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The N-heterocyclic carbene IBioxMe, enacts selective single and
double C—F bond activation of octafluorotoluene and hexafluoro-
benzene, respectively. The formation of the fluoroarene substi-
tuted, zwitterionic imidazoliumolate products is consistent with a
mechanism involving nucleophilic aromatic substitution and sub-
sequent oxazoline ring opening by liberated fluoride.

In addition to finding diverse applications as ancillary ligands
in organometallic chemistry and catalysis, N-heterocyclic car-
benes (NHCs) have attracted considerable attention in their
own right as organocatalysts and for their propensity for
o-bond activation.! Of the latter, notable landmarks include
the cleavage of dihydrogen and insertion into the N-H bonds
of ammonia.” In recent years examples demonstrating the acti-
vation of characteristically robust C-F bonds by NHCs have
also begun to appear and highlight a new and potentially
fertile avenue for exploration in synthetic organic chemistry.
Kuhn and co-workers were the first to describe C-F bond
activation by an NHC in 1998; reactions involving the nucleo-
philic aromatic substitution of pentafluoropyridine by tetra-
alkylimidazol-2-ylidenes (Scheme 1).*> This approach was later
extended to the C-F bond activation of fluoroarenes including
hexafluorobenzene, with products isolated by sequestration of
fluoride as [BF,]” by addition of BF;-OEt,." Conceptually
related to transition-metal-based processes, Bertrand and
co-workers went on to describe the formal oxidative addition of
a C-F bond to a cyclic alkyl amino carbene in 2015 (Scheme 1).°
To the best of our knowledge the only other examples of C-F
bond activation reactions by NHCs are limited to very recent
reports by Turner, Lee and Baker (Scheme 1).°® The former is
notable for its parallels to Bertrand’s work and for the remark-
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Scheme 1 Previous examples of C—F bond activation by NHCs. Mes =
2,4,6-MesCgH,; Dipp = 2,6-'Pr,CgHs.

able double C-H/C-F or C-F bond activation of pentafluoro-
benzene and hexafluorobenzene, respectively.

As part of our work exploring the coordination chemistry of
bioxazoline-derived imidazol-2-ylidenes developed by Glorius
and co-workers,’
rhodium and iridium complexes of the tetramethyl substituted
variant IBioxMe, in fluorinated solvents,'® we discovered that
these NHCs can enact interesting C-F bond activation chem-
istry. Whilst assessing the suitability of a range of fluoroarenes
as solvents in situ using NMR spectroscopy, the chemical

in particular the synthesis of low-coordinate
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non-innocence of IBioxMe, in neat perfluorinated benzene
and toluene became readily apparent by complete con-
sumption of the NHC ligand and concomitant formation of
brightly coloured red solutions within 30 minutes of dis-
solution at RT. In contrast, no decomposition of IBioxMe, was
apparent by '"H NMR spectroscopy after 12 h at RT using a
range of partially fluorinated benzene solvents: fluorobenzene,
1,2-difluorobenzene and 1,3,5-trifluorobenzene - solvents that
instead resulted in homogeneous colourless solutions.

Seeking to understand these observations, IBioxMe, was
reacted with 5 equiv. of octafluorotoluene at RT, using 1,2-
difluorobenzene as an inert solvent. Analysis in situ by "H and
F NMR spectroscopy indicated the quantitative formation of
zwitterionic imidazoliumolate 1a,'* which was subsequently
isolated as an air and moisture sensitive crystalline solid on
addition of cyclohexane and fully characterised (32% yield;
Scheme 2, Fig. 1). Based on the literature precedents discussed
above,>*”® we account for the formation of 1a by a mechan-
ism involving initial nucleophilic aromatic substitution of
octafluorotoluene by IBioxMe,, followed by ring opening of
one of the oxazolines by the liberated fluoride anion.

In the solid-state structure of 1a (Fig. 1) the fluoroarene
adopts an approximately orthogonal arrangement with respect
to the imidazoliumolate ring (102.99(5)°), which shows
broadly  similar component bonding  metrics  to
IBioxMe,-HOTf;® for instance the C3-C4 bond distance
(1.3845(16) vs. 1.354(3) A) and N2-C1-N5 angle (106.58(11) vs.
105.55(16)°). Moreover, the exocyclic C4-O11 bond distance
(1.2492(14) A) is in close agreement with related zwitterionic
imidazoliumolates (ca. 1.25 A).'" The structure deduced by
X-ray diffraction is fully corroborated in solution by NMR spec-
troscopy. Notably 'H and '*C NMR spectra demonstrate
reduced symmetry compared to IBioxMe, (Cs vs. Cyy), the new
H,C-F linkage is characterised by resonances at dy 4.91 (ZJFH =
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Scheme 2 Reactions and proposed mechanism associated with the
C—F bond activation of octafluorotoluene and hexafluorobenzene by
IBioxMeyg.
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Fig. 1 Solid-state structure of 1a; minor disordered components (CH,F
and CFs groups) and solvent omitted for clarify. Thermal ellipsoids
drawn at the 50% probability level. Selected bond lengths (A) and
angles (°): C1-N2, 1.3359(17); C1-N5, 1.3670(14); C1-C17, 1.4704(18);
C3-C4, 1.3845(16); C3-06, 1.3635(17); C4-011, 1.2492(14); C3-C4-
011, 133.64(14); N2-C1-N5, 106.58(11); LSplane(C1-N5) < LSplane
(C17-C22), 102.99(5)°.

47.2 Hz), 6c 86.1 (Ypc = 176 Hz), and 6p —224.59 (YJpy =
47.2 Hz), and the "F{'"H} NMR spectrum features only two
C(sp®)-F resonances at 6y —133.05 and —138.64.

On turning to the equivalent reaction between IBioxMe,
and hexafluorobenzene (5 equiv., RT in 1,2-difluorobenzene),
analysis of the reaction mixture in situ by 'H and '°F NMR
spectroscopy indicated the selective and quantitative for-
mation of 2, as a mixture of two rotamers (ca. 1:1 ratio),
resulting from double C-F bond activation. The new bis-imida-
zoliumolate crystallises from the reaction mixture on standing,
enabling its isolation as an extremely air and moisture
sensitive red microcrystalline solid (19% yield). The structure
of 2 was established spectroscopically in solution, with
the double C-F bond activation of the fluoroarene confirmed
by the presence of one 4F integral C(sp®)-F resonance at
8p —133.71/-133.63 and one 2F integral C(sp’)-F resonance at
Op —223.44 (*Jpy = 47.3 Hz)/—223.89 (*Jpy = 47.3 Hz) for each
rotamer (i.e. Ci/C,, symmetry). Moreover, the NMR data for the
imidazoliumolate groups show good agreement with those of
1a. Despite repeated attempts we have been so far unsuccess-
ful in determining a suitably high quality solid-state structure
of 2 (see ESIf for optimised structures).

The formation of 2 is suggested to proceed via a mechan-
ism analogous to that of 1a, i.e. via intermediate formation of
1b (Scheme 2). Similar double C-F bond activation of hexa-
fluorobenzene was observed by Kuhn.* The presence of an
excess of hexafluorobenzene during the formation of 2 implies
that the imidazoliumolate group is significantly more acti-
vating than a fluorine substituent alone. Although a more
detailed computation analysis is required, corroborating this
suggestion the calculated natural charge of the para-disposed
fluoroarene carbon in 1b is more positive that the carbon
atoms of hexafluorobenzene (+0.302 ¢f. +0.290; see ESIT).

This journal is © The Royal Society of Chemistry 2017
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In summary, we have demonstrated that while bioxazoline-
derived imidazol-2-ylidene IBioxMe, is stable in a range of par-
tially fluorinated arene solvents (fluorobenzene, 1,2-difluoro-
benzene and 1,3,5-trifluorobenzene), in the presence of octa-
fluorotoluene and hexafluorobenzene C-F bond activation
ensues. These reactions result in the formation of zwitterionic
imidazoliumolates presumably via a mechanism involving
nucleophilic aromatic substitution by the NHC ligand and sub-
sequent oxazoline ring opening by liberated fluoride. In the
case of hexafluorobenzene, the substituted arene appears to be
more activated towards nucleophilic attack, ultimately leading
to double C-F bond activation. These reactions help further
substantiate the potential of NHCs to mediate challenging
bond disconnections of contemporary interest.
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