by multiple T
post hoc tests [(silica-100 vs. wild type): ¢t = 3.75, df = 34, p =
0.0007; (silica-1000 vs. wild type): t = 2.07, df = 33, p = 0.0467;
(RSP-1 vs. wild type): t = 4.47, df = 36, P < 0.0001; (RSP-10 vs.
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Fig.5 The similar effect of nano-silica and reserpine on increasing depression behavior in the novel tank test. Diagram of the swimming pattern
(a) and (b) definition of the "droopy tail” angle. (c) Polar directional histograms (wind direction rose map) demonstrated the value and directional
distribution of the droop tail angle. The radial length of sector i represented the proportion of the droopy tail angle (i°, ~i + 1°) out of the total
angle. The numerical value of the radial lengths of all sectors in each rose map adds up to 1. The small triangle indicates the mean value. The
instantaneous droopy tail angles at every point in the trajectories were color-coded according to the value (d—h); the legend colour scales
represent the proportional spectrum across the minimum/maximum ranges of the droopy tail angle. (i) Histogram of the droopy tail angle for
each treatment. Both nano-silica and reserpine increase the tail drop angle compared with the wild type.
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Fig. 6 Depressive phenotype caused by nano-silica or reserpine. Examination of expression of (a) serotonin in the hypothalamus and (b) tyrosine
hydroxylase in brain tissues treated by nano-silica or reserpine. In (b), the upper and lower panels showed the left and right populations of TH
positive cells in the middle panel. The depressive behavior such as (c) freezing bouts and (d) freezing duration have been enhanced by both
reserpine and nano-silica. (e) Hierarchical clustering revealed the similarity between nano-silica and reserpine on altering the whole behavioral
profiles in the novel tank test. The data are expressed as the mean + S.E.M. and were analyzed by one-way ANOVA followed by a Turkey post hoc
test. Significance was defined as *p < 0.05, **p < 0.01, and ***p < 0.001. Scale bars, 400 pm.

wild type): t = 6.70, df = 36, P < 0.0001; (silica-100 vs. RSP-10):
t = 2.07, df = 24, P = 0.0496; (silica-1000 vs. RSP-1): t = 2.31,
df = 23, p = 0.0301; (silica-1000 vs. RSP-10): ¢ = 3.58, df = 23,
P = 0.0016].

Hierarchical clustering revealed the comparability of the
depressive effect of nano-silica or reserpine on the whole
behavioral profiles of zebrafish in the novel tank test (Fig. 6e).
The locomotive and exploratory behaviors are suppressed by
both nano-silica and reserpine with low or high concentrations.
The degree of similarity between the depressive effects of the

This journal is © The Royal Society of Chemistry 2017

four pharmacological manipulations suggests that the low dose
of nano-silica (100 pg mL™") and the low dose of reserpine (1 ug
mL™") produced similar degrees of alteration in all of the
behavioral parameters.

Conclusion

The novel tank diving test in this experiment compared the
similar anxiogenic effects induced by chronic nano-silica versus
chronic reserpine exposure. The anxiogenic effects of nano-

RSC Adv., 2017, 7, 2953-2963 | 2961
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silica and reserpine have been demonstrated to increase anxiety
behavior, decreasing locomotion (total distance traveled,
average velocity, turn angle and angular velocity); increasing
erratic movements (meandering); reducing exploratory
behavior to the top (average entry duration in the top, distance
traveled in the top, time spent in the top, latency to enter the
top, number of entries to the top, time spent ratio of top-
: bottom, distance traveled ratio of top : bottom and entries
ratio of top : bottom); and enhancing depressive phenotype
(freezing bouts, freezing durations and droopy tail angle).
Further, 3D-reconstruction demonstrates that nano-silica or
reserpine narrow the swimming path of zebrafish by confining
their area of movement to the bottom of the novel tank, while
spatiotemporal 3D-reconstruction revealed the similar effects
between nano-silica and reserpine on instantaneous locomotive
activities at each location in the swimming path. Together, the
novel tank test indicates the similar effects of nano-silica and
reserpine on decreasing locomotion, inhibiting exploratory
behaviors and enhancing anxiety phenotype.

In this study, we found that nano-silica, similar to reserpine,
could increase anxious behavior and decrease locomotive
activity in adult zebrafish. Deficiency in the 5-HT system is
accompanied by increased depression and anxiety-like behav-
iors in adult mice.*® In zebrafish, Buspirone (5HT 1A receptor
agonist), a serotonergic anxiolytic drug can decrease the
depression and anxiety-like behavior during the novel tank
diving response.’® Thus the effect of anxiogenic or anxiolytic
drugs affecting the 5-HT system in zebrafish behavior also can
be a read-out for anxiety or fear.*® The serotonergic system in
zebrafish is also involved in depression and anxiety behavior.
Here the number of serotonin-containing neurons decreased in
the brain tissues of the RSP and nano-silica groups, which is in
accordance with the depression behavior detected in our
behavior test. This result suggested that the reserpine and nano-
silica can induce depression by decreasing the serotonin in
adult zebrafish brain tissues.

Decreased locomotive activity was found in the RSP and
nano-silica treated groups. Decreased locomotive activity is
a characteristic of Parkinson’s disease which occurs as a result
of the progressive loss of DA cells in the substantia nigra. Here,
tyrosine hydroxylase expression in the posterior tuberculum
was decreased in the reserpine and nano-silica groups, which is
also consistent with the behavior test. This finding demon-
strated that RSP and nano-silica could induce Parkinson’s
disease by reducing the number of DA cells.

In summary, this research provides a description of the
similar effect between nano-silica and reserpine on the loco-
motive, exploratory, and anxious behaviors of adult zebrafish in
the novel tank test. The behavior test demonstrates that nano-
silica is as anxiogenic as reserpine. Both nano-silica and reser-
pine have an anxiogenic effect by decreasing locomotion,
inhibiting exploratory behaviors and aggravating the depressive
phenotype. Furthermore, immunohistochemistry reveals that
the similar behavioral and anxiogenic effects of nano-silica and
reserpine may share a common physiological mechanism.
Dampened locomotion induced by nano-silica and reserpine is
associated with the decreased expression of tyrosine

2962 | RSC Adv., 2017, 7, 2953-2963
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hydroxylase, and inhibited exploratory behavior, aggravated
anxiety phenotypes, and disturbed spatiotemporal swimming
path patterns are related to the increased expression of sero-
tonin. Further investigation should be conducted to decipher
the common genetic and molecular mechanisms of the
behavioural and physiological changes induced by nano-silica
and reserpine.
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