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response to intravenous iron therapy in peritoneal
dialysis patients with anemia
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Anemia is an almost universal complication of chronic kidney disease (CKD), and nearly all patients with end-
stage renal disease (ESRD) and approximately 70% of those with earlier stages of CKD receive treatment for
anemia. Due to its significance in the treatment of anemia, there is increased reliance on iron in the renal
anemia population. In clinical practice, not every patient benefits from intravenous (IV) iron therapy. In
order to identify patients who will respond to IV iron therapy and who will not respond to it, our goals
were to identify the potential serum biomarkers that could predict the response to IV iron therapy in renal
anemia patients. The metabolic profiles of serum from 41 renal anemia patients with complete, partial or
non-response to IV iron therapy were studied using a combination of liquid chromatography coupled with
mass spectrometry (LC-MS) and multivariate analysis methods to identify the potential biomarkers that
could predict the response to IV iron therapy in renal anemia patients. Oleamide and ascorbate 2-sulfate
(AS) were identified and verified as the potential biomarkers. A prediction model constructed with
oleamide and AS correctly identified approximately 83.3% of patients who were non-responsive to IV iron
therapy and 87.5% of patients who had a complete response to IV iron therapy. The model has excellent
discriminant performance, with an AUC of 0.901. These results show promise for larger studies that could
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Introduction

Iron is an essential ingredient for human health, which plays an
important role in many vital biological process such as the
synthesis of heme which forms the basis of hemoglobin (Hb),
the oxygen-carrying protein of the blood, the formation of
myoglobin, energy metabolism, neurotransmitter production,
the formation of collagen and immune system function.?
Nonetheless, iron deficiency (ID) is one of the principal causes
of anemia in the general population, affecting approximately
25% of the world's population.® In 2010, global anemia preva-
lence was 32.9%, affecting over 2.2 billion people.* Iron defi-
ciency anemia (IDA) is a frequently reported complication of
pregnancy and conditions such as CKD, cancer, chronic heart
failure, inflammatory bowel disease (IBD), and heavy uterine
bleeding, and the management of anemia that can occur during
the postpartum period and after gastric bypass surgery,>™
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advance more personalized treatment protocols for renal anemia patients.

which can further worsen the prognosis and patient's quality of
life, increase morbidity and mortality. Thus, treatment of IDA
has important meaning for improving prognosis and quality of
life for these patients.

Iron supplementation combined with erythropoiesis-
stimulating agents (ESAs) is the standard procedure for
management of IDA.™ Iron supplementation can be achieved by
oral or IV administration, each with its own set of advantages
and disadvantages.""” Oral iron generally is safe but can cause
gastrointestinal side effects and poor compliance. Although IV
iron preparations are fast, easy, well tolerated and effective,
their indiscriminate use can have serious adverse consequences
such as infection, oxidative stress, cardiovascular disease, iron
overload and even life-threatening anaphylactic reactions that
may go undetected in short-term clinical trials.® Therefore,
screening predictors of response to the iron supplementation is
vital for the treatment of IDA. By far, as a set of suboptimal iron
indices, transferrin saturation (TSAT) and serum ferritin (SF)
are frequently used to predict ID but limited by sensitivity." In
a small, single-arm interventional trial, the sensitivity of iron
indices to predict responsiveness to intravenous iron in anemic
patients with peritoneal dialysis-dependent chronic kidney
disease (PD-CKD) was reported as low.?° In summary, looking
for new biomarkers as predictors for response to iron supple-
ments combined with existing biomarkers is critical for the
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timely adjustment of iron supplements strategies and the
improvement of clinical outcomes in IDA treatment.

Based on the premise that the interactions of iron with
biological systems consistently affects metabolisms, thus
leading to altered levels of endogenous metabolites, metab-
olomics (sometimes referred as “metabolic profiling” or
“metabonomics”) involving the quantitative detection of
hundreds of small molecules in biological samples that are
sensitive to pathophysiological stimuli or genetic modifica-
tion.”’** Pharmacometabonomics, as part of metabolomics, has
been reported to be wildly used to map and predict the inter-
ventional outcome of drugs (such as toxicity and xenobiotic
metabolism in biological systems) based on mathematical
models derived from pre-dose, biofluid metabolite profiles,”
which is a quite suitable tool to be used to predict the response
to IV iron therapy in IDA patients. In the past few years, LC-MS,
an information-rich analytical technique, has become one of
the most popular and useful tools.”® Importantly, serum tests
based on metabolic profiles are relatively cheap, rapid and
automated.? Although metabolomics has been widely used in
molecule discovery for early diagnosis, disease detection, tar-
geted therapy and drug response,**** so far almost no investi-
gation have been performed in the biomarker discovery for
predicting the response to iron supplements in IDA patients.

In this prospective study, serum metabolite profiling was
performed to identify the potential biomarkers that could
predict the response to IV iron therapy for PD patients with
renal anemia. The metabolic profiles of serum from PD patients
with a complete, partial and non-response to IV iron therapy
were studied using a combination of LC/MS and multivariate
analysis methods. The predictive performance was evaluated in
terms of sensitivity, specificity and accuracy based on the
prediction model constructed by the potential biomarkers.
These results showed promise for larger studies that would
provide more personalized treatment protocols for renal
anemia patients.

Materials and methods

Study group

Between September 2012 and December 2013, two-hundred PD
patients were selected if they were older than 18 years and had
been receiving maintenance PD regimen for three months, their
condition had been stable for at least 1 month, and they were
iron deficiency, with SF level < 500 ng mL™", TSAT < 30%, and
they had Hb <110 g L™ (men) or 100 g L™ (women). Exclusion
criteria were the following: history of sensitive to iron prepara-
tions; history of severe liver disease or hypersplenism; history of
hemorrhage or active ulcer; receipt of blood transfusion within
the last one month; active infection; malignant tumors; history
of chronic inflammation disease; severe malnutrition.

Treatments

All patients were first administered a test dose of 25 mg IV iron
dextran preparation (Cosmofer) mixed in 100 mL normal saline
which was infused over 60 min with monitoring for any possible
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adverse reactions. If no reaction occurred, iron dextran was
administered as a TDI of 475 mg diluted in 500 mL normal saline
over a period of 4-6 h with careful monitoring. Other routine
drugs, including folic acid (10 mg, 3 times per day) and vitamin
B12 (500 mg, daily), were continued. All patients received eryth-
ropoietin (EPO) (Shenyang Sansheng Pharmaceutical, Shenyang,
China) at a dose of 100-150 IU per kg per week (depending on
previous treatment). If Hb reached 120 ¢ L™ " (men) or 110 g L™ "
(women), the EPO dose was decreased by 25%.

Side effects

Any reactions such as gastrointestinal symptoms, flushing,
palpitation, or hypersensitivity during the intravenous admin-
istration were recorded.

Blood biochemistry

Blood samples were drawn before the first IV infusion (0
months) and after three months for a hemogram and a ferro-
kinetic profile which was comprised of Hb, Hct, reticulocytes,
SF, serum iron and total iron binding capacity. TSAT was
calculated using the following equation: serum iron/total iron
binding capacity x 100. Based on laboratory test results after
three months, Hb rising no less than 10 g L' or Het rising no
less than 4% can be defined as good response (Complete
Response, CR); Hb increasing less than 10 g L' or Hct
increasing less than 4% can be defined as poor response (Partial
Response, PR); no increase in Hb or Hct can be defined as no
response (Stable Disease, SD).

Sample collection and preparation

Written consent was collected from all of the patients who
participated in this study. The protocol of the study and the
procedures designed for sample collection were reviewed and
approved by the ethical committee of The Second Military
Medical University, Shanghai, China. All procedures involving
the human subjects were carried out in accordance with the
recommendations of the Helsinki Declaration. Venous blood
samples were obtained from patients recruited at the Depart-
ment of Nephrology, Changhai Hospital of the Second Military
Medical University. Blood sample collection from the patient
was done at the same day. Parameters including gender, age,
duration of PD, haemoglobin, serum albumin, BUN, creatinine,
corrected calcium, phosphate, total cholesterol, triglyceride,
iPTH levels from each patient were recorded at the sampling.
Venous blood was collected into a 5 mL Vacutainer tube con-
taining chelating agent ethylene diamine tetraacetic acid
(EDTA). The tube was centrifuged at 3000 rpm for 15 minutes.
The supernatant (serum sample) was aliquoted and stored at
—80 °C until analysis. No sample went more than two freeze-
thaw cycles prior to a LC-MS analysis.

The serum sample (100 pL) were thawed at 4 °C followed by
the addition of 400 pL methanol/acetonitrile (1 : 1). The mixture
was then vortexed vigorously for 30 s followed by centrifugation
at 14 000 x g for 15 min at 4 °C. The supernatant (50 pL) was
transferred to an autosampler vial and an aliquot of 4 uL was
injected for LC-MS analysis.

This journal is © The Royal Society of Chemistry 2017
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Global metabolite profiling

In this study, an Agilent 1290 Infinity LC system configured with
an Agilent 6530 Accurate-Mass Quadrupole Time-of-Flight (Q-
TOF) mass spectrometer (Agilent, USA) was used to perform the
LC-MS analysis. An ACQUITY UPLC HSS T3 column (2.1 mm X
100 mm, 1.8 um, Waters, Milford, MA, USA) was applied to
separate serum samples at 45 °C with a flow rate of 0.4 mL min ",
The mobile phase: A, 0.1% formic acid; B, ACN modified with
0.1% formic acid. The gradient program was used as follows:
100% A at 0-2 min, 100-85% A at 2-10 min, 85-70% A at 10-
14 min, 70-5% A at 14-17 min, 5% A at 17-19 min, 5-100% A at
19-20 min and followed by 5 min column re-equilibration.

An Agilent 6530 Accurate Mass Quadrupole Time-of-Flight
(Q-TOF) mass spectrometer (Agilent, Santa Clara, CA, USA)
was adapted to detect ion peaks. The cone gas was nitrogen with
a flow rate of 11 L h™'. The following detection parameters was
used: fragment voltage, 120 V; capillary voltage, 3.5 kV; gas
temperature, 350 °C; source temperature, 120 °C. The full MS
scan mode was monitored at the mass range of 50-1000 m/z. In
the analyzing process, 10 mM purine (m/z 121.0508) and 2 mM
hexakis phosphazinen (m/z 922.0097) were applied as the
internal standards to guarantee mass accuracy and reproduc-
ibility. The centroid data were collected from the instrument.
Subsequently, a MS/MS experiment was performed and the
experiment parameters was set as follows: MS spectrum
acquisition rate, 2 spectra per s; MS/MS spectrum acquisition
rate, 0.5 spectra per s; medium isolation window, 4 m/z; colli-
sion energy, 20 V.

Data handing

Data processing used the method previously published by our
group with minor modifications.*® The raw data in instrument
specific format (.d) were converted to common data format
(.mzData) files using a conversion software program (file
converter program available in Agilent MassHunter Qualitative
software), in which the isotope interferences were eliminated.
The program XCMS (version, 1.40.0) (http://
masspec.scripps.edu/xems/xems.php) was used for nonlinear
alignment of the data in the time domain and automatic inte-
gration and extraction of the peak intensities. XCMS parameters
were default settings (major default parameters: profmethod =
bin; method = matched filter; step = 0.1) except for the
following: full width at half maximum (FWHM) = 8, bandwidth
(bw) = 10 and snthresh = 5, due to narrower peaks obtained by
the use of the column packed with 1.8 um particles. The vari-
ables presenting in at least 80% of either group were extracted,
and the variables with a retention time less than 0.5 min (near
to the dead time) were excluded due to a high degree of ion
suppression that they suffered. For each chromatogram, the
intensity of each ion was normalized to the total ion intensity, in
order to partially compensate for the concentration bias of
metabolites between samples and to obtain the relative inten-
sity of metabolites. The resulting three-dimensional matrix,
including retention time and m/z pairs (variable indices),
sample names (observations), and normalized ion intensities
(variables), was exported to multivariate data analysis.

This journal is © The Royal Society of Chemistry 2017
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The normalized data was introduced to SIMCA-P V11.0
(Umetrics, Sweden) for principal component analysis (PCA) and
partial least squares discriminant analysis (PLS-DA) after mean-
centering and pareto scaling, a technique that increased the
importance of low abundance ions without significant ampli-
fication of noise. The quality of the models was evaluated with
the permutation test. T-test was performed in succession to
reveal the statistical differences for the variables between the
three groups (CR & PR & SD).

Results

Study groups and their characteristics

Between September 2012 and December 2013, 41 eligible
previously untreated patients who met the inclusion and
exclusion criteria were enrolled in this prospective study, of
whom 16 patients were diagnosed as CR, 13 patients were PR,
while the remaining 12 patients were non-responsive to IV iron
therapy based on the biochemical examination. The demo-
graphic and clinical characteristics of the prospective cohort are
shown in Table 1. The baseline characteristics were comparable
in each group. In addition, a single baseline ferritin (Fe) was
used as classification criteria, patients whose Fe < 100 ng mL ™"
were divided into two categories, patients with Fe < 50 ng mL ™"
were regarded as class 1, and the remainders were regarded as
class 2. Only about 60% patients who defined as CR were
belongs to class 1. Similarly, the baseline TSAT was used as
classification criteria, patients whose TSAT < 20% were divided
into two categories, patients with TSAT < 10% were regarded as
class 1, the rest were regarded as class 2. Only about 60%
patients who defined as CR were belongs to class 1 (data not
shown). Therefore, lower baseline SF or TSAT does not neces-
sarily indicate better iron therapy response.

Serum metabolic profiles

In order to visualize the classification performance of the
metabolic profiling, the PLS-DA score plot is depicted (Fig. 1a
and d). Fig. 1a and d reveal a clear separation trend between CR
and SD. The PR group lies in the between CR and SD, while no
clear separation was found between CR and PR in Fig. 1d and no
clear separation was found between SD and PR in Fig. 1a. To
validate the model, permutation tests with 200 iterations were
further performed. These permutation tests compared the
goodness of fit of the original model with the goodness of fit of
randomly permuted models. As shown in Fig. 1c and f, the
validation plot indicates that the original model is valid. The
criteria for validity are as follows: all the permuted R2 (cum) and
Q2 (cum) values to the left are lower than the original point to
the right, and the blue regression line of the Q2 (cum) points
has a negative intercept.

The discovery and identification of metabolic biomarkers

Metabolites were carefully screened before being approved as
potential biomarkers. First, significant original variables were
extracted from the S-plot, which is a covariance-correlation-
based procedure, and thus the risk of false positives in

RSC Adv., 2017, 7, 1915-1922 | 1917
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Table 1 Baseline biochemical parameters in the three groups®

Parameters SD PR CR P Vvalue
Age, years 57.34 + 13.41 60.05 £ 16.91 58.98 + 12.24 N.S
Dialysis vintage, months 21.35 £ 15.29 26.88 + 13.48 23.79 + 12.83 N.S
Hb, g Lt 89.68 + 10.39 80.77 + 11.24 83.65 + 15.87 N.S
Hct, % 22.62 £ 5.45 21.09 £ 4.71 13.96 + 7.96 N.S
Kt/V 1.84 + 0.38 1.72 £ 0.32 1.71 £ 0.21 N.S
TSAT, % 19.22 + 5.08 15.36 + 6.52 13.87 £ 6.94 0.057
Fer, pg L™" 224.58(124.34-302.46) 167.45(78.24-202.45) 135.91(89.25-254.17) 0.036
Alb, g Lt 37.25 £ 4.25 39.36 £ 3.22 38.58 £ 5.54 N.S
iPTH, pg mL ™" 278.17(123.14-356.43) 224.45(109.52-295.75) 248.67(97.29-309.05) N.S

“ Hb, hemoglobin; Het, hematocrit; Kt/V, dialyzer clearance of urea, dialysis time, volume of distribution of urea, approximately equal to patient's
total body water; TSAT, transferrin saturation; Fer, ferritin; Alb, albumin; iPTH, intact parathyroid hormone; CR: complete response; PR: partial

response; SD: stable disease; N.S, no significance.

metabolite selection was reduced. The S-plot (Fig. 1b and e),
derived from the first component of the combined model,
explains most of the variables in data set, in which the ions
furthest away from the origin contribute significantly to the
clustering of the three groups and may be regarded as potential
biomarkers (as showed in Fig. 1b and e). Next, the variable
importance for projection (VIP) reflecting the importance of
variables has been applied to filter the important metabolites in
the model (VIP = 1). Furthermore, unpaired Student's t-tests
were performed as the final testing procedure, and the critical p-
value was set to 0.05 for significantly differential variables.
Following the criterion above, 11 metabolite ions (as showed in
Table 2) were selected as potential biomarkers related to
response to iron therapy. In addition, the bar plots for the 11
potential biomarkers are given in Fig. 2, it is seen that the

concentrations of LysoPC (18 : 1(11Z)), linoleic acid and arach-
idonic acid had the consistently decreased trend from CR to PR
to SD, the concentrations of oleamide, 1-linoleoyl glycerol, citric
acid, AS, mesaconic acid, LysoPC (20:1(11Z)) and alpha-
hydroxyhippuric acid had the consistently increased trend
from CR to PR to SD. Thus, these metabolites can be further
used to test their prediction performance for response to iron
therapy for PD patients.

Biomarkers for the prediction of a response to IV iron therapy

To further validate the potential diagnostic effectiveness of
these metabolite signature, the receiver operating characteristic
curve (ROC-curve) was plotted individually using relative
intensities of these metabolites (data not shown). In addition,

PLS-DA (¢

R2
PLS-DA o

[T](1102)d

2 03 o4 5 06 07 08 09 10
200 permutations 2 components

f PLS-DA &

PLS-DA R os

M2.t[1] 04
NUM 30 40432173

’2~3.4_5

[T](102)d

> > 5
5 et ‘ :
T 0
> o 1°NUM 02 01

08 09 10

03 5
200 permutations 2 components

Fig.1 Multivariate data analysis. (a) PLS-DA score map for the CR, PR and SD patients in positive mode; (b) S-plot of the PLS-DA model in positive
mode; (c) validation plot obtained from 200 permutation tests in positive mode; (d) PLS-DA score map for the CR, PR and SD patients in negative
mode; (e) S-plot of the PLS-DA model in negative mode; (f) validation plot obtained from 200 permutation tests in negative mode.
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Table 2 Summary of the potential biomarkers®

No. Metabolites m/z RT (min) Adduct Formula VIP p Value
ESI" 1 LysoPC (18 : 0) 524.37 15.02 [M + H] C,6H54NO,P 3.4 0.04

2 LysoPC (18 : 1(11Z)) 522.36 13.90 [M + H] Cy6H5,NO,P 3.01 0.02

3 Oleamide 282.28 16.71 [M + H] C1gH35NO 2.07 0.04

4 Linoleic acid 281.25 16.90 M + H] C15H5,0, 1.04 0.04

5 1-Linoleoyl glycerol 355.28 16.10 M +H] C,1H3504 1.01 0.03
ESI™ 1 LysoPC (18 : 0) 568.36 14.87 [M + FA-H] C,6H5,NO,P 3.17 0.03

6 Citric acid 191.02 0.83 M —H]” CeHgO4 2.79 0.03

7 Ascorbate 2-sulfate 254.98 1.01 M —-H] CeHgOoS 2.42 0.01

8 Mesaconic acid 129.02 1.01 [M - H]” C5;HqO, 1.73 0.01

9 Arachidonic acid 303.23 16.74 M —H] C,0H3,0, 1.72 0.05

10 LysoPC (20 : 1(11Z)) 594.38 15.36 [M + FA-H]” C,sH;5eNO,P 1.27 0.04

11 a-Hydroxyhippuric acid 194.05 3.43 M —H] CoH,NO, 1.24 0.04

@ ESI', electrospray ionization in positive mode; ESI™, electrospray ionization in negative mode; VIP, variable importance in the project.

the purpose of the study was to screen the potential biomarkers
that can distinguish CR from SD, CR from PR, CR from (SD &
PR) and PR from SD, thus based on the criteria of area under the
ROC-curve (AUROC) greater than 0.5, sensitivity greater than 0.5
and specificity greater than 0.5, oleamide and AS were finally
identified as the potential biomarkers that used to predict the
response to IV iron therapy.

Further analysis focused on evaluation the performance of
the metabolites in combination. Fig. 3 shows the prediction
results using the model constructed by the two candidate
markers for different patients groups. Logistic regression was
used to combine the two variables into a multivariable. The
results indicated that a panel of two metabolites generated an
AUC of 0.901 with a sensitivity of 87.5% and a specificity of
83.3% for distinguishing CR and SD, an AUC of 0.850 with
a sensitivity of 81.2% and a specificity of 76% for distinguishing
CR and (PR & SD), an AUC of 0.813 with a sensitivity of 87.5%
and a specificity of 69.2% for distinguishing CR and PR and an
AUC of 0.667 with a sensitivity of 92.3% and a specificity of
33.3% for distinguishing PR and SD, respectively (Fig. 3a).
According to the highest prediction sensitivity (87.5%) and
specificity (83.3%) of the ROC curves, an optimal cutoff value of
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0.4603 was obtained. Based on this cutoff value, it was found
that 24 out of 28 samples (85.7%) could be accurately predicted
for distinguishing CR and SD, similarly, 32 out of 41 samples
(78%) could be accurately predicted for distinguishing CR and
(PR & SD), 23 out of 29 samples (79.3%) could be accurately
predicted for distinguishing CR and PR, 17 out of 25 samples
(68%) could be accurately predicted for distinguishing PR and
SD (Fig. 3b). This finding indicated that this simplified serum
metabolite signature was a “good” classifier of CR, PR and SD
patients.

Discussion

In this study, we present the metabolomics approach for pre-
dicting the IV iron therapy response for renal anemia patients
before iron infusion. By applying ultra-performance liquid
chromatography coupled to time-of-flight mass spectrometry,
a powerful technique that has a high sensitivity and specificity,
oleamide and AS are shown to be highly correlated with CR.
Although there is heterogeneity in the clinical and histopatho-
logical characteristics of patients in each response group, the
serum samples still can group them into distinct clusters.

s SD Bl sD

== CR B CR

Relative inten

Fig. 2 Bar plots showing fluctuations in relative signal intensities of potential biomarkers for SD, PR and CR patients.
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(a) ROC curves based on the binary logistic regression model using the combination of two serum metabolites (oleamide and ascorbate

2-sulfate); (b) their prediction plots based on the optimal cutoff value obtained from the ROC curves.

The prediction model constructed with the selected model
has a high sensitivity and specificity. Since the IV iron therapy
response prediction for IDA remains challenging around the
world, this promising metabolomics approach might open
a new view for patients to select the promising treatment or
even a truly ‘personalized treatment’ in clinical practice.
Importantly, as seen from the multivariate regression analysis
between the IV iron therapy responses and the predictors con-
sisting of biomarkers, the selected biomarkers are strongly
associated with the IV iron therapy response.

The prediction performance of the two biomarkers detected
by LC-MS analysis was excellent and showed an AUC of 0.901 in
the discrimination of CR from SD. In addition, the metabolites
detected by LC-MS provide a better insight into the cellular
metabolism and provide a more robust model that could
effectively predict the iron therapy response when validated in
a larger cohort of patients. Two metabolites from LC-MS
distinguish the three renal anemia patients groups, CR, PR
and SD with a good performance. The excellent classification
performance through the serum metabolites suggests that the
metabolomics approach might be particularly noteworthy when
the prediction of the response to iron supplements in IDA
patients remains challenging around the world.

The metabolic profiling difference between the three groups
(CR, PR, SD) may indicate the further response to IV ion therapy
in IDA patients. AS, a naturally occurring substance, is reported
to be produced from ascorbic acid (AA). Moreover, AS, being
more stable than AA, may be a storage from in vivo and serve as
an AA source through enzymatic hydrolysis.**** However,
previous study has reported that AA can affect the absorption
and distribution of iron both at the absorption and metabolic
level, have a positive effect on the absorption of iron from the
gastrointestinal tract and have an important role in the release
of ferritin-bound iron from the liver as well as in transfer of
plasma iron to the liver and its incorporation into ferritin.** The

1920 | RSC Adv., 2017, 7, 1915-1922

detailed action mechanism is that lysosomal autophagy catab-
olize excess ferritin into end-state hemosiderin complexes,
however, AA can inhibit this process and block the degradation
of cytoplasmic ferritin, and finally keep the iron stored in the
body as ferritin-bound iron.*”*® In our study, a higher level of
AAS can be found in the CR group, which means CR group have
higher level of AA and leading to higher level of ferritin-bound
iron be stored and used, which is consistent with the reported
literatures. Oleamide, as one of the two identified biomarkers,
is the amide of oleic acid, and is synthesized from oleic acid and
ammonia by enzymatic amidation, and previous study showed
that oleamide has high anti-inflammatory activity.** However,
the observation of higher levels of oleamide in good responders
as compared with poor responders is not completely under-
stood. Although further functional work is needed, we posit one
conceive that may be responsible for this observation. The anti-
inflammatory activity of oleamide may alleviate the intravenous
iron stimuli in patients who underwent IV iron therapy and
result in a better response.

Conclusions

We present a prediction model for the outcome of renal anemia
IV iron therapy based on metabolic profiling studies. A combi-
nation of two metabolites (oleamide and AS) distinguish groups
of patients with no, partial or complete response. While this
pilot study was focused on a small patient cohort, it clearly
indicates that several blood-based metabolite markers are
sensitive to response, and that the approach is promising for
predicting the response to IV iron therapy. In addition, the
response evaluation in this study is not limited to IV iron
therapy in PD patients, but can be extended to pregnancy and
conditions such as cancer, chronic heart failure and IBD that
accompanied by complication of IDA; however, further large
scale cohort studies on these IDAs should be performed to

This journal is © The Royal Society of Chemistry 2017
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substantiate the results. Validation of these results using
a larger and independent sample cohort, and identification of
additional metabolite markers, will provide better insights into
the pathology at the molecular level that lead to different
response outcomes for the three groups of patients. This
approach, which clearly differentiates patients that respond to
iron supplements from those that do not, may provide a useful
tool for a non-invasive prognosis of the treatment outcome.
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