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Phenyl acrylate is a versatile monomer for the
synthesis of acrylic diblock copolymer nano-
objects via polymerization-induced self-assembly+
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Over the last decade or so, polymerization-induced self-assembly (PISA) has become widely recognized
as a versatile technique for the rational synthesis of diblock copolymer nano-objects in the form of con-
centrated dispersions. However, there are relatively few examples of acrylic-based PISA formulations in
the literature, partly because such copolymers typically possess relatively low glass transition temperatures
(Ty) that preclude morphological characterization by transmission electron microscopy. To address this
problem, we have selected phenyl acrylate (PhA) as a model monomer to generate the solvophobic block
in three PISA formulations using reversible addition—fragmentation chain transfer (RAFT) polymerization.
Thus, a poly(dimethyl acrylamide)-based chain transfer agent (CTA) is chain-extended using PhA via RAFT
aqueous emulsion polymerization to produce a series of well-defined sterically-stabilized spheres whose
mean diameter can be readily adjusted from 38 nm to 188 nm by varying the target degree of polymeri-
zation (DP). In contrast, RAFT alcoholic dispersion polymerization of PhA using a poly(acrylic acid) CTA
leads to an evolution of copolymer morphology from spheres to worms to lamellae and finally vesicles as
the target DP of the structure-directing PPhA block is increased. Similarly, RAFT dispersion polymerization
of PhA in n-heptane also produces spheres, worms or vesicles depending on the target DP of the PPhA
block. *H NMR studies indicate that >98% PhA conversion is achieved in all cases, while GPC analysis
indicates high blocking efficiencies. However, relatively broad molecular weight distributions are observed
(Mw/M,, = 1.37 to 2.48), which suggests extensive chain transfer to polymer in such PISA syntheses, par-
ticularly in the case of the RAFT aqueous emulsion polymerization formulation. Nevertheless, the relatively
high T4 of PPhA (50 °C) enables characterization of the various copolymer morphologies using conven-
tional TEM.
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Introduction

AB diblock copolymers are well-known to self-assemble into
well-defined micelles in a solvent that is selective for one of
the two blocks.”™ In principle, a wide range of morphologies
can be obtained depending on the relative volume fractions of
each block.'”™" Traditionally, this self-assembly involves some
form of post-polymerization processing (e.g. a pH switch, a
solvent switch or thin film rehydration) that is conducted at
high dilution and typically at rather low final copolymer con-
centrations (<1% w/w). With the advent of controlled radical
polymerization (CRP) techniques such as nitroxide-mediated
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polymerization (NMP),"* atom transfer radical polymerization
(ATRP)**'* and reversible addition-fragmentation chain trans-
fer (RAFT) polymerization,"® polymerization-induced self-
assembly (PISA) has recently become established as a versatile
platform technology for the rational synthesis of diblock co-
polymer nano-objects at high solids, which eliminates the
requirement for further processing steps.'®™°

In practice, most of the PISA formulations reported in the
literature are based on RAFT polymerization.'®>> Robust RAFT
dispersion polymerization formulations have been developed
for water,"®'®2%3732 Jower alcohols’’?**™*° and non-polar
solvents'”*'™*> while RAFT aqueous emulsion polymerization
has also been thoroughly explored.’®™>> However, the vast
majority of PISA syntheses reported in the literature involve
polymerization of methacrylic or styrenic monomers rather
than acrylic monomers, despite the commercial importance of
the latter monomer class. Acrylic polymers typically exhibit
glass transition temperatures (7,) well below ambient tempera-
ture, which makes them very useful for paints and coatings®”
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and also adhesion applications.*® Unfortunately, this makes
the examination of copolymer morphology via conventional
transmission electron microscopy (TEM) rather problematic,
and such characterization is usually an important component
of most PISA studies. In principle, cryo-TEM can be utilized
instead, but in practice this technique is not widely available
and relatively expensive; moreover, appropriate sample prepa-
ration protocols are not well-developed for imaging non-
aqueous formulations.

Chain transfer to polymer is well known for the polymeri-
zation of acrylic monomers.>>™” This side reaction leads to
branching and hence significant broadening of the molecular
weight distribution (MWD), although this can be mitigated to
some extent by using CRP techniques.’®>® This problem
may explain why relatively few acrylic-based PISA formulations
have been reported in the literature.*>**®” These include
syntheses conducted in either water,®*%"*4%5 n-alkanes®>%%°°
or ethanol/water mixtures.®>®” For example, Ratcliffe et al.
recently chain-extended a poly(lauryl acrylate) (PLA) macro-
molecular chain transfer agent (macro-CTA) using benzyl
acrylate (BzA) to produce PLA-PBzA diblock copolymer nano-
objects in either n-heptane, n-dodecane or iso-hexadecane.®®
By varying the target DP of the PBzA core-forming block, pure
phases of spheres, worms and vesicles could be produced.
However, relatively broad molecular weight distributions were
observed, with M,,/M,, values ranging from 1.53 to 1.67 when
targeting PBzA DPs of 55-90 at 25% w/w solids. Moreover, the
relatively low T, of PBzA (6 °C) prevented characterization
of the nano-object morphology by conventional TEM, so
cryo-TEM was utilized instead.®®

In principle, one solution to this imaging problem is to
simply select an acrylic polymer with a relatively high T,. In
practice, very few acrylic monomers are suitable in this regard.
Nevertheless, this approach was recently reported by Tan et al.,
who polymerized isobornyl acrylate (IBOA; T, of PIBOA =
94 °C) using a poly(ethylene glycol)-based macro-CTA.%” This
PISA synthesis was conducted in an 85/15 ethanol/water
mixture at 40 °C using visible light to initiate the polymeri-
zation. High conversions (>95%) were obtained within 30 min
and relatively narrow molecular weight distributions were
reported (e.g. M,/M, = 1.26 when targeting a PIBOA DP of
150). However, diblock copolymers were typically contami-
nated with approximately 10-20% unreacted macro-CTA.
Nevertheless, either spheres, worms or vesicles could be pro-
duced depending on the PISA synthesis conditions, as judged
by conventional TEM studies.

In the present work, we have chosen to study phenyl acryl-
ate (PhA) as a model acrylic monomer in the context of three
PISA formulations. Poly( phenyl acrylate) (PPhA) has a relatively
high Ty, of 50 °C,°® which should be sufficient to enable copoly-
mer morphology studies using conventional TEM. To evaluate
the versatility of this new monomer, we studied its use in
RAFT aqueous emulsion polymerization, RAFT alcoholic dis-
persion polymerization and RAFT dispersion polymerization
in n-alkanes using suitable macro-CTAs as the steric stabilizer
block.
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Experimental section
Materials

Lauryl acrylate (LA, 98%) was purchased from Tokyo Chemical
Industry UK Ltd. Phenyl acrylate (PhA, 97%) was purchased
from Alfa Aesar (UK). Both monomers were used as received.
2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid
(DDMAT, 98%), dimethyl acrylamide (DMAC, 99%), acrylic acid
(AA, 99%), potassium persulfate (KPS, 99%), r-ascorbic acid
(AscAc, 99%) and azoisobutyronitrile (AIBN, 98%) were pur-
chased from Sigma Aldrich (UK) and were used as received.
tert-Butyl peroxy-2-ethylhexanoate (T21S) was purchased from
AkzoNobel (The Netherlands). Dimethyl sulfoxide-ds, CDCl;
and DMF-d, were purchased from Goss Scientific Instruments
Ltd (Cheshire, UK). All other solvents were purchased from
Fisher Scientific (Loughborough, UK) and were used as
received. Deionized water was used for all aqueous PISA
formulations.

Synthesis of PDMAC;; macro-CTA by RAFT solution
polymerization

A typical protocol for the synthesis of a PDMAC;5; macro-CTA
was as follows. DMAC monomer (0.141 mol, 14.021 g), DDMAT
RAFT agent (2.57 mmol, 0.9376 g) and dioxane (0.397 mol,
35.00 g, corresponding to a 30% w/w solution) were added to a
round-bottomed flask in order to target a mean DP of 55. AIBN
initiator (0.257 mmol, 0.0422 g, CTA/AIBN molar ratio = 10.0)
was added to this mixture, and the resulting yellow solution
was cooled by immersion in an ice bath while sparging with
N, gas for 30 min, before the sealed flask was placed in an oil
bath set at 70 °C. After 35 min, the polymerization was
quenched by immersion of the reaction flask in ice, followed
by exposure to air. The final DMAC conversion was determined
to be 92% by 'H NMR spectroscopy. The crude PDMAC macro-
CTA was then precipitated twice into a ten-fold excess of
diethyl ether to remove unreacted DMAC and other residual
reagents before being dried in a vacuum oven overnight at
20 °C. 'H NMR analysis indicated a mean DP of 53 for the
final purified PDMAC macro-CTA, which suggests a CTA
efficiency of 95%. THF GPC analysis of PDMACs; macro-CTA
indicated M, and M,/M, values of 5400 g mol™* and 1.08,
respectively.

Synthesis of PDMAC;;-PPhA, diblock copolymer nano-objects
by RAFT aqueous emulsion polymerization

A typical protocol for the synthesis of PDMACs;-PPhA;,
diblock copolymer was as follows: PDMACs; macro-CTA
(0.200 g, 0.0356 mmol), KPS (1.90 mg, 0.007 mmol; CTA/
initiator molar ratio = 5.0) and water (2.192 g, corresponding
to a 25% w/w aqueous solution) were weighed into a 25 mL
round-bottom flask and purged with nitrogen for 30 min.
Ascorbic acid (2.0 mg, 16 pmol, CTA/initiator molar ratio = 5.0;
prepared as a 10% w/w aqueous solution) was degassed separ-
ately with nitrogen for 30 min prior to addition to the aqueous
solution in the reaction flask. Phenyl acrylate (0.527 g,
3.56 mmol) was also degassed separately with nitrogen for
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30 min and added last to the reaction flask, which was then
sealed and immersed in an oil bath set at 30 °C. The reaction
mixture was stirred for 4.5 h to ensure high monomer conver-
sion (>99% by "H NMR analysis) and subsequently quenched
by cooling to 20 °C, followed by exposure to air. DMF GPC ana-
lysis of PDMACs;-PPhA,, indicated M,, and M,/M,, values of
18 400 g mol ™" and 2.10, respectively.

Synthesis of PAA,s macro-CTA

A typical protocol for the synthesis of a PAA,s macro-CTA was
as follows. AA monomer (0.080 mol, 6.000 g), DDMAT RAFT
agent (2.78 mmol, 1.011 g), and ethanol (0.081 mol, 7.102 g,
corresponding to a 50% w/w solution) were added to a round-
bottomed flask in order to target a mean DP of 30. AIBN
initiator (0.56 mmol, 0.091 g, CTA/AIBN molar ratio = 5.0) was
added to this mixture, and the resulting yellow solution was
cooled in an ice bath while sparging with N, gas for 30 min,
before the sealed flask was immersed in an oil bath set at
60 °C. After 150 min, the polymerization was quenched by
immersion of the reaction flask in an ice bath, followed by
exposure to air. "H NMR spectroscopy indicated a final AA con-
version of 85%. The crude polymer was then precipitated twice
into a ten-fold excess of diethyl ether before being dried in a
vacuum oven at 20 °C. "H NMR analysis indicated a mean DP
of 26 for this PAA macro-CTA, which suggests a CTA efficiency
of 98%. THF GPC analysis of this PAA,s macro-CTA indicated
M, and M,,/M,, values of 3400 g mol™" and 1.07, respectively.

Synthesis of PAA,¢-PPhA, diblock copolymers by RAFT alco-
holic dispersion polymerization

A typical protocol for the synthesis of PAA,s-PPhA;, diblock
copolymer nano-objects was as follows: PAA,s macro-CTA
(0.080 g, 0.035 mmol) was added to a glass vial, followed by
PhA monomer (0.265 g, 1.787 mmol) and ethanol (1.038 g,
corresponding to a 25% w/w solution). AIBN initiator was then
added (1.20 mg, 7.15 umol, CTA/AIBN molar ratio = 5.0). This
flask was cooled using an ice bath, and the solution was sparged
with N, gas for 25 min. The flask was then sealed and immersed
in an oil bath set at 70 °C. The reaction mixture was stirred for
16 h to ensure high monomer conversion (>99% by 'H NMR
analysis) and subsequently quenched by cooling followed by
exposure to air. THF GPC analysis of PAA,¢-PPhA;, indicated M,
and M,,/M,, values of 8100 g mol™" and 1.68, respectively.

Synthesis of PLA,, macro-CTA

A typical protocol for the synthesis of a PLA;;, macro-CTA was
as follows. LA monomer (0.32 mol, 76.92 g), DDMAT RAFT
agent (12.8 mmol, 4.67 g), and acetone (1.41 mol, 82.0 g) were
added to a round-bottomed flask in order to target a mean DP
of 25. AIBN initiator (2.56 mmol, 0.420 g, CTA/AIBN molar
ratio = 5.0) was added to this mixture, and the resulting yellow
solution was cooled in an ice bath while sparging with N, gas
for 30 min, before the sealed flask was immersed in an oil
bath set at 70 °C. After 125 min, the polymerization was
quenched by immersion of the reaction flask in ice, followed
by exposure to air. A final LA conversion of 55% was deter-
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mined by "H NMR spectroscopy. This crude polymer solution
was then precipitated twice into a ten-fold excess of cold
methanol and washed in further methanol before being dried
under vacuum for 72 h at 20 °C. "H NMR analysis indicated a
mean DP of 14 for this PLA macro-CTA, which suggests a CTA
efficiency of 98%. THF GPC analysis indicated M,, and M,/M,,
values of 3700 g mol ™" and 1.12, respectively.

Synthesis of PLA,,-PPhA, diblock copolymers by RAFT dis-
persion polymerization in n-alkanes

A typical protocol for the synthesis of PLA;,-PPhAg, diblock
copolymer nano-objects was as follows: PLA;, macro-CTA
(0.180 g, 0.05 mmol) was added to a 14 mL glass vial, followed
by PhA monomer (0.572 g, 3.86 mmol) and n-heptane (2.05 g).
T218S initiator was then added (2.08 mg, 0.01 mmol; CTA/T21S
molar ratio = 5.0), as a 1.0% solution in n-heptane to make up
a 25% w/w solution. This flask was cooled using an ice bath,
and the solution was sparged with N, gas for 20 min. The flask
was then sealed and immersed in an oil bath set at 80 °C. The
reaction mixture was stirred for 16 h to ensure high monomer
conversion (99% according to "H NMR analysis) and sub-
sequently quenched by cooling to 20 °C, followed by exposure
to air. THF GPC analysis of PLA,,-PPhAg, indicated M, and
M, /M, values of 13 800 ¢ mol™" and 1.44, respectively.

Copolymer characterization
'H NMR spectroscopy

All '"H NMR spectra were recorded on a 400 MHz Bruker
Avance-400 spectrometer using DMF-d; (PDMACs;-PPhA,),
dimethyl sulfoxide-dg (PAA,c-PPhA,) and CDCl; (PLA;4-PPhA,)
as deuterated solvents.

Gel permeation chromatography (GPC)

Molecular weight distributions of the PAA,.-PPhA, and PLA,,-
PPhA, diblock copolymers were assessed by GPC using THF
eluent. For the former series of copolymers, such analysis
required exhaustive methylation of the carboxylic acid groups
in the PAA block with excess trimethylsilyldiazomethane to
prevent column adsorption. The GPC set-up consisted of two
5 um Mixed C columns (30 cm) and a WellChrom K-2301
refractive index detector operating at 950 + 30 nm. The mobile
phase contained 2.0% v/v triethylamine and 0.05% w/v butyl-
hydroxytoluene (BHT) with a toluene flow rate marker and the
flow rate was fixed at 1.0 mL min~'. Copolymer solutions
(1.0% w/v) were prepared in THF. A series of ten near-monodis-
perse poly(methyl methacrylate) standards (M, values ranging
from 1280 to 330 000 g mol™") were used for calibration. Data
were analyzed using Agilent GPC/SEC software (version 1.2).
The molecular weights and dispersities of the PDMACs;-PPhA,
diblock copolymers were determined by GPC using DMF
eluent at 60 °C. The GPC set-up consisted of two Polymer
Laboratories PL gel 5 pm Mixed C columns connected in series
to an Agilent 1260 Infinity GPC/SEC system with refractive
index and variable wavelength detectors and autosampler.
The mobile phase was HPLC-grade DMF containing 10 mM
LiBr with a flow rate of 1.0 mL min~'. Copolymer solutions
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(1.0% w/v) were prepared in DMF. Ten near-monodisperse
PMMA standards (M, = 625 to 618 000 g mol ") were used for
calibration. Data were analyzed using Agilent GPC/SEC
software (version 1.2).

Dynamic light scattering (DLS)

The intensity-average hydrodynamic diameter of each batch of
diblock copolymer nanoparticles was determined from the
Stokes-Einstein equation using a Malvern Instruments
Zetasizer NanoZS instrument. Dilute (0.20% w/w) copolymer
dispersions were analyzed and data were averaged over three
consecutive runs. Measurements were made at 25 °C and the
scattered light was detected at an angle of 173°.

Transmission electron microscopy (TEM)

Copper/palladium TEM grids (Agar Scientific, UK) were coated
in-house to yield a thin film of amorphous carbon. For the
PDMAC;;-PPhA, and PAA,-PPhA, samples, the grids were
then subjected to a glow discharge for 30 s to create a hydro-
philic surface. Individual samples (0.20% w/w dispersion,
10.0 pL) were placed on the freshly-treated grids for 1 min and
then blotted with filter paper to remove excess solution. To
stain the colloidal aggregates, uranyl formate (9.0 pL of a
0.75% w/w solution) was absorbed onto the sample-loaded
grid for 20 s and then carefully blotted to remove excess stain.
The grids were then dried using a vacuum hose. For the PLA, ;-
PPhA, samples, each dispersion (0.20% w/w, 11 pL) was placed
on a grid for 1 min and then blotted with filter paper to
remove excess solution. To stain the deposited nanoparticles,
each grid was exposed to ruthenium(wv) oxide vapor for 7 min
at 20 °C prior to analysis.*" This heavy metal compound acted
as a positive stain to improve electron contrast. The ruthenium
(v) oxide was prepared as follows: ruthenium(u) oxide (0.30 g)
was added to water (50 g) to form a black slurry; addition of
sodium periodate (2.0 g) with stirring produced a yellow solu-
tion of ruthenium(iv) oxide within 1 min. Imaging of all grids
was performed using a Philips CM100 instrument operating at
100 kV equipped with a Gatan 1 k CCD camera.

Results and discussion

One major obstacle to the more widespread use of acrylates in
PISA formulations are the relatively low T, values exhibited by
such polymers. In contrast, PPhA has a T, of 50 °C, which is
comparable to that of poly(2-hydroxypropyl methacrylate) or
poly(benzyl methacrylate).®® Many high-quality TEM images
have been reported for PISA formulations based on such
methacrylic core-forming blocks,**?*%%7° so it was considered
likely that similar results could be obtained for PPhA. To exem-
plify the versatility offered by the use of phenyl acrylate, we
devised three new acrylic-based RAFT-mediated PISA formu-
lations based on this monomer (see Fig. 1). Thus RAFT
aqueous emulsion polymerization of PhA utilized a PDMACs3
macro-CTA, while RAFT dispersion polymerization of PhA in
ethanol used PAA,s as a stabilizer block. Finally, RAFT dis-
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(a) RAFT aqueous emulsion polymerization
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Fig. 1 Polymerization of phenyl acrylate via three different PISA formu-
lations: (a) RAFT aqueous emulsion polymerization at 30 °C, (b) RAFT
alcoholic dispersion polymerization in ethanol at 70 °C and (c) RAFT dis-
persion polymerization in n-heptane at 80 °C.

persion polymerizations conducted in n-heptane were con-
ducted using a PLA;, macro-CTA. Each of these three PISA for-
mulations is discussed in turn below.

RAFT aqueous emulsion polymerization of phenyl acrylate
using PDMAC;; stabilizer

The PDMACs; macro-CTA was synthesized by RAFT solution
polymerization in dioxane using 2-(dodecylthiocarbono-
thioylthio)-2-methylpropionic acid (DDMAT) as the RAFT
agent, as this CTA is well-suited for the controlled polymer-
ization of both acrylic and acrylamide-based monomers.>*°¢ A
low-temperature synthesis protocol was selected for the syn-
thesis of PDMACs3-PPhA, diblock copolymer nanoparticles via
RAFT aqueous emulsion polymerization in an attempt to mini-
mize chain transfer to polymer, which is well-known for the
polymerization of acrylic monomers.>>° This problem leads
to broadening of the molecular weight distribution via long-
chain branching. Thus a redox initiator system comprising
KPS and ascorbic acid was selected to enable polymerizations
to be conducted at 30 °C.*

A series of PDMAC;;-PPhA, copolymers was prepared with a
target PPhA DP (x) ranging from 50 to 500, see Table 1. High
conversions were obtained in all cases (>98% for x = 50-500;
entries 1-7). DMF GPC analysis indicated relatively high block-
ing efficiencies, with the copolymer molecular weight increas-
ing monotonically with target core-forming block DP, as
expected. However, M,/M, values ranged from 1.85 to 2.48
with no apparent trend between DP and dispersity (Fig. 2).
This is perhaps surprising given the relatively low reaction
temperature selected for these PISA syntheses, and this point
will be considered later.

Spherical nanoparticles were produced in all cases, as con-
firmed by both DLS analysis and TEM (Fig. 3). This kinetically-

This journal is © The Royal Society of Chemistry 2017
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Table 1 Summary of monomer conversions, GPC molecular weight data, DLS particle diameters and TEM morphologies obtained for a series of
PDMACs3-PPhA, diblock copolymers prepared via RAFT aqueous emulsion polymerization at 30 °C?

DMF GPC¢
Entry no. Target diblock composition Conversion®/% M, M/My, DLS diameter?/nm TEM morphology
1 PDMAC;,;-PPhA,, >99 12 400 1.85 38 (0.27) Spheres
2 PDMAC5;-PPhA, o >99 18400 2.10 54 (0.12) Spheres
3 PDMACs,-PPhA, 5, >99 24700 2.19 68 (0.12) Spheres
4 PDMAC5;-PPhA, >99 30600 2.22 79 (0.07) Spheres
5 PDMAC;;-PPhA >99 41200 2.48 105 (0.08) Spheres
6 PDMAC;;-PPhA 00 98 53300 2.43 133 (0.08) Spheres
7 PDMACs;-PPhA 99 61 400 2.06 188 (0.21) Spheres

“ Conditions: [macro-CTA] : [initiator] molar ratio = 5.0; copolymer concentration = 25% w/w. > Monomer conversion determined by "H NMR spec-
troscopy in DMF-d., © Refractive index detector, calibrated with a series of near-monodisperse poly(methyl methacrylate) standards. ¢ DLS: inten-
sity-average diameters were calculated using cumulants analysis software provided by the manufacturer (Malvern Instruments, UK). The numbers

in brackets denote the polydispersity in the particle diameter.

PDMAC;-PPhA,,,
M, = 30 600 g mol"
M,/M, = 2.22
PDMAC,,-PPhA,,,
M, =41 200 g mol" o
M,/M, = 2.48 "’

\
PDMAC,,-PPhA,,, \
M, =53 300 g mol"
M,/M, = 2.43
PDMAC;-PPhA 4g5
M, = 61400 g mol"
M, /M, = 2.06

1 12 13 14 15 16 17 18
Retention time / min

PDMAC,,-PPhA,,
M, =24 700 g mol
M, /M, = 2.19

PDMAC,;-PPhA 5,
M, =18400 g mol"
M,/M,, = 2.10

PDMAC,,-PPhA,,
M, = 12400 g mol"
M,/M, =1.85

PDMAC;;,
M, = 5400 g mol
M,/M, = 1.08

Fig. 2 DMF GPC curves for PDMACs3-PPhA, diblock copolymers pre-
pared at 25% w/w solids via RAFT aqueous emulsion polymerization of
PhA at 30 °C. M,, values are expressed relative to a series of near-mono-
disperse poly(methyl methacrylate) calibration standards.

trapped morphology has been reported for many RAFT
aqueous emulsion polymerization syntheses,*®*®¢1:7177¢ byt
this phenomenon is not properly understood. However, it is
perhaps noteworthy that the relatively few such PISA formu-
lations yielding non-spherical nano-objects employed either (i)
statistical copolymer macro-CTAs comprising a 1:1 molar
ratio of (meth)acrylic acid and oligo(ethylene glycol) (meth)
acrylate,”"*>7778 (ii) copolymer macro-CTAs comprising a poly
(N-acryloylmorpholine) (PNAM) block with a few poly(ethylene
glycol) acrylate (PEGA) units with varying position within
the polymer chain or (iii) a monomer exhibiting a relatively high
aqueous  solubility (e  4-hydroxybutyl methacrylate).””
Nevertheless, in the present study the PISA mechanism provided
good control over the particle size, with a monotonic increase in
the intensity-average particle diameter being observed when
targeting core-forming DPs ranging from 50 to 500 (see Fig. 3).

RAFT dispersion polymerization of phenyl acrylate in ethanol

It is now well-established that RAFT alcoholic dispersion
polymerization normally enables access to worms or vesicles
when targeting longer solvophobic blocks, provided that the

This journal is © The Royal Society of Chemistry 2017

steric stabilizer block is sufficiently short to allow efficient
sphere-sphere fusion to occur on the time scale of the PISA
synthesis,'618:20:23:25.28,79°81 pccordingly, for the RAFT dis-
persion polymerization of PhA in ethanol, a PAA macro-CTA
with a mean DP of 26 was synthesized via RAFT solution
polymerization in ethanol using DDMAT as the RAFT agent.
Following exhaustive methylation with excess trimethyl-
silyldiazomethane, THF GPC analysis indicated an M,/M, of
1.07, suggesting good RAFT control. This PAA,s macro-CTA
was then used for the polymerization of PhA in ethanol at
70 °C using AIBN initiator. For such PISA formulations, higher
copolymer concentrations (e.g. 25% w/w solids, as used herein)
favor the production of pure (rather than mixed) phases.

Table 2 summarizes the target PAA,s-PPhA, compositions,
with x ranging from 30 to 300. Analysis by "H NMR indicated
that the final monomer conversion was high (>98%) in all
cases. Following exhaustive methylation of the carboxylic acid
residues in the PAA block, THF GPC analysis indicated margin-
ally narrower molecular weight distributions compared to
those obtained for the series of PDMACs;-PPhA, diblock co-
polymers prepared by RAFT aqueous emulsion polymerization
(compare Tables 1 and 2). Although relatively high blocking
efficiencies were obtained, the molecular weight distributions
were again rather broad compared to those typically obtained
PISA syntheses based on methacrylic diblock
copolymers.'®>* For this second series of all-acrylic copoly-
mers, increasing the target DP of the core-forming block led to
a gradual increase in dispersity (see Fig. 4). The weak high
molecular weight shoulder is similar to that previously
reported by Ratcliffe and co-workers®® for PLA,,-PBzA, synth-
eses conducted via PISA in non-polar solvents; this feature is
postulated to be either the result of chain transfer to polymer
or possibly owing to termination by combination.

An evolution in copolymer morphology occurs when target-
ing higher PPhA DPs for this PISA system. Thus a relatively
transparent dispersion is obtained at a PPhA DP of 30, with
DLS and TEM studies indicating the presence of relatively
small spheres with an intensity-average diameter of 24 nm. As
the PPhA DP is increased to 50, a pure worm phase is obtained

for
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D, = 79 nm (0.07) 10007
POMACFPhivm PDMAC.,-PPhA,,, o
D, = 68 nm (0.12) D,=105nm (0.08) 5 & ]
o
PDMAC,,-PPhA,,, PDMAC,,-PPhA,,, 3 :
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D, =38 nm (0.27) , =188 nm (0.21) =
10 100 1000 ! 1,;0 10'00
Intensity-average diameter / nm PPhA DP

Fig. 3 A series of PDMACs3-PPhA, diblock copolymers prepared at 25% w/w solids via RAFT aqueous emulsion polymerization of PhA conducted at
30 °C using a PDMACs3 macro-CTA. (a) Selected TEM images showing well-defined spherical nanoparticles; (b) corresponding DLS intensity-average
size distributions and (c) the relationship between the DP of the core-forming PPhA block and the intensity-average DLS diameter, where a is the

scaling factor.

Table 2 Summary of monomer conversions, GPC molecular weight data, DLS particle diameters, and copolymer morphologies obtained for a
series of PAA,5-PPhA, diblock copolymers synthesized via RAFT dispersion polymerization of phenyl acrylate in ethanol at 70 °C?

GPC data‘
Entry no. Target diblock composition Monomer conversion”/% M, M /M, DLS diameter?/nm TEM morphology
1 PAA,4-PPhA;, 98 7200 1.45 24 (0.22) Spheres
2 PAA,-PPhA;, >99 8100 1.68 231 (0.38) Worms
3 PAA,,-PPhA, 5 99 14500 1.50 2800 (0.88) Lamellae
4 PAA,c-PPhA, oo 98 12300 1.77 1300 (0.28) Lamellae + vesicles
5 PAA,s-PPhA, 5, 98 12200 2.13 970 (0.09) Vesicles
6 PAA,-PPhA;, 98 41200 2.48 3400 (0.95) Precipitate

¢ Conditions: [macro- CTA] [initiator] molar ratio = 5.0; copolymer concentration = 25% w/w. > Monomer conversion determined by "H NMR spec-

troscopy in DMSO-ds,

¢ Determined by THF GPC (refractlve index detector, calibrated using a series of poly(methyl methacrylate) standards).

“ Intensity-average diameters were calculated using cumulants analysis software provided by the manufacturer (Malvern Instruments, UK). The

numbers in brackets denote the polydispersity in the particle diameter.

in the form of a transparent soft gel. At a PPhA DP of 74, a
transparent brittle gel was produced with DLS studies indicating
a large sphere-equivalent diameter (>2 um) and relatively high
polydispersity (0.88). TEM studies suggest that this is actually a
lamellar phase, with large stacked ‘sheets’. Similar lamellae have
been reported by Yang et al,>**> who also utilized a RAFT dis-
persion polymerization formulation comprising ethanol plus a
co-solvent (either dioxane or methyl ethyl ketone). In these two

4816 | Polym. Chem., 2017, 8, 4811-4821

earlier studies the formation of such a lamellar morphology was
rationalized in terms of the relatively high T, (219 °C) of the poly
(styrene-alt-N-phenylmaleimide) core-forming block impeding
vesicle formation. However, the present study suggests that other
as-yet-unidentified factors may be responsible for the formation
of such lamellar morphologies.

Increasing the PPhA DP up to 98 produced a mixed phase
comprising lamellae and vesicles, suggesting that the lamellar

This journal is © The Royal Society of Chemistry 2017
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PAA,.-PPhA,,
PAA,-PPhA,, M, =14 500 g mol-'
M, =12300 g mol" M,/M,=1.50 PAA,;-PPhA,

M,/M, =1.77

M, =8 100 g mol~
M,/M. = 1.68

PAA,;-PPhA,,

M, =7 200 g mol"

M, /M, = 1.45
PAA,,

M, =3 400 g mol"

M,/M, = 1.07

Retention time / min

Fig. 4 THF GPC curves obtained for PAA,s-PPhA, diblock copolymers
prepared at 25% w/w solids via RAFT alcoholic dispersion polymerization
of PhA at 70 °C. Molecular weight data are expressed relative to a series
of near-monodisperse poly(methyl methacrylate) calibration standards.

sheets are sufficiently deformable to enable vesicle formation
to occur via ‘wrap up’. The visual appearance of PAA,s-PPhA,,-,
(entry 6 in Table 2) was a turbid free-flowing dispersion, which
is characteristic of vesicles in the PISA literature.®®®"%3%* TEM
studies confirmed this morphology, with some evidence for
the presence of oligolamellar vesicles (see Fig. 5). Finally, a
precipitate phase comprising polydisperse particles of approxi-
mately 6 um was observed when targeting PAA,4-PPhA;, (see
entry 6 in Table 2 and Fig. 5). Given the highly asymmetric
nature of these latter diblock copolymer chains, it seems likely
that ‘vesicle death’ has occurred in this case. As reported by
Warren et al,”” the overall vesicle diameter is conserved
during PISA. Thus, as the membrane thickens, the volume of
the vesicle lumen must shrink. This leads to sterically con-
gested stabilizer chains within the inner leaflet, which ulti-
mately leads to vesicle destabilization. Strong evidence to
support this upper limit constraint on vesicle growth was
recently confirmed by Derry et al® via in situ synchrotron
SAXS studies. Given that ‘vesicle death’ has been observed for
PISA syntheses conducted in both water and mineral oil, this
suggests a generic mechanism that is hence also likely to apply
to the current RAFT alcoholic dispersion polymerization
formulation.

RAFT dispersion polymerization of phenyl acrylate in
n-heptane

A wide range of copolymer morphologies could also be
accessed via RAFT dispersion polymerization of PhA in
n-heptane at 80 °C. These syntheses were conducted using a
PLA,, macro-CTA at 25% w/w solids to enable direct comparison
with the other two PISA formulations. Again, a series of PLA,,-
PPhA, diblock copolymers were produced by systematically
varying the PPhA target DP (see Table 3). According to "H NMR
studies, high conversions (>98%) were obtained in each case.

As expected, the apparent GPC M, for this series of diblock
copolymers increased with increasing PPhA DP. Moreover,
THF GPC analysis suggested high blocking efficiencies, with

This journal is © The Royal Society of Chemistry 2017
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Fig. 5 PAA,¢-PPhA, diblock copolymers prepared at 25% w/w solids by
RAFT alcoholic dispersion polymerization of PhA at 70 °C: selected TEM
images showing the evolution in copolymer morphology to form (a)
spheres, (b) worms, (c) lamellae, (d) a mixed phase of lamellae and vesi-
cles, (e) vesicles or (f) precipitate on increasing the PPhA target DP.

this formulation providing significantly better control over the
molecular weight distribution; M,,/M,, values range from 1.37
to 1.53 in all cases. Nevertheless, the GPC curve for each copo-
lymer contained a high molecular weight shoulder (see Fig. 6).
DLS and TEM studies confirmed that the expected evolution in
copolymer morphology occurred on varying the target DP for
the structure-directing PPhA block. Thus, the PLA;,-PPhA;;
dispersion was a transparent free-flowing fluid. This is consist-
ent with the formation of spheres, which were found to be
approximately 32 nm and relatively uniform in size, as judged
by DLS and TEM studies respectively (see Fig. 7a).

An increase in PPhA DP of only ten units produced a turbid
free-flowing liquid comprising a mixed phase of spheres and
worms (see Fig. 7b). A free-standing transparent gel comprising
a pure worm phase was obtained when targeting a PPhA DP of
80 (see Fig. 7c). Further increasing the core-forming block DP
produced a mixed phase of worms and vesicles for PLA;,-
PPhA,, (see Fig. 7d), while TEM studies confirmed the exist-
ence of a pure vesicle phase for a PPhA DP of 127 (see Fig. 7e).

Polym. Chem., 2017, 8, 4811-4821 | 4817
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Table 3 Summary of monomer conversions, GPC molecular weight data, DLS particle diameters, and copolymer morphologies obtained for a
series of PLA14-PPhA, diblock copolymers synthesized via RAFT dispersion polymerization in n-heptane at 80 °C?

GPC data’
Entry no. Target diblock composition Monomer conversion”/% M, M,/M, DLS diameter?/nm TEM morphology
1 PLA,,-PPhA;; >99 11300 1.42 32 (0.10) Spheres
2 PLA,4-PPhA4; >99 13 000 1.40 75 (0.15) Spheres + worms
3 PLA,,-PPhAg, >99 14 600 1.37 381 (0.49) Worms
4 PLA,,-PPhA,,, 99 18300 1.40 904 (0.94) Worms + vesicles
5 PLA,,-PPhA;;3, 98 20 800 1.53 244 (0.32) Vesicles

“ Conditions: [macro-CTA] : [initiator] molar ratio = 5.0; copolymer concentration = 25% w/w. > Monomer conversion determined by "H NMR spec-
troscopy in CDCl,, “ Determined by THF GPC (refractive index detector, calibrated with poly(methyl methacrylate) standards). ¢ Intensity-average
diameters were calculated using cumulants analysis software provided by the manufacturer (Malvern Instruments, UK). The numbers in brackets

denote the polydispersity in the particle diameter.

PLA,,-PPhA,
M, =14 600 g mol*
M, /M, =1.37

PLA,,-PPhA,
M, = 13 000 g mol-*
M, /M, = 1.40

PLA,,-PPhA,,
M, =11 300 g mol?
M, /M, =1.42

PLA,,-PPhA,,,
M, =18 300 g mol?
M, /M, =1.40

PLA,,-PPhA,;, PLA,,
M, =20 800 g mol! M, = 4100 g mol*
M, /M, =1.53 M, /M, =1.09

13 14 15 16 17 18
Retention time / min

Fig. 6 THF GPC curves obtained for a series of PLAj4-PPhA, diblock
copolymers prepared at 25% w/w solids via RAFT dispersion polymer-
ization of PhA in n-heptane at 80 °C (see Table 3). Molecular weight
data are expressed relative to a series of near-monodisperse poly(methyl
methacrylate) calibration standards.

Comparing these three PhA-based PISA formulations (see
Tables 1-3), significantly higher dispersities are obtained for
RAFT aqueous emulsion polymerization at 30 °C compared to
the two RAFT dispersion polymerizations conducted at 70 or
80 °C. Similarly broad molecular weight distributions have
been reported by other workers for all-acrylic RAFT aqueous
emulsion formulation.®®®" In contrast, significantly lower dis-
persities (M,/M,, < 1.30) have been achieved for certain low-
temperature RAFT dispersion polymerization formulations con-
ducted in either water® or ethanol/water mixtures.®” We postu-
late that the relatively high dispersities associated with RAFT
aqueous emulsion polymerization may be related to stronger
partitioning of unreacted monomer within the growing steri-
cally-stabilized nanoparticles. This higher local monomer con-
centration is consistent with the significantly faster rate of
polymerization observed for such PISA formulations relative to
RAFT dispersion polymerizations. According to Lovell and co-
workers, such a rate enhancement is likely to favor a higher
degree of branching via chain transfer to polymer.*®

4818 | Polym. Chem., 2017, 8, 4811-4821

(a) PLA,-PPhA;

(b) PLA,,-PPhA;
D, =32 nm (0.10) D

| D,=75nm (0.15)

(c) PLA,,-PPhA,
D, = 381 nm (0.49)

PLA,-PPhA,,,
=904 nm (0.94)

e

10 100 1000 10000
Intensity-average diameter/ nm

Fig. 7 TEM images and corresponding DLS intensity-average diameters
(polydispersity index shown in parentheses) obtained for a series of
PLA14-PPhA, diblock copolymers prepared at 25% w/w solids via RAFT
dispersion polymerization of phenyl acrylate in n-heptane at 80 °C.
Increasing the target DP of the structure-directing PPhA block leads to a
gradual evolution in copolymer morphology from (a) pure spheres,
(b) spheres and worms, (c) worms, (d) worms and vesicles and (e) pure
vesicles. (f) The corresponding DLS intensity-average size distributions
obtained for these copolymer dispersions.
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To examine this hypothesis, the following control experiments
were performed. The PDMACs; macro-CTA was used to poly-
merize phenyl acrylate via RAFT solution polymerization in
DMF at 30 °C (see ESI} for the precise synthetic protocol and
associated characterization data). Three different DPs were tar-
geted for the PPhA core-forming block: 50, 100 and 150. Thus
these diblock compositions correspond to entries 1-3 in
Table 1. In each case, high PhA conversions (>96%) were
achieved after approximately 16 h at 30 °C. DMF GPC analyses
indicated high blocking efficiencies and significantly narrower
MWDs (M,/M, < 1.26) for all three diblock copolymers. These
additional experiments confirm that the PDMACs; macro-CTA
has a relatively high end-group fidelity and hence indicate that
the problem of high dispersity is instead intimately related to
the heterogeneous nature of these PISA formulations. This is
consistent with our hypothesis that chain transfer to polymer
becomes much more likely within monomer-swollen particles.

Conclusions

Phenyl acrylate is a useful model monomer for conducting
fundamental studies focused on acrylic-based PISA formu-
lations. Unlike the vast majority of acrylic polymers, the T, of
poly(phenyl acrylate) is sufficiently high (50 °C) to allow mor-
phological studies to be conducted using conventional TEM,
rather than cryo-TEM. Accordingly, phenyl acrylate has been
employed to generate the structure-directing solvophobic
block in RAFT aqueous emulsion polymerization, RAFT alco-
holic dispersion polymerization and RAFT n-alkane dispersion
polymerization. In the former case, only kinetically-trapped
sterically-stabilized spheres could be obtained; this morpho-
logical limitation is often reported in the literature and
remains poorly understood. In contrast, RAFT dispersion
polymerization in either ethanol or n-heptane yielded the
expected range of copolymer morphologies, depending on the
relative volume fractions of the soluble and insoluble blocks.
In each case high-quality images could be obtained by TEM.
Final monomer conversions were invariably high (>98%) for
these PISA syntheses, but GPC analyses indicated relatively broad
molecular weight distributions, particularly for RAFT aqueous
emulsion polymerization. This is believed to be the result of
chain transfer to polymer, which is a well-known side reaction
for the polymerization of acrylic monomers when employing
either conventional free radical polymerization or pseudo-living
radical polymerization techniques such as RAFT. Nevertheless,
such branching is no barrier to the convenient formation of well-
defined sterically-stabilized diblock copolymer nanoparticles at
high solids. In summary, phenyl acrylate is a versatile monomer
in the context of fundamental PISA research, which has been
hitherto mainly focused on methacrylic monomers or styrene.
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