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Magnetic phenomena and materials are everywhere and
significantly improve our lives. From the brilliant perspective
of molecule-based information storage and quantum comput-
ing, the field of magnetic materials has been undergoing a
shift of focus away from bulky magnets and nanomagnets
toward molecular magnets." Since the discovery of dodeca-
metallic manganese-acetate (Mn,,) in the early 1990s,” multifunc-
tional single-molecule magnets (SMMs) or single-ion magnets
(SIMs) with slow magnetic relaxation have attracted increasing
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Marriage of phthalocyanine chemistry with
lanthanides: a single-ion magnet with a blocking
temperature up to 25 K

A combination of rich phthalocyanine chemistry such as peripheral substitution and the unique properties
of lanthanides to enhance organic radical-f interaction is expected to afford new SIMs with a higher

attention, not only deepening the study of magnetism but also
forming the chemical basis for molecular spintronics.

One of the most challenging issues to make SMMs practic-
able is how to enhance the working temperature for the SMMs
to exhibit magnetic bistability properties. Previous attempts to
enhance the spin value of the ground state have been focused
on simply scaling molecules to contain more spin-bearing
atoms.” However, the increase of total spins is usually
accompanied by more symmetrical molecular structures that
frequently counteract the anisotropies, creating a small energy
barrier.®> Until 2003, mononuclear lanthanide complexes,
(BuyN)[Ln(Pc),] (Ln = Tb™ or Dy™, Bu,N = tetrabutyl-
ammonium),’ provided a way to understand and control the
single-ion magnetic anisotropy, and in turn to enhance the
magnetic behavior in single-ion magnets (SIMs).” This was a
landmark for the marriage of phthalocyanine chemistry with
lanthanides, which offered a “golden” opportunity to address
the critical issue of SMMs.

Toward this goal, tremendous progress has been made in
the synthesis of bis(tetrapyrrole) lanthanide double-decker
SIMs to disclose the structural and electronic effects on the
magnetic performance,®® however the electronic effect of the
phthalocyanine periphery on the SIM properties still remains
unclear. Jiang and co-workers have provided an important
answer to this scientific question.'® They incorporated the di-
alkylamino substituent, one of the strongest electron-donating
groups known so far, onto the phthalocyanine periphery in bis
(phthalocyaninato) rare earth complexes, resulting in the
homoleptic  bis[2,3,9,10,16,17,23,24-octakis  (dibutylamino)
phthalocyaninate] rare earth complexes M{Pc[N(C4Ho),]s}>
{Pc[N(C4Ho)s)s = 2,3,9,10,16,17,23,24-octakis(dibutylamino)
phthalocyanine, M =Y, Tb} (Scheme 1). The electron-donating
effect of the sixteen dialkylamino groups was clearly revealed
by the significant red shift in the Q absorption bands and the
significant shift in both the first oxidation and the first
reduction potentials to the negative direction, relative to those
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Scheme 1 Schematic molecular structure of the double-decker compound Tb{Pc[N(C4Hy),lg}>.

of M(Pc),."" In particular, the electrostatic potential around
the terbium ion gets significantly increased to —11.59 a.u. for
Tb{Pc[N(C,Hs),]s}> from —3.75 a.u for Tb(Pc), (Fig. 1), which
results in a significant enhancement over the ligand coordi-
nation field around the terbium ion and therefore intensifies
the molecular magnetic anisotropy. Their design also depends
on the steric effect of the bulky dialkylamino groups, which
leads to a square-antiprismatic coordination polyhedron for
the terbium ion, which in turn ensures the good SMM pro-
perties of the terbium double-decker complex in terms of the
coordination geometry. Their bis(phthalocyaninato) terbium
double-decker SIM did indeed show the significantly intensi-
fied SIM performance hoped-for, with a spin reversal energy
barrier of 752 + 8 K and a blocking temperature of 25 K. In
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Fig. 1 Electrostatic potential projection on a 2 A radius sphere centered
at the Th** position with the two phthalocyanine ligands in Tb(Pc), and
Tb{PcIN(C4Ho).]g}>.
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view of the previous highest blocking temperature for bis(tetra-
pyrrole) lanthanide SIMs, 10 K, it is a good breakthrough. It is
worth noting that bis(tetrapyrrole) lanthanide-based SIMs with
higher energy bartriers have been reported by T. Torres® and
R. Sessoli,” however, the blocking temperature of these SIMs is
much lower than that of Tb{Pc[N(C,Hs),]s}», revealing the com-
plicated relationship between the energy barrier and the block-
ing temperature. Nevertheless, by comparison of the dynamic
magnetic properties of these SIMs, it is found that the quantum
tunneling of magnetization (QTM) seems to be more significant
in the SIMs with higher energy barriers, which may be the
reason why the higher energy barriers do not result in a higher
blocking temperature for these bis(tetrapyrrole) lanthanide-
based SIMs. Therefore, in order to increase the blocking temp-
erature, the QTM should be suppressed and the energy barrier
should be increased as well. As evidenced by Tb{Pc[N(C,Hs),]s}2,
the suppressed QTM is correlated to the near-perfect square-anti-
prismatic polyhedron coordination mode around Tb*" arising
from the steric effect of the bulky dialkylamino groups. This pro-
vides an alternative way to increase the blocking temperature.
The study by Jiang and co-workers not only reports a record
blocking temperature for bis(tetrapyrrole) lanthanide double-
decker SIMs, but also has clearly clarified the significant effect
of the electron-donating peripheral substituents on the SIM
functionality of bis(phthalocyaninato) terbium SIMs, offering
an efficient method for the design and synthesis of sandwich-
type tetrapyrrole lanthanide SIMs with enhanced magnetic be-
havior. Finally, it is worth noting that there are surely other
structural factors which affect the sandwich-type tetrapyrrole
lanthanide SIM performance. In particular, unsymmetrical
peripheral substitution has been proven to be able to elevate
the spin-reversal energy barrier of the sandwich-type tetra-
pyrrole Thb SMM, leading to the highest effective energy barrier
of 939 K for bis(tetrapyrrole) lanthanide-based SIMs reported
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to date.® As a consequence, the combination of rich phthalo-
cyanine chemistry such as unsymmetrical peripheral substi-
tution and the unique properties of lanthanides to enhance
organic radical-f interaction in the bis(tetrapyrrole) lanthanide
SIMs is expected to afford new SIMs with a higher working
temperature, making a step forward towards the practical
application of SMMs.
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