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Solute particle near a nanopore: influence of size
and surface properties on the solvent-mediated
forces†

Julien Lam and James F. Lutsko *

Nanoscopic pores are used in various systems to attract nanoparticles. In general the behaviour is a result

of two types of interactions: the material specific affinity and the solvent-mediated influence also called

the depletion force. The latter is more universal but also much more complex to understand since it

requires modeling both the nanoparticle and the solvent. Here, we employed classical density functional

theory to determine the forces acting on a nanoparticle near a nanoscopic pore as a function of its hydro-

phobicity and its size. A simple capillary model is constructed to predict those depletion forces for various

surface properties. For a nanoscopic pore, complexity arises from both the specific geometry and the fact

that hydrophobic pores are not necessarily filled with liquid. Taking all of these effects into account and

including electrostatic effects, we establish a phase diagram describing the entrance and the rejection of

the nanoparticle from the pore.

1 Introduction

Determining forces acting on a nanoparticle in the vicinity of a
nanoscopic pore is of great scientific and industrial impor-
tance for a wide range of systems such as filtering membranes
for water purification1–6 and porous solids made of cylindrical
cavities employed as nucleants for selective crystallization.7–9

In biophysics, nanopores are used for protein unfolding,10–15

DNA sequencing16–21 and protein detection.22–26 In all these
cases, controlling the solute behavior close to the pore
entrance plays a major role in the success of the desired appli-
cation and contributes to the ultimate goal of engineering
systems to have specific properties.

When studying this type of system, one major difficulty con-
sists of modeling the depletion force accounting for the
indirect role of solvent molecules. Depletion forces are
observed in numerous fundamental processes such as col-
loidal self-assembly,27–30 protein stabilization in helix31,32 and
the effective attraction between hydrophobic surfaces.33,34

Microscopically, depletion forces result from two effects: (a) at
very short separations, solvent molecules are excluded from
the gap between the macroscopic objects (particles, molecular
chains and flat walls) thus generating a force; and (b) the for-
mation of low-density phases in the gap between the objects
due to capillary effects. The first contribution to the depletion
force only depends on the geometry and the surface properties
of the macroscopic objects whereas the second depends as
well on the interaction between the surfaces and the solvent.
These solvent-mediated interactions were thoroughly reviewed
by Chandler35 and also by Berne et al.36 In general, many
different model liquid solvents have been studied including
hard sphere,27,37–44 Lennard-Jones potentials45–47 and also
single point charge water.35,48–51 In addition, various specific
geometries have been discussed in the literature such as bio-
molecules,52 two big spheres,27,37 two planar surfaces40,41,45

and a big sphere and a planar surface.37–39

However, despite its practical importance, the interaction
between a nanoparticle and a nanoscopic pore has received
less attention due to its inherent complexity. Previous works
thoroughly studied the behavior of a large hard sphere in the
vicinity of a rigid non-interacting wall and thus only focussed
on entropic effects.42–44 In addition, the time scale for the
nanoparticle entrance inside a pore was discussed recently for
a spherical pore of a fixed size and hydrophobicity.53 In this
paper, we aim at studying how the interplay between hydro-
phobicity and aspect ratio of the pore can induce the nano-
particle entrance or rejection. We model the liquid using a
simple Lennard-Jones potential so as to describe the dominant
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effects of excluded volume and nontrivial energetics giving rise
to wetting behaviour. Finite-temperature density functional
theory54,55 (DFT) was employed to compute the equilibrium
state including the fully (non-symmetry constrained) three
dimensional density profile along with the free energy. We
applied the model first to a nanoparticle interacting with a flat
surface and inside an infinite cylinder. From these calcu-
lations, a capillary model is built to understand the mecha-
nisms generating the depletion forces. Then, we focused on a
system made of a solute in the vicinity of a nanoscopic pore
for empty, filled and partially filled pores and we determined
under which conditions the nanoparticle enters the pore.
Moreover, we introduced functionalization of the surfaces
modeled as electrostatic forces and show that when these are
sufficiently high, the nanoparticle entrance can be activated
even in conditions where the depletion forces would dictate
otherwise. Finally, the influence of the nanoparticle hydro-
phobicity was studied in the last section. Our work contributes
to the general understanding of solute infiltration within nano-
scopic pores by providing a qualitative picture guiding the
design of pores in terms of size, solvophobicity and chemical
functionalization. In addition, the quantitative figures obtained
in this work provide a basis for a coarse-graining of the solute–
pore interactions. This should ultimately lead to simplifications
of the multi-scale problems made of solvent/solute/pore.

2 Theory
2.1 Density functional theory

Our systems can be divided into three elements: the walls, the
nanoparticle and the fluid. The walls and the nanoparticle are
static and play the role of external potentials acting on the
fluid. The local density of the fluid and the free energy of the
entire system are calculated using classical Density Functional
Theory. First, an energy functional is constructed as

Ω½ρ� ¼ Fid½ρ� þ FHS½ρ� þ Fatt½ρ�
þ
ð
ρðrÞðϕextðrÞ � μÞdr ð1Þ

where ρ(r) is the local number density of the fluid and μ is
the chemical potential. This functional is minimized with respect
to the density to obtain the equilibrium, non-uniform density of
the fluid. Evaluating Ω[ρ] at this minimizing density distribution
gives the grand-canonical free energy of the system.54,55

The ideal gas contribution is

Fid½ρ� ¼ kBT
ð
ðρðrÞ ln ρðrÞ � ρðrÞÞdr: ð2Þ

The molecules of the fluid interact via a pair potential, v(r),
which we take to be a Lennard-Jones interaction that has been
truncated at r = rc and shifted giving

vðrÞ ¼ vLJðrÞ � vLJðrcÞ; r < rc ð3Þ
and zero for r > rc. This potential is then separated into a long-
ranged attraction, w(r) and a short-ranged repulsion, vrep = v(r)

− w(r) using the Weeks–Chandler–Anderson scheme whereby
w(r) = v(rmin) for r < rmin, where rmin is the position of the
minimum of the potential, and w(r) = v(r) for r > rmin. The
repulsive part is used to calculate a temperature-dependent
effective hard-sphere radius via the Barker–Henderson
prescription,

deffðTÞ ¼
ðrmin

0
expð�βvrepðrÞÞdr; ð4Þ

which is used in turn to specify the hard-sphere contribution,
FHS[ρ], as the density functional for a system of hard spheres
have diameter deff(T ). For this, we have used the White Bear
functional with tensorial densities.56 The contribution of the
attractive part of the potential is calculated using the mean-
field expression,

Fatt½ρ� ¼ 1
2

ð
ρðr1Þρðr2Þvattðr12Þdr1dr2: ð5Þ

Finally, the external potential ϕext(r) at any given point is
the sum of the contributions from all of the walls and the
nanoparticle.

We perform the calculations on a three dimensional grid.
The fluid density is specified on the grid points and the free
energy is minimized with respect to these values using conju-
gate gradients. The hard-sphere contributions require perform-
ing spherical integrals of the density and this is done using tri-
linear interpolation of the density and spherical t-designs.57

For some of our applications, we minimize at constant particle
number, which is the integral of the density over all space,
rather than at constant chemical potential. Technically, there
are additional corrections that should be evaluated in this
case58 but in practice it is known that these tend to be negli-
gible for systems of the size considered here.

To carry out the numerical calculations, the density is dis-
cretized on a Cartesian lattice and the entire system is subject
to periodic boundaries. Care was taken to extend the systems
sufficiently in each direction so as to avoid self-interactions,
etc. All calculations were carried out with 5 lattice points per
unit of σ which is sufficiently small to perform calculations for
large simulation boxes while retrieving quantitative agreement
with finer discretizations.

2.2 Model

For the liquid/liquid interaction, the Lennard-Jones potential
is parametrized by the length scale denoted σ and the energy
parameter denoted εliq/liq. The cutoff is chosen equal to rc = 3σ.
We worked at a temperature of kBT = 0.8εliq/liq which is located
between the triple point and the critical temperature59 but we
do not believe that this choice affects physics discussed below.
In addition, the chemical potential is chosen higher than the
one at liquid–vapor coexistence denoted, μcoex. Indeed, at room
temperature and at atmospheric pressure, liquid water does
not coexist with its vapor state. The pressure at coexistence is
roughly Pcoex = 1/20Patm so in the DFT calculations, the chemi-
cal potential is chosen to reproduce this ratio of the pressure
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to its value at coexistence resulting in a supersaturation Δμ ≡
μ − μcoex = 0.27kBT.

Solids are often represented by effective potentials such as
the Steele potential60,61 and related models62 which are
derived for simple geometries like planar walls. Here, we will
address the complex geometry of a cylindrical pore so we have
modeled our solids within an atomistic framework. In practice,
the solid is represented by fixed particles disposed in a face-
centered cubic (FCC) lattice with the (100) surface exposed to
the fluid. The initial solid density is ρ = 1.09σ−3 which is the
equilibrium, zero-temperature density for an FCC Lennard-
Jones solid.63 For each calculation, the simulation box lengths
are chosen to be commensurate with the initial lattice spacing
of the wall and then readjusted to also be commensurate with
the length scale of the DFT discretization used for the calcu-
lation. The lattice spacing is then modified to be a multiple of
the final simulation box lengths which changes the solid
density by a negligible amount (no more than 1%). The same
truncated and shifted Lennard-Jones potential is used to
model solid–liquid interactions. For simplicity and to reduce
the number of parameters the length parameters for both
interactions are taken to be equal. With such a model, the
wettability represented by the contact angle, θ, is directly
related to the ratio between the two Lennard-Jones energy
parameters: ε* ≡ εwall/liq/εliq/liq. Details on the contact angle
derivation can be found in the ESI, section 1.† In practice, for
large values of ε*, liquid molecules are more attracted to the
solid than to themselves and the solid is hydrophilic.

Initially, we take the nanoparticle to be a hard sphere par-
ticle of radius Rn thus avoiding considerations regarding the
chemical nature of the solute to focus only on the depletion
forces. Later, we discuss the effect of direct interactions
between the nanoparticles and the walls. To fix the relevant
length scales and to explain our choices of nanoparticle sizes,
we note that a water molecule has a typical effective size (dia-
meter) of about 0.275 nm while typical globular proteins such
as Lysozyme have diameters of 3 or 4 nm so that the smallest
nanoparticles of interest here have a diameter on the order of
10 water molecules and, hence, a radius of about Rn = 5σ.

3 Results
3.1 Depletion potential in the case of a flat wall and an
infinite cylinder

Flat wall. The solid is made of 6 layers of an FCC crystal
which is sufficient given the cutoff of the potential and the
entire simulation domain is of size 61.8σ × 61.8σ × 36.0σ. The
nanoparticle is placed at various distances from the wall and
both the liquid density profile and free energy are computed
by minimizing the free energy functional. Fig. 1 shows typical
density profiles obtained with this geometry. Near the nano-
particle the liquid arranges itself into spherical shells due to
the excluded volume of the liquid molecules. Similarly, layer-
ing of the liquid near the wall is also observed and when the

walls are hydrophilic, the liquid begins to adapt to the lattice
structure of the solid wall.

The free energy as a function of the nanoparticle/wall dis-
tance, denoted h, is shown in Fig. 2 for different contact angles
and for two solute diameters. Far from the wall (h > Rn + 5σ),
the free energy is constant and there is no effective inter-
action between the nanoparticle and the wall. Closer to the
wall, the behaviour of the free energy depends on the degree of
hydrophobicity. Qualitatively, two effects are at work. First, it is
energetically costly for fluid to be in contact with a hydro-
phobic wall – alternatively, one can say that the fluid–wall
surface tension increases with the degree of hydrophobicity. In
this case, the presence of a nanoparticle near the wall allows
for the formation of a region of vapor-like density which has a

Fig. 1 Liquid density profiles for a nanoparticle, Rn = 5σ, near a flat wall
for various hydrophobicities: (a, d) ε* = 0.1 i.e. θ = 171°, (b, e) ε* = 0.3
i.e. θ = 95° and (c, f ) ε* = 0.5 i.e. θ = 0°. The distance between the nano-
particle center and the wall is equal to 8σ + Rn for (a, b, c) and Rn for
(d, e, f ). Each image is of size 25σ × 25σ [see also ESI, section 2†].

Fig. 2 Depletion potential (excess grand potential) for a nanoparticle of
different radii (a) Rn = 5σ and (b) Rn = 10σ as a function of the distance
between the nanoparticle and the wall. Different degrees of hydropho-
bicity were computed. Colors for contact angle θ equal to 144°, 110°,
79° and 36° are not showed in the legend. Dotted lines correspond to
the capillary model results.
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lower wall surface tension and therefore lowers the total free
energy of the system. Second, the usual depletion force
(effective attraction due to exclusion of the solvent) gives rise
to an attractive interaction even for a purely hard-core inter-
action between the wall and the fluid.45 For this reason, the
effective force on the nanoparticle does not become negative at
the wetting transition (where the fluid–wall interaction
becomes favored with respect to the vapor) but rather at higher
degrees of hydrophilicity in which the fluid has an effectively
negative wall surface tension thus overwhelming all other
effects. Finally, the forces are higher when the nanoparticle is
larger because more solvent molecules are influenced by the
nanoparticle presence.

Infinite cylinder. In this case, the system is made of a large
FCC crystal out of which all particles within the given diameter
(Dcyl) are removed. The length of the cylinder is equal to 31σ
and the periodic boundaries imply that it is effectively infinite
in length. For the radial dimensions, the crystal size is chosen
so that it has a width greater than rc. Both the density and free
energy are computed as a function of the distance from the
nanoparticle to the cylindrical wall. Fig. 3 shows typical
density profiles obtained with the described geometry.

As shown in Fig. 4, similarly to the case of a flat wall,
increasing the hydrophobicity leads to an increase of the
solute attraction. In addition, the forces are higher inside
smaller cylinders since layering is more present.

Capillary model. For both a flat wall and a cylinder, two
regimes are observed: (i) far from the wall, the free energy is
constant, (ii) close to the wall, the free energy decreases almost
linearly. As evidenced by Fig. 1d and 3d, this abrupt transition
results from the formation of a low-density gas-like phase
between the wall and the nanoparticle. This suggests that a
simple capillary model can be used to estimate the excess free
energy when the nanoparticle approaches the wall. We approxi-
mate the gaseous volume as a cylinder stretching from the wall
to the nanoparticle with a radius of r0 which is, in general, not
equal to Rn. We assume the low-density fluid has the pro-

perties of the bulk gas phase and introduce γn,l/g, γw,l/g and ωl/g

as respectively the nanoparticle–liquid/gas surface tensions,
the wall–liquid/gas surface tensions and the bulk liquid/gas
grand potential per unit of volume. Accordingly, the excess
grand potential, Ω(h) − Ω(h → ∞), is given by:

ΩðhÞ �Ωðh ! 1Þ ¼ ðωg � ωlÞVcyl þ γl;gScyl þ ðγw;g � γw;lÞSwall
þ ðγn;g � γn;lÞSnano

ð6Þ
where all the constants are determined using DFT in the grand
canonical ensemble and the geometrical factors are expressed
in the ESI, section 3.† Note that, in this model, the depen-
dence on surface properties is dual: (i) γw,g − γw,l explicitly
varies with the contact angle, (ii) r0, because it measures the
size of the gaseous region, also depends implicitly on surface
properties.

As shown in Fig. 2 and 4, the DFT results are in good quali-
tative and indeed semiquantitative agreement with predictions
from the capillary model for both geometries. The slight shift
can be due to the gaseous region approximated as a purely
cylindrical geometry thus neglecting edge effects close to the
nanoparticle and the wall. Similar results were also obtained
using single point charge model for the liquid and with
different geometries35,36,51 thus confirming the ability of our
elementary model to capture most physical features underlying
the hydrophobic interactions.

3.2 Depletion potential in the case of a cylindrical pore

Nanoscopic pores are built using an FCC crystal out of which
atoms located inside a cylinder of diameter denoted Dcyl and
of height H = 25σ are removed. The distinction from the pre-

Fig. 3 Liquid density profiles for a nanoparticle, Rn = 5σ, inside a cylin-
der of diameter, Dcyl = 37.5σ for various hydrophobicity: (a,d) ε* = 0.1 i.e.
θ = 171°, (b, e) ε* = 0.3 i.e. θ = 95° and (c, f ) ε* = 0.5 i.e. θ = 0°. The dis-
tance between the nanoparticle center and the cylinder wall is equal to
Dcyl/2 for (a, b, c) and Rn for (d, e, f ). Each image is of size 40σ × 40σ [see
also ESI, section 2†]. Fig. 4 Depletion potential (excess grand potential) for a nanoparticle

inside an infinite cylinder as a function of the distance between the
nanoparticle and the wall under various degrees of hydrophobicity. The
cylinder diameter is equal to (a) Dcyl = 25σ, (b) Dcyl = 37.5σ and (c) Dcyl =
50σ. Points and plain lines correspond to the DFT results. Colors for
θ equal to 144°, 110°, 79° and 36° are not showed in the legend. Dotted
lines correspond to the capillary model results.
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viously considered infinite cylinder is that the pore is termi-
nated at one end by crystal an is open at the other end to the
bulk fluid [see Fig. 6]. The height of the crystal is chosen to
leave few layers of atoms below the pore and we fixed the
width of the crystal equal to Dcyl + 26σ which is sufficient for
the pore sizes considered here. Above the wall, the system is
loaded with a 25σ liquid layer [see Fig. 6].

Liquid filling of the pore. When changing the pore size, the
wall hydro-affinity and also the degree of supersaturation,
pores can be either empty or filled with liquid [see Fig. 6].
Furthermore, in many cases, both states are possible with one
being metastable with respect to the other. Therefore, before
computing the depletion forces, we will investigate which state
is the most energetically favorable for the thermodynamic con-
ditions to be considered. First, the density and free energy are
computed starting from a fluid-filled pore, generally resulting
in a fully filled pore after minimization of the free energy. The
calculation is then repeated starting from an empty pore which
can result in either a partially-filled pore with a meniscus or a
fully filled pore. As a comparison, a capillary model is also
used to determine the free energy of filled pores and of par-
tially-filled pores with a meniscus [see ESI, section 4†].
Comparison of the free energies resulting from the two calcu-
lations allows for a determination of the thermodynamically
favored state. At a supersaturation of Δμ = 0.27kBT, the pore is
almost always filled with liquid [see Fig. 5a]. We therefore also
studied the case of Δμ = 0.10kBT for which, because of the
lower pressure, partially-filled pores are more common. The
phase diagrams show that the presence of a meniscus is
favored by small hydrophobic pores and at low supersatura-
tion. Finally, the agreement between the DFT and capillary-
model calculations demonstrates that the latter captures the
main physical features of the pore liquid filling.

Depletion potential. Then, calculations are run for a nano-
particle Rn = 5σ at various positions and for different pore pro-

perties (Dcyl, ε*). The aim is to measure the grand potential
and determine whether or not the nanoparticle is more likely
to enter the pore.

Fig. 6 shows the grand potential for various positions of the
nanoparticle at different pore conditions. In general, free
energy is minimum when the nanoparticle is at the bottom of
the pore for two different reasons. On the one hand, compared
to when the pore is empty and the nanoparticle is in the bulk
fluid above, inserting the nanoparticle inside the pore effec-
tively transfers liquid molecules to the bulk region. Thus, the
free energy decreases since the system is supersaturated and
so favors the bulk liquid state. On the other hand, when the
pore is filled, the cylindrical depletion forces are larger than
those of a flat wall (as shown in Fig. 4). Consequently, when
the nanoparticle manages to enter the pore it is more likely to
stay inside.

However, when it is outside the pore, the nanoparticle does
not “know” that the free energy will be lower at the bottom of
the pore: whether or not it enters will depend on the free
energy gradients near the pore entrance. Thus, we compare
the free energy at the pore entrance (radial position r < Dcyl/2)
with that far from it (r = Dcyl/2 + 10σ). These two free energies
are respectively denoted Ωin and Ωout and indicated in Fig. 6.
When ΔΩ ≡ Ωin − Ωout > 0, the nanoparticle is more likely to
stay close to the wall rather than entering inside the pore.
Fig. 7 shows ΔΩ when changing the supersaturation, the pore
size and its degree of hydrophobicity.

In summary, for pores much larger than the nanoparticle
(Dcyl ≥ 2Rn = 10σ), the particle is only favored to enter the pore
at sufficiently high hydrophobicity. For pores with diameters
less than twice that of the nanoparticle, entrance is increas-
ingly favored with decreasing pore size until the particle
prefers the pore even near the wetting transition. Finally, for
pores smaller than the nanoparticle (Dcyl = 7.5σ), hydrophilic
walls provokes the nanoparticle rejection. There, the pore are
filled with highly structured liquid [see ESI, section 5†] and
the nanoparticle presence at the pore entrance generates frus-
tration. When the walls are sufficiently hydrophobic, the pore
is empty thus avoiding frustration. These trends are stronger at
higher chemical potential (i.e., higher liquid density and
pressure), probably due to stronger frustration of the fluid
packing near the walls and nanoparticle. Surprisingly, at
Dcyl = 7.5σ and θ = 171°, the nanoparticle is also rejected.
There, the pore is empty and in general, increasing the hydro-
phobicity for an empty pore leads to an increase of the flat
wall attraction while keeping the pore attraction constant
[see ESI, section 6†].

3.3 Functionalization of the surfaces: the role of electrostatic
effects

In addition to depletion forces, the nanoparticle can also inter-
act with nanopores by means of electrostatic effects. The total
free energy for a system with an explicit wall–nanoparticle
interaction potential V(r) and the system without such a poten-
tial is simply that Ω = ΩV=0 + V(R) where R is the position of
the center of the nanoparticle. Thus, our previous results can

Fig. 5 Phase diagram showing conditions for pore filling at two
different supersaturations (a) Δμ = 0.27kBT and (b) Δμ = 0.10kBT as a
function of the pore diameter Dcyl and its hydrophobicity characterized
by the contact angle θ. Red and blue colors show conditions for which
the most stable state is respectively a filled and empty pore. Filled (●)
and open (○) circles represent respectively results from DFT calculations
and the capillary model.
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now be used to study the effect of such additional forces with
little supplementary computation.

In an electrolyte solution, electrostatic interactions can be
approximated by a simplified screened Coulomb interaction:

VðrÞ=kBT ¼ Zeff
λB
r
expð�r=λDÞ ð7Þ

where λB,D designates respectively the Bjerum and the Debye
lengths and Zeff is the effective charge number.64 The nano-
particle is thus represented as a point charge and atoms of the
wall also contribute as point charges. Following the typical

effective size of water molecule, we chose σ = 0.275 nm which
leads to λB = 2.5σ using for the relative water dielectric constant
εr = 80.65 The electrolyte concentration is set at 10–1 mol L−1

which represents a reasonably concentrated ionic solution.
The Debye length is then λD = 3.5σ. The obtained potential is
truncated and shifted. The cutoff distance is chosen somewhat
arbitrarily as the value for which the potential is reduced by a
factor of 200 with respect to the screened Coulomb interaction

Fig. 6 Liquid density profiles and free energy for a cylindrical pore at ε* = 0.1 (a) Dcyl = 20.0σ, (b) Dcyl = 12.5σ for a filled pore and (c) Dcyl = 12.5σ for
an empty pore. The color coding measures the liquid density without nanoparticle. Symbols represents the free energy at different positions of the
nanoparticle near the pore. Each image is of size 40σ × 40σ. Ωin is computed at the designated position (r = Dcyl/2 + 10σ) and Ωout is obtained as the
minimum in energy within the rectangular region.

Fig. 7 Nanoparticle entrance phase diagram at (a) Δμ = 0.27kBT and (b)
Δμ = 0.10kBT as a function of the pore diameter Dcyl and its hydrophobi-
city characterized by the contact angle θ. The color coding measures
the difference ΔΩ ≡ Ωin − Ωout. Red and blue points correspond to
configurations where the nanoparticle prefers to stay respectively inside
and outside the pore.

Fig. 8 Electrostatic energy and liquid density profiles for a cylindrical
pore at x* = −1/4 with (a) Dcyl = 20.0σ and (b) Dcyl = 12.5σ. The color
coding measures the liquid density without nanoparticle. Symbols rep-
resents the electrostatic energy at different positions of the nanoparticle
near the pore. Each image is of size 40σ × 40σ. (c) Difference in electro-
static energy between having the nanoparticle inside and outside for
two values of x*.
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at r = 1σ thus leading to a cutoff distance equal to 12σ. Finally,
the Coulomb interaction strength is calibrated by the effective
charge number. In practice, to compare the Coulomb inter-
action with the depletion energy contributions, we denote by
x* the ratio between the Coulomb interaction 5σ away from an
infinite wall and the depletion energy for a nanoparticle of
size R = 5σ touching the most hydrophobic wall (which is
equal to −90kBT [see Fig. 3]). x* > 0 and x* < 0 correspond
respectively to repulsive and attractive Coulomb interactions
and, for reference, x* = 1 is equivalent to the screened
Coulomb force for an effective charge, Zeff = 7.75e. In Fig. 8(a
and b), the electrostatic energy is shown at different nano-
particle positions for attractive interaction. As with depletion
energy, the minimum is located at the center of the pore below
the wall. Above it, depending on the pore diameter, the
minimum can be either at the pore entrance or near the flat
wall [see Fig. 8c].

The calculated electrostatic contributions are added to the
already obtained depletion energy. The phase diagram for
nanoparticle inclusion can thus be modified for different
interaction strengths [see Fig. 10]. First, adding attractive

Fig. 9 (a) Depletion potential (excess grand potential) for a nanoparticle
of Rn = 4σ as a function of the distance between the nanoparticle and a flat
wall with ε* ≡ εsol/liq/εliq/liq = 0.3 and different values of ε*n ; εnano=liq=εliq=liq.
(b–e) Liquid density profiles for a hydrophilic nanoparticle near a flat wall
with ε* = 0.3 and ε*n ¼ 0:5 obtained at different distances.

Fig. 10 Nanoparticle entrance phase diagram at Δμ = 0.10kBT when considering depletion forces and electrostatic effects for various values of x*
written on top of each graphs. The color coding measures the difference ΔΩ ≡ Ωin − Ωout. (i) Filled red, (ii) filled blue, (iii) half-filled blue and (iv) half-filled
black points correspond to configurations where respectively the nanoparticle prefers to stay (i) inside and (ii) outside the pore, (iii) where even if the
nanoparticle prefers to stay at the pore entrance, the pore is overall repulsive and where the nanoparticle is neither attracted nor rejected from the pore.
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electrostatic energy allows for more conditions at which the
nanoparticle can enter the pore. Then, repulsive electrostatic
energy competes with the attractive depletion energy thus
leading to more complex behaviors [see Fig. 10(e–h)]. Firstly,
for small pores (Dcyl ≤ 15σ), adding a repulsive electrostatic
energy simply rejects the nanoparticle. Secondly, for larger
pores (17.5σ ≤ Dcyl ≤ 22.5σ), the repulsive contribution is
higher at the flat wall that at the pore entrance. Therefore, the
total free energy can be located at the pore entrance which
should lead to the nanoparticle entrance. Yet, the repulsive
contribution is so high that the pore becomes repulsive and
the nanoparticle is rejected from both the flat wall and the
pore. Thirdly, for the largest pores (Dcyl = 25σ) there is the
emergence of a region for which the nanoparticle is neither
attracted nor rejected. Indeed, while the overall energy are
repulsive everywhere else, at the center (r = 0), the nanoparticle
is too far from the wall to notice its influence and there is no
forces.

3.4 Role of the nanoparticle hydrophobicity

For this final section, the nanoparticle is represented by 317
fixed particles located within a distance Rnano = 4σ disposed in
an FCC lattice with a solid density ρ = 1.09σ−3. The truncated
and shifted Lennard-Jones potential is also used to model
nanoparticle–liquid interactions with the length scale and the
energy parameters respectively denoted σ and εnano/liq. We
define ε*n ; εnano=liq=εliq=liq. Fig. 9a shows the results obtained
for a flat wall. When both systems are hydrophobic, the results
are qualitatively similar to those obtained with a hard sphere
nanoparticle [see also ESI, section 7†]. However, for hydro-
philic nanoparticles, the depletion potential shows oscillations
when approaching the wall. As evidenced in Fig. 9(b–e), in
these cases, the nanoparticle is microscopically structured
because of the large hydrophilicity and its atomistic nature.
Therefore, the observed oscillations originate from the con-
frontation between the structures near the wall and near the
nanoparticle. Then, complexity should arise when changing
the wall hydrophobicity and the orientation, crystal structure
and size of the nanoparticle. Those effects will be the subject
of a following article.

4 Conclusions

In summary, our work determined the depletion potential
acting on a nanoparticle near a nanoscopic pore. The size and
the surface properties were systematically varied. We per-
formed fully three-dimensional DFT calculations to determine
the equilibrium structure and free energy of the system for
various positions of the nanoparticle and from this extracted
information about the forces driving the particle into or away
from the pore. The role of functionalization of the surfaces
was also considered.

We studied very specific features: (i) atomistic walls were
used and crystalline patterning of the fluid near the wall was
found for the first time in DFT and (ii) entrance edges playing

a major role in the nanoparticle behavior. Depletion potentials
were first computed for a flat wall and an infinite cylinder. We
showed that the degree of hydrophobicity, the nanoparticle
size but also the cylinder diameter can all increase the
depletion potential. We constructed a well-defined thermo-
dynamic model based on the capillary approximation.
Reasonable agreement between the model and the DFT results
shows that the model captures the main physical processes
generating such a solvent mediated force. Consequently, for a
coarse grain modeling, three main ingredients should be
included: (i) the depletion energy is nearly linear with the dis-
tance, (ii) its onset is abrupt because it results from the emer-
gence of a gaseous phase and (iii) its range is not larger than 5σ.

Next, the nanopore geometry was studied. The first com-
plexity arises from the fact that the liquid state is not necess-
arily stable inside the pore channel. A first phase diagram
allowed us to identify conditions for which the pore is filled
with liquid. Thereafter, a nanoparticle is positioned in the
vicinity of the pore entrance. When the pore is filled, results
for the depletion potential are consistent with the more simple
geometries previously discussed. When the pore is empty, the
depletion forces are surprisingly larger. This results from an
increase of the number of particles in the liquid state when
moving the nanoparticle inside the gaseous phase. Finally, a
phase diagram showing conditions driving the nanoparticle
inside the pore was obtained. Remarkably, while it could be
thought that large pores are necessary to carry the nano-
particle inside, we demonstrate that the contrary happens.
Increasing hydrophobicity and decreasing the size of the pore
play two major roles. On the one hand, it increases the direct
depletion forces. On the other hand, it allowed for an empty
pore to be stable thus generating an additional osmotic
pressure. In the last section, electrostatic effects are added by
means of a simple screened Coulomb interaction. We demon-
strate that tuning the amount of charges, one can trigger the
nanoparticle entrance even when depletion forces prescribe
otherwise.

Our microscopic models incorporate generic physical
effects such as excluded volume and long (but finite) ranged
attraction. This is enough to give the usual phenomenology of
fluid layering near a wall, hydrophobic–hydrophilic behavior,
Young’s law [see Fig. 2 in ESI, section 1†], a typical liquid–
vapor phase diagram, etc. The mechanism behind the domi-
nant solvent-mediated forces – namely, the formation of a
meniscus of vapor for hydophobic surfaces – is also quite
generic and so we expect the general result (that the solvent
mediated forces have a range of about 5 solvent molecule dia-
meters and that the energy varies linearly (and so that the
forces are constant) as a function of distance from the surface)
to hold for a wide variety of solvents. The only unknown quan-
tity is, e.g., the value of the binding energy at zero separation.
From our analytic model for flat wall, this value can be
obtained by solving a simple set of algebraic equations [see
eqn (10)–(12) in ESI, section 3†].

As a perspective, the numerical values and also the thermo-
dynamic model obtained in this work describe quantitatively
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the role of solvent-mediated forces. Therefore, they can be
used to avoid the modeling of liquid when studying a multi-
scale system made of solvent/solute/pore. In the context of
selective crystallization, our work also provides an important
guideline for the rational design of porous materials.
Especially, we show that depletion forces can drive the nano-
particle into the pore by tuning the solvent interactions and
the size of the pore. As a result, one can avoid the construction
of nanoparticle specific materials. Moreover, the use of electro-
static effects allows one to adjust the nanoparticle behavior.
This can happen in particular by applying an electric field to
generate surface charges on the pore.
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