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hydrophilic trans-5-oxocene dienophile for
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William D. Lambert,a Samuel L. Scinto,a Olga Dmitrenko,a Samantha J. Boyd,a

Ronald Magboo,b Ryan A. Mehl,c Jason W. Chin,*d Joseph M. Fox *a and
Stephen Wallace*d,e

The use of organic chemistry principles and prediction techniques has enabled the development of new

bioorthogonal reactions. As this “toolbox” expands to include new reaction manifolds and orthogonal

reaction pairings, the continued development of existing reactions remains an important objective. This is

particularly important in cellular imaging, where non-specific background fluorescence has been linked

to the hydrophobicity of the bioorthogonal moiety. Here we report that trans-5-oxocene (oxoTCO) dis-

plays enhanced reactivity and hydrophilicity compared to trans-cyclooctene (TCO) in the tetrazine ligation

reaction. Aided by ab initio calculations we show that the insertion of a single oxygen atom into the trans-

cyclooctene (TCO) ring system is sufficient to impart aqueous solubility and also results in significant rate

acceleration by increasing angle strain. We demonstrate the rapid and quantitative cycloaddition of

oxoTCO using a water-soluble tetrazine derivative and a protein substrate containing a site-specific

genetically encoded tetrazine moiety both in vitro and in vivo. We anticipate that oxoTCO will find use in

studies where hydrophilicity and fast bioconjugation kinetics are paramount.

Introduction

Biotechnology and biomedicine have been profoundly influ-
enced by the development of new bioorthogonal reactions –

abiotic transformations that occur selectively in a biological
environment.1–9 Amongst these, the cycloaddition of alkenes/
alkynes and s-tetrazines has become an important member of
the bioorthogonal reaction “toolbox”.10–20 Since initial reports
using trans-cyclooctene (TCO)21 and norbornene derivatives,22

a complementary range of dienophiles has been developed –

including cyclopropenes,23,24 cyclooctynes25,26 and simple
α-olefins.27–29 However, trans-cyclooctene (TCO) still maintains
the advantage of exceptional reaction kinetics in this

process.3,10 For example, the cycloaddition of the equatorial
diastereomer of 5-hydroxy-trans-cyclooctene and a 3,6-dipyri-
dyl-s-tetrazine derivative occurs with a second-order rate
constant of 22 600 M−1 s−1 in H2O at 25 °C.30 Faster reactivity
can be realized by using the axial diastereomer of 5-hydroxy-
trans-cyclooctene (80 200 M−1 s−1).11,30 However, the fastest
bioorthogonal reactions described to date use the confor-
mationally strained dienophiles s-TCO and d-TCO (Fig. 1).30,31

Fig. 1 Conformationally strained and heterocyclic trans-cyclooctenes.
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These bicyclic molecules adopt a half-chair conformation that
is 5.6–5.9 kcal mol−1 higher in energy than the crown
conformation of monocyclic TCO. Cycloaddition of these
compounds with tetrazines display second-order rate constants
of up to 366 000 M−1 s−1 for d-TCO and 3 300 000 M−1 s−1

for s-TCO.
From a kinetic standpoint, trans-cyclooctene derivatives are

excellent dienophiles for studies where high reactivity is essen-
tial such as in cellular imaging and nuclear medicine.32,33

However, the hydrophobicity of TCO and s-TCO has recently
been linked to high levels of non-specific background fluo-
rescence during imaging experiments, necessitating lengthy
washout protocols (>2 h) to dissociate the excess reagent from
the cell.34,35 While d-TCO displays reduced lipophilicity, the
compound is relatively bulky compared to the parent TCO
system. The development of new, low molecular weight dieno-
philes for the tetrazine ligation reaction that are fast and
hydrophilic is therefore an important challenge.

In seminal work, Jendrella synthesized 4,6-dioxo-TCO 1 and
showed it to be 20–1000 fold faster than trans-cyclooctene in
cycloadditions with cyclopentadiene, 2,3-dimethylbutadiene,
mesitonitriloxide and diphenylketene.36 More recently, Dudley,
Alabugin and coworkers have shown (in silico) that 3-oxo-
cyclooctynes display fast reactivity in cycloadditions with
azides, and have attributed their fast reactivity partly to the
hyperconjugative effect of the allylic oxygens.37 Tomooka and
Woerpel have synthesized trans-oxasilacycloalkenes, and have
studied their reactivity in Diels–Alder and azide cyclo-
additions.38,39 Very recently, Lemke, Kele and coworkers
reported the genetic incorporation of dioxo-TCO 2 and demon-
strated that the lower lipophilicity of this molecule resulted in
improved washout times during imaging experiments. In
Diels–Alder reactions with tetrazines, the reaction rate with 2
is similar to that with the parent TCO.36,40

In the course of our synthetic studies on transannulations
of cis- and trans-5-oxocenes, we queried whether such com-
pounds would engage in rapid bioconjugation reactions.41,42

Here we report the computational design and synthesis of a
trans-5-oxocene (“oxoTCO”, 3) – a small, hydrophilic, and
highly reactive dienophile for use in the bioorthogonal tetra-
zine ligation reaction. The reaction of 3 (2.2 : 1 dr) with a
water-soluble 3,6-dipyridyl-s-tetrazine-mono-succinamic acid
10 occurs with a second order rate constant of 94 600 M−1 s−1

in PBS at 25 °C (Fig. 3), which is faster than either diastereo-
mer of 5-hydroxy-trans-cyclooctene, and approaching the rate
of bicyclic d-TCO. The oxoTCO heterocycle can be synthesized
in seven high yielding steps from commercially available glyci-
dol. Furthermore, oxoTCO 3 is small (MW 142) and hydro-
philic with an experimental log P = 0.51. Finally, we describe
the in vitro and in vivo kinetics of 3 on a recombinant protein
substrate containing a site-specifically incorporated tetrazine-
containing amino acid (sfGFP-150Tet-v.2.0).43 We anticipate
that oxoTCO 3 will find applications in cellular imaging
studies where small hydrophilic probes with fast reaction kine-
tics, low background fluorescence and/or rapid data acqui-
sition are required.

Results and discussion

Computation was used to assist the design of a reactive and
soluble trans-oxocene dienophile. We reasoned that the short
C–O bonds in the backbone of a trans-5-oxocene would
augment the olefinic strain of the trans-cycloalkene, and
thereby increase the reactivity in tetrazine ligation. As shown
in Fig. 2, ground state calculations were carried out for the
parent trans-oxocenes 4 and 5 as well as trans-cyclooctene at
the M06L/6-311+G(d,p) level. Indeed, the calculated C–CvC–C
dihedral angle for 4 (134.6°) and 5 (134.4°) is significantly
shorter than that for trans-cyclooctene (137.7°). M06L/6-311+G
(d,p) and CAM-B3LYP/tzvp calculations were also carried out to
compare the reactivity of 4 and 5 to trans-cyclooctene (Fig. 2B).
These calculations were carried out with diphenyl-s-tetrazine
so that they could be benchmarked against previous calcu-
lations carried our in our labs.30,31 At the M06L/6-311+G(d,p)
level, the barrier for the Diels–Alder reaction of trans-cyclo-
octene with 3,6-diphenyl-s-tetrazine is ΔΔE‡ 13.3 kcal mol−1,
ΔE‡(ZPE) 13.9 kcal mol−1, ΔH‡ 12.9 kcal mol−1. With trans-5-
oxocene 4, the barrier was significantly lower, with
ΔΔE‡ −1.23 kcal mol−1, ΔE‡(ZPE) −1.54 kcal mol−1 and
ΔH‡ −1.44 kcal mol−1 relative to trans-cyclooctene.
Interestingly, the isomeric trans-4-oxocene 5 is not predicted to
be significantly more reactive than trans-cyclooctene. This

Fig. 2 DFT transition state calculations predict that trans-5-oxocene 4,
but not trans-4-oxocene 5, would be more reactive than trans-cyclo-
octene. While both 4 and 5 are more strained than trans-cyclooctene,
that the reactivity of 5 is attenuated by the electron withdrawing allylic
oxygen.

Organic & Biomolecular Chemistry Paper

This journal is © The Royal Society of Chemistry 2017 Org. Biomol. Chem., 2017, 15, 6640–6644 | 6641

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ju

ly
 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

/1
9/

20
26

 6
:1

9:
25

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ob01707c


computational result can be rationalized by considering the
electron withdrawing nature of the allylic oxygen. Inverse elec-
tron demand Diels–Alder reactions are deactivated by electron
withdrawing groups on the alkene, and the allylic oxygen of 5
is both inductively withdrawing and stereoelectronically posi-
tioned to deactivate the alkene through hyperconjugation.
Thus, while the alkene of 5 is more strained than 4 (134.4° vs.
134.6° dihedral angle), the effect is attenuated by the electron
withdrawing effect of the allylic oxygen.

Based on these computational predictions, we synthesized
the alcohol-functionalized trans-5-oxocene 3 in 7 steps from
commercially available glycidol 6 (Scheme 1). The synthesis
began with TBS-protection and the addition of allyl mag-
nesium chloride to provide alcohol 7. Our attempts to access 8
directly from 7 via Williamson etherification or Mitsunobu
chemistry were unsuccessful. Fortunately, we found that the
treatment of the MOM ether of 7 with Lewis acidic stannic
chloride generated a putative oxocarbenium ion that could be
quenched via Sakurai allylation to afford butenyl ether 8 in
78% yield. Ring-closing metathesis of 8 using the Grubbs first-
generation catalyst proceeded efficiently to afford cis-oxocene 9
in 84% yield. Finally, desilylation and photoisomerization
using our closed-loop flow reactor44 afforded a 2.2 : 1 diastereo-
isomeric mixture of trans-oxocenes in 70% yield (37%
overall yield over 7 steps). Separation of the diastereomers
using preparative thin layer or silica gel chromatography was
unsuccessful. An analytical sample of the major diastereomer
of 3 was obtained by preparative supercritical fluid chromato-
graphy, however, given the difficulty of separation we contin-
ued the majority of further studies on oxoTCO using a
2.2 : 1 mixture of diastereomers. The log P of 3 was experi-
mentally determined to be 0.51 whereas equatorial 5-hydroxy-
trans-cyclooctene and d-TCO were both determined to be more
hydrophobic with log P = 1.11 and 0.94, respectively.30

The stability of oxoTCO 3 was studied under several con-
ditions by 1H NMR spectroscopy. Over a 14 day period at room
temperature, a 2.2 : 1 diastereoisomeric mixture of oxoTCO 3
(33 mM) showed no degradation in CD3OD. In D2O-PBS (pD =
7.4), the major, equatorial diastereomer of 3 showed less than
10% degradation after 1 week. The more reactive minor dia-
stereomer degraded more rapidly in PBS, and decomposed
with a half-life of 36 hours, with complete degradation after

9 days. oxoTCO 3 (25 mM) in the presence of mercaptoethanol
(25 mM) showed only 8% isomerization in CD3OD over a
22 hours period while 92% was isomerized in phosphate
buffered D2O (pD = 7.4) over the same period of time. Under
similar conditions, oxoTCO stability to thiols in methanol is
improved relative to d-TCO (92% isomerization after 14 h) and
s-TCO (100% isomerization after 4 h).30 In D2O (pD = 7.4) con-
taining 25 mM mercaptoethanol, the major diastereomer iso-
merized with a half-life of 2.2 hours, and the minor diastereo-
mer isomerized with a half life of 1.6 hours. Overall, the stabi-
lity of the oxoTCO diastereomers is similar to that of dTCO.30

We next measured the rate constant for the inverse elec-
tron-demand Diels–Alder (IEDDA) cycloaddition of oxoTCO
and tetrazine 10 under pseudo-first order conditions (Fig. 3).
PBS was chosen as a solvent for two reasons: aqueous solvent
considerably accelerates the IEDDA reaction by the hydro-
phobic effect and initial kinetic studies indicated tetrazine 10,
though more water soluble than 3,6-dipyridyl-s-tetrazine, was
aggregating in unbuffered H2O, thus giving inconsistent first-
order rates. Using a stopped-flow spectrophotometer and by
following the exponential decay in tetrazine absorbance at
325 nm the second-order rate constant (k2) was determined to
be 94 600 ± 5700 M−1 s−1 in PBS at 25 °C for the 2.2 : 1
diastereomeric mixture of 3. This is faster than the reaction of
a similar tetrazine with both diastereomers of 5-hydroxy-trans-
cyclooctene (equatorial isomer 22 600 M−1 s−1; axial isomer
80 200 M−1 s−1), and is approximately 1

4 as fast as a bicyclic
d-TCO under comparable conditions (366 000 M−1 s−1).30 The
diastereomerically pure equatorial isomer of 3 was obtained by
SFC, and found to react with 10 with a rate constant of 44 100 ±
2600 M−1 s−1 in PBS at 25 °C. While we were unable to obtain
a diasteromerically pure sample of the axial diastereomer, the
rate constant can be calculated to be 310 000 M−1 s−1 based on
the rates observed for the diastereomer mixture and the pure

Scheme 1 Synthesis of oxoTCO 3.

Fig. 3 The kinetics of the cycloaddition of oxoTCO 3 with water-
soluble 3,6-dipyridyl-s-tetrazine-mono-succinamic acid 10 in PBS
buffer (pH 7.4). Second order rate constants (k2) were determined with a
stopped-flow spectrophotometer under pseudo-first order conditions
using ca. 10–30 equivalents of oxoTCO 3 (2.2 : 1 dr) by monitoring the
decrease in tetrazine absorbance at 325 nm.
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equatorial isomer. The 7-fold rate acceleration for the axial
isomer is consistent with prior reports for 5-hydroxy-trans-
cyclooctene.11,30

We also studied the in vitro cycloaddition of oxoTCO and a
green fluorescent protein encoded with an unnatrual tetrazine-
containing amino acid 11 (sfGFP-150Tet-v.2.0) via the pro-
cedure of Mehl and coworkers.43 Thus, 4-(6-methyl-s-tetrazin-3-yl)-
phenylalanine was site-specifically introduced into a
C-terminally hexahistidine-tagged GFP (sfGFP-150TAG-His6)
via orthogonal translation using the evolved aminoacyl-tRNA

synthetase MjRS/tRNACUA pair. Co-expression of these com-
ponents in E. coli resulted in the amino acid-dependent syn-
thesis of full-length recombinant GFP 11 which was purified
by Ni-NTA chromatography and confirmed by ESI-MS. The tet-
razine moiety of this protein quenches the fluorescence of the
GFP chromophore, whereas the dihydropyridazine product of
the TCO ligation does not. It is therefore possible to determine
the kinetics of the reaction by monitoring the increase in GFP
fluorescence (Fig. 4A). Accordingly, the second order rate con-
stant of the reaction between oxoTCO and sfGFP150Tet-v.2.0
was determined to be 2030 ± 180 M−1 s−1 in phosphate buffer
at room temperature (Fig. 4B). The reaction was quantitative
under these conditions as determined by ESI-MS (Fig. 4C). The
slower rate relative to that observed with 10 is due to the less
reactive nature of the tetrazine 11 and in line with rate
decreases observed with other TCOs.30

Finally, the small size and good hydrophilicity of oxoTCO
make it an excellent candidate for labeling in vivo. The cyclo-
addition was monitored in a suspension (PBS) of E. coli over-
expressing sfGFP150Tet-v.2.0 by measuring the increase in
whole-cell fluorescence upon addition of 3. At room tempera-
ture oxoTCO displays a second-order rate constant of 526 ± 11
M−1 s−1, which is approximately 1

4 as fast as the in vitro ligation.
Quantitative determination of the biorthogonal reaction was
verified by ESI-MS. Cells were washed before lysis and the
protein was purified via nickel affinity chromatography. The
resulting protein mass was as expected for the cycloaddition
product. This, alongside the whole-cell fluorescence experi-
ment, provides evidence to suggest that oxoTCO crosses the
bacterial cell membrane.

Conclusions

In summary, computation was used to design a hydrophilic
5-oxo-trans-cyclooctene derivative with high reactivity attribu-
ted to increased angle strain. A short synthesis was developed
involving Sakurai allylation, olefin metathesis and flow-
enabled photoisomerization as key steps. This heterocyclic
trans-cyclooctene displays improved hydrophilicity, with an
experimental log P value of 0.51. Kinetic analysis revealed that
oxoTCO displays faster reactivity than mono-substituted TCO
dienophiles, and is less bulky than bicyclic trans-cyclooctenes
we have described previously. Quantitative labeling of GFP con-
taining a genetically encoded tetrazine amino acid was studied
in solution and in whole bacteria cells with complete labeling
within minutes at room temperature. The high reactivity and
lower hydrophobicity of oxoTCO-based probes should prove
useful for in vivo applications, and in this context is the focus
of active study in our labs.
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