Open Access Article. Published on 29 November 2016. Downloaded on 2/7/2026 7:47:15 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Organic &
Biomolecular Chemistry

COMMUNICATION

CrossMark
& click for updates

Cite this: Org. Biomol. Chem., 2017,
15, 559

Received 16th November 2016,
Accepted 29th November 2016

DOI: 10.1039/c60b02498)

one potf

www.rsc.org/obc

A new series of superarmed glycosyl donors has been investigated.
It was demonstrated that the S-ethyl leaving group allows for high
reactivity, which is much higher than that of equally equipped
S-phenyl glycosyl donors that were previously investigated by our
groups. The superarmed S-ethyl glycosyl donors equipped with a
2-0O-benzoyl group gave complete f-stereoselectivity. Utility of
the new glycosyl donors has been demonstrated in a one-pot
one-addition oligosaccharide synthesis with all of the reaction
components present from the beginning.

Mechanistic challenges in the chemical glycosylation reaction
have consistently captured the attention of the synthetic com-
munity." Many classes of glycosyl donors have been developed®
and many strategies for oligosaccharide synthesis have
emerged.” Among the methods and strategies available, the
development of the armed-disarmed strategy for chemo-
selective oligosaccharide synthesis occupies an important
niche.” Reactivity tuning of various series of thioglycosides has
been reported and applied to the synthesis of a variety of oligo-
saccharide sequences.” Beyond the traditional scope of the
armed-disarmed strategy, superarmed and superdisarmed
building blocks have also been identified and studied.® Bols
and co-workers developed an approach to superarm glycosyl
donors by changing the equatorial-rich *C, conformation to an
axial-rich conformation.” These conformational changes were
induced by creating steric congestion with tert-butyldimethyl-
silyl (TBS) or related bulky protecting groups at the C-2, 3 and
4 positions of S-phenyl (SPh) glucosides, resulting in a skew-
boat conformation. The donors showed a 20-fold increase in
reactivity compared to their armed per-O-benzylated counter-
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parts.”* The Demchenko group also reported superarmed

S-benzoxazolyl (SBox) and S-ethyl (SEt) glycosyl donors, but the
superarming was based on the 02/O5-cooperative effect in
glycosylation.® Thus, it was demonstrated that donors
equipped with the 2-O-benzoyl-3,4,6-tri-O-benzyl protecting
group pattern are 10 times more reactive than their armed
counterparts.’

Using the two different approaches to superarm glycosyl
donors, our groups jointly developed a 2-O-benzoyl donor 1
with 3,4-di-O-TBS protection (Scheme 1). Over the course of
that study we learned that conformational arming is a power-
ful tool for increasing reactivity and achieving excellent yields
and the 2-O-benzoyl substituent ensured complete 1,2-trans
stereoselectivity."® The anchimeric superarming effects in the
conformationally modified donor 1 are significantly weaker, to
the extent that the 2-O-benzoylated SPh donor 1 is 5.8 and
4.5 times less reactive than its 2-O-TBS and 2-O-benzylated
counterparts 2 and 3, respectively (Scheme 1). Although glyco-
sylations with hybrid donor 1 were swift, high yielding and
B-stereoselective,'® we feared that the reduced reactivity could
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Scheme 1 The relative reactivity of the conformationally superarmed
S-phenyl glycosyl donors.*®
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translate into decreased efficacy of these building blocks in
sequential chemoselective glycosylations in one-pot. This led
us to a hypothesis that the use of a more reactive S-ethyl
leaving group'' would help us to develop a complementary
superarmed glycosyl donor with a superior reactivity profile
whilst still maintaining p-stereoselectivity.

Right from the start, when donor 1 was subjected to a
competition experiment with the equally protected SEt donor
5, a much higher reactivity of the latter was detected. The com-
petition experiments for this study were conducted following
essentially the same experimental conditions and ratios as in
our previous study.'® Two glycosyl donors, used in equimolar
amounts (1.0 equiv. each), were set to compete for excess
glycosyl acceptor 4> (2.0 equiv.) in the presence of NIS
(1.0 equiv.) and TfOH (0.1 equiv.) at —78 °C. The use of low
temperature, which was allowed to gradually increase over the
course of the reaction, and the use of a very limited amount of
promoter helped to maintain workable reaction rates. All of
the competition experiments were quenched after 1 h and the
remaining glycosyl donors were isolated and quantified. Thus,
as a result of the first competition experiment, SPh donor 1
remained the major monosaccharide component of the
mixture and was isolated in 87% yield, whereas only 13% of
the SEt donor 5 remained (Scheme 2). This translates into a
1/6.7 reactivity ratio between the two donors, or in other
words, the SEt donor 5 is 6.7 times more reactive than its SPh
counterpart 1.

Subsequent competition experiments led to the realization
that 2-O-benzoyl SEt donor 5 is nearly as reactive as 2-O-benzyl
SPh donor 3 (1/1.1) and only slightly less reactive than the
most reactive superarmed 2-O-TBS protected SPh donor 2
known to date (1/1.6, Scheme 2). To explore the reactivity
limits of superarmed glycosyl donors of the SEt series, we
obtained donor 6 equipped with the 2-O-benzyl protecting
group. A competition experiment with equally protected SPh
donor 3 led to the realization of the higher reactivity of donor
6 (3/6 = 1/3.8). Using a similar approach, we determined that
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Scheme 2 The relative reactivity of S-phenyl versus S-ethyl glycosyl
donors of the superarmed series.
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donor 6 is 3.7 times more reactive than the 2-O-TBS SPh
donor 2.°

Encouraged by the first series of competition experiments,
we decided to investigate the new hybrid donor 5 in the
context of other SEt donors. For this study we obtained the
anchimerically superarmed derivative 7 along with two confor-
mationally superarmed donors 8 and 9, equipped with
6-O-benzoyl and 2,6-di-O-benzoyl protections, respectively. The
first competition experiment that was conducted between
donors 5 and 7 provided a very impressive reactivity difference:
donor 5 was 95 times more reactive than donor 7 (Scheme 3).
This result is more indicative of the superior reactivity of 5
than the poor reactivity of 7. The latter donor is still super-
armed because it is much more reactive than its per-benzyl-
ated counterpart. In addition, donor 7 is 2.2 times more reac-
tive than the previously developed hybrid SPh donor 1.
Moreover, compound 7 is also 2.3 times more reactive than the
conformationally superarmed SEt donor 8 equipped with two
benzoyl groups at O-2 and O-6.

A comparison of donors 5 and 8 showed a very significant
deactivating effect of 6-O-benzoyl in comparison with
6-O-benzyl, these groups being the only structural difference
between the two donors.”? Thus, the 6-O-benzyl donor 5 was
97 times more reactive than its 6-O-benzoylated counterpart 8.
Donor 5 was also found to be 5.3 times more reactive than
donor 9 with reverse positioning of the benzyl and benzoyl
substituents: 2-O-benzyl, 6-O-benzoyl.

With this comprehensive set of competition experiments,
we began investigating the glycosyl donor properties of com-
pounds 5-8 with the model acceptor 4. After screening a
number of promoters for the activation of thioglycosides, we
chose NIS/TfOH and DMTST. These reaction conditions
offered a good balance of reactivity, selectivity and yield.
Other promoters, including iodine which was successfully
used in our previous study of anchimerically superarmed
SEt donors, led to decreased yields resulting from high rates
of major side reactions: TBS cleavage and/or SEt hydrolysis.
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Scheme 3 The effect of conformational and electronic superarming in
a series of S-ethyl glycosyl donors.
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Thus, NIS/TfOH-promoted coupling between donor 5 and
acceptor 4 swiftly (20 min) produced disaccharide 10 in 83%
yield and complete B-stereoselectivity (entry 1, Table 1).

Practically the same outcome was achieved in the DMTST-
promoted reaction listed in entry 2. NIS/TfOH-promoted acti-
vation of donor 6 produced disaccharide 11 in 81% yield
(entry 3). In this case, the reaction was non-stereoselective due
to the absence of neighboring group participation. In this
case, DMTST was less effective and the TBS protecting groups
showed a high propensity to cleavage. As a result, disaccharide
11 was obtained in a poor yield of 21% (entry 4). The outcome
of this reaction could be improved (44% yield) using only a
slight excess of DMTST (1.3 equiv.).

Glycosidation of the anchimerically superarmed donor
7 was successful in the case of either NIS/TfOH or DMTST-

Table 1 Glycosylation of acceptor 4 with different superarmed SEt

donors
OH
BnO o] Promoter
Donor + BnO W Product
BnO, 272
) 4 OMe _78.>0°C
(1.0equiv) 4 1 equiv)
Conditions,” Product
Entry Donor time (yield % o/ ratio)
1 OTBS A, 20 min OTBS
OBn OBn
S o] S Plo)
j>\LSEt o
TBSO TBSO
BzO BzO
BnO O
5 BnO
BnOOMe
10 (83, B-only)
2 5 B, 15 min (85, ﬁ only
3 OTBSOB A, 15 min OB
n n
SEt
TBSO TBSO
BnO BnO
6 BnO
BnO
OMe
11 (81, 1. 0/1)
4 6 B, 10 min 11 (21, 0. 9/1)
A, 30 min

BnO

OMe
12 (82, B-only)
6 7 B, 20 min 12 (85 ﬁ only)
7 OTBS A, 30 min
:OBZ OBz
j>\bo
SEt
TBSO TBSO
BzO
8 Bé‘é’o
OMe
13 (85, B- onIy

“Conditions A: NIS/TfOH (1 3 equiv.), 3 A mol sieves; B: DMTST
(2.0 equiv.), 4 A mol sieves. ” The yield is impacted by falr stability of
the TBS groups (see text).
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promoted activation, and disaccharide 12 was obtained with
complete f-stereoselectivity in 82 or 85% yield, respectively
(entries 5 and 6). In case of donor 8, only NIS/TfOH gave a
practical result, whereas DMTST showed a high level of com-
peting processes. Thus, NIS/TfOH-promoted activation of 8
produced disaccharide 13 in 85% yield and complete
p-stereoselectivity (entry 7). The conformational properties of
disaccharide 10 were studied using X-ray crystallography
(Fig. 1). The crystals of 10 were obtained by slowly evaporating
a mixture of MeOH/water. The skew-boat conformation of
disaccharide 10 was deduced from the X-ray data and was
consistent with the altered coupling constants obtained from
its "H NMR spectrum (Fig. 1).

Using a series of glycosyl donors of differential reactivity,
we began studying the applicability of this method to the one-
pot oligosaccharide synthesis.'* With a number of different
concepts for the one-pot synthesis, we chose the one-pot/
one-addition method wherein all of the building blocks are
present from the beginning. Invented by Kahne,'®> and further
explored by Fraser-Reid'® and Bols,”® this approach requires
fine tuning of the reactivity to differentiate all of the reaction
components. The general idea underpinning this approach is
that the more reactive donor will react with the more reactive
acceptor (hydroxyl). Subsequently, the second-step coupling
will involve coupling between the less reactive donor and the
less reactive acceptor.

With these considerations, we chose highly reactive donor 5
to couple with the reactive 6-OH in benzylated building block

o
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—
ve)
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3
&
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J2'Y3' =3.3Hz
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Fig. 1 The X-ray structure of disaccharide 10 (hydrogens and protect-
ing groups have been omitted for clarity; refer to the ESIf for complete
X-ray structure and data).
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14 equipped with the anomeric SEt group. A fast first-step reac-
tion will permit the sequential (rather than competitive) acti-
vation of the SEt leaving group of the intermediate disacchar-
ide to react with the less reactive acceptor 15 (Scheme 4).
Building block 14 is the key reaction component in the
mixture because it can react with both compounds; firstly as
the more reactive acceptor and then as the less reactive donor.
The role of the highly reactive superarmed donor is also essen-
tial to ensure that the first coupling step is swift. The synthesis
of trisaccharide 16 was conducted by mixing together building
blocks 5, 14 and 15 and adding NIS/TfOH. As a result, com-
pound 16 was obtained via one-pot synthesis in 42% yield and
high stereoselectivity (a/p = 14/1, Scheme 4). A substantial
quantity of cross-coupled disaccharide resulting from the reac-
tion between 5 and 15 indicated that the reactivity difference
between primary hydroxyls in 15 and 16 is insufficient to
ensure effective one-pot coupling. A simple competition experi-
ment set up between the two acceptors and donor 5 showed
that 14 is only 1.6 times more reactive than 15 (Scheme 5, see
the ESIT for details).

To improve the outcome of the one-pot synthesis we
prepared secondary acceptor 17, which was deactivated by the
surrounding benzoyl substituents.’” The competition experi-
ment showed that benzylated primary acceptor 14 is 10.1 times
more reactive than its benzoylated secondary counterpart 17
(Scheme 5). Theorizing that this reactivity difference would be
sufficient, we set up the synthesis of trisaccharide 18 from

a) OTBS ~
:OBn
OSE! OTBS
TBSO OBn
BzO 5 S (o)
OH ) fo)
BnO o) NIS (3.0 equiv) TBSO
BnO SEt TfOH (0.3 equiv) BzO BSOO fo)
BnO > > n
14 (1.1 equiv) CHCl, BnO %,
OH -78°C -> 1t A o
Bzoﬁo 16: 42% 520
BzO /B = 14/1 B20
BzO g OMe
e
15 (1.1 equiv) J
N
b) 5 OTBS
14 (1.1 equiv OBn
(11 equivy NIS (3.0 equiv) Co
OBz TfOH (0.3 equiv) TBSG o
HO o BzO BnO o
Bz0 BzO CHaClz gno OBz
Z 78 °C -
OMe 7B g a7 BnO o—~\Q
17 (1.1 equiv) /B =111 BzO —
OMe
N
° 5 OTBS
i OBn
1411 equiv) NIS (3.0 equiv) o
o8 TIOH (0.3 equiv)  rpe o}
n
HO~\~—Q CH,Cly BzO g0~
BzO 78°C > rt BnO OBn
B200Me 20: 65% ‘3"080O o)
i = Z
19 (1.1 equiv) ) o/f =10/1 N
OMe

Scheme 4 One-pot one-addition synthesis of trisaccharides 16, 18
and 20.
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Scheme 5 The relative reactivity of glycosyl acceptors 14, 15, 17
and 19.

building blocks 5, 14 and 17 that were mixed and NIS/TfOH
solution that was added. As a result, trisaccharide 18 was
obtained via a one-pot synthesis in 37% yield and high stereo-
selectivity (a/f = 11/1, Scheme 4). No cross-coupled disacchar-
ide was found in the reaction mixture, but attempts to push
the reaction to completion promoted competitive TBS group
hydrolysis. In a further search of suitable building blocks for
the one-pot synthesis, we obtained acceptor 19 benzylated at
C-6. This acceptor is only 2.5 times less reactive than its per-
benzylated primary counterpart 14 (Scheme 5). Nevertheless,
this reactivity difference was sufficient for the synthesis of
trisaccharide 20, which was produced in a good yield of 65%
and high stereoselectivity (a/p = 10/1, Scheme 4), showing the
utility of this approach and also the necessity to fine-tune all
of the reaction components.

In conclusion, we have developed a series of superarmed
SEt glycosyl donors that were applied to stereoselective glyco-
sylations and multi-step oligosaccharide synthesis in one pot.
Further application of these highly reactive compounds for the
glycosylation of various glycosyl acceptors in solution and on
solid supports is currently underway in our laboratories.
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