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An efficient genetic algorithm for structure
prediction at the nanoscale

Tomas Lazauskas,* Alexey A. Sokol and Scott M. Woodley

We have developed and implemented a new global optimization technique based on a Lamarckian

genetic algorithm with the focus on structure diversity. The key process in the efficient search on a given

complex energy landscape proves to be the removal of duplicates that is achieved using a topological

analysis of candidate structures. The careful geometrical prescreening of newly formed structures and the

introduction of new mutation move classes improve the rate of success further. The power of the devel-

oped technique, implemented in the Knowledge Led Master Code, or KLMC, is demonstrated by its ability

to locate and explore a challenging double funnel landscape of a Lennard-Jones 38 atom system (LJ38).

We apply the redeveloped KLMC to investigate three chemically different systems: ionic semiconductor

(ZnO)1–32, metallic Ni13 and covalently bonded C60. All four systems have been systematically explored on

the energy landscape defined using interatomic potentials. The new developments allowed us to success-

fully locate the double funnels of LJ38, find new local and global minima for ZnO clusters, extensively

explore the Ni13 and C60 (the buckminsterfullerene, or buckyball) potential energy surfaces.

1. Introduction

In the search for new tunable materials, in recent years, there
has been growing interest in nanoclusters that show a strong
correlation between their size, morphology, and physical and
chemical properties.1 Nanoclusters, or small nanoparticles,
have typical dimensions below 2–5 nm, a size regime where
current experimental techniques are insufficient for accurate
and comprehensive structure characterisation. Vitally, it is
where computational approaches can usefully complement and
aid experimental studies. Moreover, the atomic structure for an
optimal value of a property of interest can be predicted and
thus the theory can guide a rational design of future materials.

The computational task of structure prediction requires
global optimisation (GO) algorithms as well as suitable algo-
rithms to assess configurations. It is generally assumed that
nanoclusters adopt the lowest energy configurations under
ambient conditions and initial models are typically of nano-
clusters with a fixed composition, isolated in vacuo,2 and
under athermal conditions. The predicted lowest energy struc-
tures can then be employed in models that include the sub-
strate or surrounding medium added, and/or at different press-
ures and temperatures.

GO algorithms are employed to identify locally stable struc-
tures on the energy landscape,3 i.e. the global minimum (GM)
and higher energy local minima (LM). The most popular
methods include evolutionary algorithms,4–11 which mimic pro-
cesses of natural selection and procreation, Swarm algorithms,
inspired by the processes from the nature,12–14 Monte Carlo
basin hopping,15–17 and random sampling.18–20 In particular,
when applied to nanoclusters, these techniques exploit stan-
dard local optimisation routines.

There are a number of research groups that have developed
appropriate software for tackling the challenge of structure
prediction.4,14,15,21–32 Here, the KLMC software suite, or
Knowledge Led Master Code,10,33 is developed to utilise mas-
sively parallel computer platforms and third-party compu-
tational chemistry software to perform statistical sampling and
systematic searches for local and global minima on energy
landscapes. Automation within KLMC alleviates manual,
repetitive and mundane computational tasks typically required
in simple task farming, global optimisation techniques and
statistical sampling. The Genetic Algorithm (GA) module
within KLMC has already been exploited to predict the plaus-
ible structures of nanoclusters of binary heteropolar com-
pounds,10 i.e. local minima of ZnO, MgO, KF, and CdSe,10 on
energy landscapes defined using two levels of theory: inter-
atomic potentials (IP) (as implemented within GULP34,35) and
density functional theory (DFT) (as implemented within
FHI-aims36), respectively.
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In this article, we report significant developments to KLMC
and demonstrate its improved performance on predicting
atomic structures of four chemically different systems. New
developments in the GA module address the well-known issue
of creating and maintaining structural diversity within the GA
population of nanoclusters. The power of this approach is
demonstrated by searching for atomic structures of LJ38; an
example of a challenging double funnel energy landscape.

In particular, new tools to compare structures topologically
enable a more efficient route to determine duplicate structures
that can be replaced with unique candidates. The redeveloped
and optimised algorithm is employed to predict LM nano-
clusters for ZnO, C, and Ni, by searching the energy landscape
defined using interatomic potentials for ionic, covalent and
metallic interactions, respectively.

In the next section, we provide a detailed description of
new tools and improvements in the KLMC GA methodology.
The application of the redeveloped KLMC GA module to the
four chemically diverse systems is presented in section 3. We
conclude this paper with a summary of methodological devel-
opments and analysis of the chosen applications.

2. Methods
2.1. The KLMC genetic algorithm

The general idea behind a genetic algorithm is to mimic the
process of natural selection. It is an iterative process which
employs techniques inspired by evolution, including selection,
crossover, and mutation. Here selection biases the choice
towards better candidates from the population and survival.
Procreation of new candidates is achieved using a crossover
algorithm, combined with a mutation algorithm, which is ana-
logous to the biological mutation of DNA. The iterative process
evolves candidates towards a better solution and is continued
until a predetermined number of iterations are reached or the
solution satisfies a predetermined fitness level (i.e. in our case
– a target energy). A detailed flowchart of the GA implemented
within the KLMC software suite is given in Fig. 1.

In this study, we employ a Lamarckian approach, in which
each new candidate configuration is relaxed to a local energy
minimum. Only LM configurations are, therefore, compared
during selection. Our GA implementation starts by creating an
initial population of candidates (Step 1.3). Each candidate is
composed of a predefined set of randomly distributed atoms
(Step 1.1) and undergoes a geometrical evaluation (Step 1.2) to
check whether the atoms are not too close (any interatomic
distances within a tolerance based on ionic and covalent radii)
and that each nanocluster is not fragmented. If a candidate
fails the initial geometrical evaluation, a new set of random-
ized atomic coordinates are generated and evaluated. After the
initial population is generated, all candidates are optimised
(Step 1.4), duplicates are removed (Step 1.5) and process is
repeated until the population reaches the user defined size.
On the next stage, the current population is passed on (Step
2:1) to be evolved.

The evolution process is repeated for a specified number of
iterations or until no new unique candidate configuration has
been generated for a predefined number of iterations. During
each evolutionary iteration, a new population is created by the
application of crossover and mutation procedures to the pairs
of configurations from the previous population. Selected can-
didate structures for the crossover operation are traditionally
called parents and the outcome, possibly after the mutation
operation (Step 2.6) has been applied, are called children. The
crossover procedure is applied n times to generate n new con-
figurations. In our implementation, each new configuration is
created by mixing the structural information from both
“father” and “mother” configurations. Tournaments (Step 2.2)
are simulated, in order to select the candidates for fatherhood
in the crossover procedure. Each tournament is biased towards
selecting a better candidate from a random subgroup taken
from the current population (Step 2.3). In this study: the best
candidate (lowest energy structure) in a subgroup wins; a
different subgroup is created for the selection of each father;
the size of each subgroup is half that of the population and
may contain any candidate multiple times. In contrast, the

Fig. 1 Flow chart of the enhanced KLMC’s GA. Colour mapping as pre-
viously:10 blue and purple – original and enhanced actions undertaken
by KLMC, respectively; orange – parallelised action; green – main result;
and red – new functionality.
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mother configurations are randomly selected from the current
GA population.

Mutation is an application of a small Monte Carlo step
(random atomic displacements of less than 1.8 Å, i.e. 10% less
than the typical bond length). It is applied to each child con-
figuration (Step 2.6). The inclusion of the mutation operation
helps to introduce new structural features and improve the
diversity in the population while retaining the main structural
motif of the parent; the magnitude of the displacement con-
trols the degree of the introduced disruption. This algorithm
is especially useful when the structures of the current popu-
lation are all similar, possibly all from the same superbasin, or
when the same structure is chosen for the mother and father.

The structures created by the crossover and mutation oper-
ators form the children population (Step 2.8), where upon
each child is structurally relaxed to its local energy minimum
(Step 3.1) using third-party software. The relaxation is analo-
gous to the maturing process (a child becoming an adult).

Before forming a new adult population, all the duplicate
structures are replaced by random structures using the
random structure generator (Step 3.3), ensuring that the popu-
lation is filled with valid unique configurations.

The constructed and randomly generated structures, after
relaxation, form a new adult population (Step 3.4), which then
competes to survive with the adults from the current popu-
lation (Step 2.1). Thus further drives the evolution in the
desired direction and to constrains the size of the GA popu-
lation. Only the fittest (lowest energy) structures are selected
for the new GA population (Step 3.5), to which the next GA iter-
ation is applied.

In the simulations using our previous GA implemen-
tation,10 it was observed that the population was prone to
losing diversity and a significant fraction of the CPU time, or
effort, was wasted in optimising configurations to the LM
already evaluated. Therefore, we have enhanced our GA by
implementing: a new filter, a geometrically based pre-screener,
for all new candidates earmarked for relaxation; new routines
designed to improve the diversity in the population; and new
methods for identifying duplicates (identical candidates).

2.2. Geometrical prescreening

A geometrical prescreener has been implemented to identify
structures that are likely to fail to converge to a desirable
LM during the computationally expensive local optimisation
and therefore discarded. The implemented geometrical pre-
screener is much quicker to complete than a local optimi-
sation, and consists of three checks which are performed on a
structure.

The first is employed to identify clusters that contain at
least two atoms that are physically too close to each other. In
theory, all interatomic distances are calculated and then com-
pared to a minimum radial cut-off, rmin. In practice, once one
interatomic distance is found to be too small the remaining
interatomic distances are not calculated. Moreover, as the
Cartesian coordinates are known, only if the absolute values of
all the components of Rij, a vector separating atoms i and j, are

below the cut-off, will KLMC compute |Rij|
2 and compare to

rmin
2, thus avoiding many products and all square root pro-

cedures. In our simulations, rmin depends on the species of
the pair and a user defined scaling factor, λmin. For like
species, rmin = 2λminrcovi , where rcovi is the covalent radius of the
atom i. Otherwise rmin = λmin(rioni + rionj ), where rioni;j is the ionic
radius of atoms i and j, respectively. For metals, appropriate
metallic radii should be used instead.

The second check is performed to ensure that the nano-
cluster is not fragmented and is as follows: all N atoms of the
nanocluster are given two labels: an atom number and a frag-
ment number. Initially all the atoms are considered as individ-
ual fragments having matching atom and fragment labels
running from 1 to N and the fragment number is updated
after computing the coordination of each atom in the struc-
ture. More precisely, for every atom m a check is performed
with a pre-defined radial cut-off (rmax) against all the other
atoms with non-matching fragment labels. If two atoms have
different fragment numbers and are within rmax, all atoms
labelled with the higher fragment number are re-labelled with
the lower fragment number of the two atoms. When the check
for the atom m is completed, if the number of atoms with the
fragment number m is one, then there are at least two frag-
ments in the nanocluster, and the algorithm can be stopped.
If the check is continued and performed on all the atoms, the
number of unique fragment numbers is equal to the number
of fragments in the nanocluster. To save computational time, a
similar procedure described for the first check is replicated
here: if possible, comparison between an interatomic distance
r and the radial cut-off rmax is achieved by comparing com-
ponents of r2 with rmax

2.
An alternative cheaper algorithm for testing fragmentation

is also available (check three). Although more robust, it does
not determine the number of fragments. Here, KLMC searches
for atoms with a coordination number of zero using the rmax

cut-off; if found, the nanocluster is rejected and there is no
need to perform the previous, more extensive check. In prac-
tice, the algorithm to compute the coordination number of all
atoms has been adapted for this task to reduce the compu-
tational effort; the algorithm ends as soon as one atom is
found to have a coordination number of zero, and the determi-
nation of the coordination of each atom is also terminated
once the search has found one atom within its coordination
sphere and the search is not computed for any atom already
found to be coordinated to an atom already checked.

The value of rmax is calculated using the same method
employed to calculate rmin (see check one), but using λmax

instead of λmin. The optimal choice of λmin and λmax is system
dependent.

These checks are an efficient way of discarding structures,
which also are likely to take a very long time or even fail to con-
verge in any type of an iterative self-consistent procedure, thus
reducing computational effort. The geometrical prescreener is
applied when a new structure is generated randomly (Step 1.2)
or as a result of crossover (Step 2.5) and mutation (Step 2.7). If
the prescreener discards a structure, a new one is created in
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the same way as the discarded one, i.e. if mutation is rejected
then the mutation operator is applied again to the original
crossovered configuration, whereas if crossover is rejected, the
crossover operator is repeated using the same parents. In both
cases, there is a maximum number of attempts (100 000 as
optimised in our previous study and is system independent)
for crossover and mutation per new candidate structure, after
which the unsuccessful crossover and mutation is replaced by
a newly generated random structure. If the latter fails, the
current population size is reduced by one.

2.3. Move classes

As mentioned above, ensuring and maintaining the diversity
of the population is a challenging task, but necessary, other-
wise the performance of the GA will deteriorate. The new struc-
tural features can be created during crossover (Step 2.4) and
mutation (Step 2.6) operations. First we consider the crossover
operator.

Previously in KLMC,10 a conventional three-dimensional
routine was used to split parent structures into pairs of
different fragments: parent nanoclusters are randomly rotated
about a random axis, then each split into two fragments;
joining the fragments from two parents will produce the child
nanocluster. By performing multiple tests on small size struc-
tures that form two-dimensional configurations, it has been
observed that this routine tends to generate 3D child struc-
tures, which failed or were difficult to optimize. Therefore, a
new routine has been added to determine the dimensionality
of the parents and the crossover operation modified for one-
and two-dimensional structures.

In particular, the frame of reference for each cluster is re-
defined in order to align the centre of the cluster to a common
origin for all clusters and the principal axes of each cluster
with the same Cartesian axes, using the tensor of inertia.
Therefore, once displaced and rotated, one- and two-dimen-
sional clusters will therefore, once displaced and rotated, only
have atoms on the x-axis and in the xy-plane, respectively.
Then, to determine the dimensionality of a cluster, KLMC
checks whether all atoms are within a set tolerance of the
x-axis for linear structures and, if not, within the same toler-
ance from the xy-plane for planar structures. A default toler-
ance value of 0.8 Å was chosen, as it is shorter than the length
of a typical bond but also allows for some corrugations or cur-
vature in the cluster and, moreover, proved suitable for all the
systems considered here. If two planar structures are found,
for example, then the crossover routine will randomly rotate
each parent cluster about the z-axis, rather than any random
axis before splicing together fragments from each to form a
new child structure with the same composition as either
parent. For linear parents, no additional random rotation is
applied.

It is essential to maintain structural diversity in the popu-
lation, to ensure the effectiveness of the crossover operator.
Traditionally, this is achieved by the application of the

mutation operator to introduce new structural features. Hence
KLMC supports the standard phenotype mutation operator
that randomly perturbs (small random displacements) a
random subset of atoms. As each new configuration is
immediately relaxed (the Lamarckian approach), then this
mutation operator must apply a large enough Monte Carlo
step to escape its current energy basin. To overcome the pro-
blems with the traditional operator, we have implemented
three new mutation operations (or move classes): self-cross-
over, expansion–contraction and atom exchange. One
mutation move class is applied to each cluster configuration
produced by the crossover routine.

The probability of each mutation move class, including the
standard Monte Carlo step, is set by the user before the GA
simulation is started. The new mutation operators are:

• Self-crossover – a crossover operation is performed using
the same structure for both parents, but with a random
rotation applied to just one parent.

• Expansion–contraction – the nanocluster’s coordinates
are rescaled by a random factor within a user defined range.

• Atom exchange – for compounds, a random subset of
atoms are swapped.

2.4. Uniqueness

The success of the crossover operator requires a good diversity
of structural features within the population, thus maintaining
diversity is an important task in any evolutionary algorithm.
We have implemented a Lamarckian based algorithm, which
is more prone to kill diversity than a Darwinian approach by
an unwanted proliferation within the population of just one
configuration.† Different configurations within the same
catchment area on the energy landscape will relax to the same
LM. As duplicate structures are removed, then a population of
a finite size is more likely to contain a more diverse set of
structural types (i.e. structures from different energy basins).

As the Lamarckian population only contains LM (or at least
stationary point) structures, a finite energy difference between
two fully relaxed clusters implies two different LM. The reverse
is not necessarily true, and, in practice, tolerances within the
routines used to refine each cluster to a LM can cause a small
non-zero energy difference between two structures of the same
LM energy basin. Improving the tolerances will make each
refinement more costly and extremely wasteful if the resulting
LM is already found or much higher in energy than those
already within the population and therefore is likely to be dis-
carded in the next stage. Moreover, the chosen model (energy
definition) may itself not be that accurate, thus only an
approximate LM is required.

†For example, if on mutation the best structure relaxes back to the original
structure, then this structure and its copy will become the best at surviving and
procreating. The best structure is then also more likely to be chosen as both
parents, thus children may also relax to the same structure. With an ever increas-
ing likelihood of crossover and mutation creating more duplicates of the best
structure, only one unique structure will quickly fill the population during
further GA cycles. Such an avalanche effect should be avoided.
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The energy differences between the nearest-neighbour
energy-ranked LM are typically greater for better ranked, small
nanoclusters. In the previous study of nanoclusters composed
of up to 24 atoms,10 most duplicate structures were distin-
guished by comparing their energies. Two different LM struc-
tures with the same energy (typically left and right hands of
enantiomers) were found by conducting independent runs of
KLMC.

Ideally, all unique LM that fall within a certain energy
range above the GM should be found during one GA run.
Moreover, we are interested in bigger nanoclusters, which,
unfortunately, are not only more expensive to refine but also
typically have a higher density of LM with respect to energy,
and degeneracy (different LM with the same energy) is more
likely. For big clusters, relying on only comparing energies in
order to distinguish duplicates becomes more of a liability for
both computational cost (if tolerances in refinements
improved) and success at finding all low energy LM (unique
LM removed by mistake). Hence, we have implemented a
number of new algorithms for identifying identical structures.

There are a number of algorithms in the literature that have
been designed to recognise similar structures and/or measure
the degree of similarity.37–39 Although these solutions are com-
prehensive, the associated computational costs are also high,
while information which is not necessary for the current objec-
tive is also generated by these procedures.

We have implemented two new test routines within KLMC
for comparing structures. The first test determines how
similar two clusters are by assuming that similar clusters
should have similar principal moments of inertia (which are
computed using the zheevj3 routine40). Initially their effective
sizes, as characterised by the trace of the tensor for the
moment of inertia (I), are compared. If the difference between
the two traces is below a user defined threshold, a further com-
parison is made using the following similarity metric:

Δ ¼
X3

i¼1

λ1i
trI1

� λ2i
trI2

����

����; ð1Þ

where λ1i , λ
2
i are the principal moments of inertia I1, I2 for clus-

ters 1 and 2, respectively, and i labels the Cartesian coordi-
nates. The magnitude of Δ determines the similarity, which is
sensitive to the tolerances employed during the optimisation
of the clusters and the diagonalisation of the moment of
inertia tensor. Our crossover move class, described earlier, is
more successful if the two parent structures are similar, say
Δ < 0.05.

Our second test is employed to identify duplicate struc-
tures, rather than how similar two structures are. KLMC
achieves this by exploiting a more robust algorithm, which
is implemented within the NAUTY software package
(No AUTomorphisms, Yes?) written by McKay and Piperno.41

Previously, similar approaches have been successfully
implemented for topological analyses of point defects42 and
identification of similar defect clusters43 in bulk systems.

NAUTY tackles the problem of computing automorphism
between graphs with an option to produce canonical labelling
for them. Using NAUTY, a graph can be canonically labelled by
three 8-digit hexadecimal numbers, forming a unique charac-
ter string, or a fingerprint, thus providing a very quick and
robust way to compare graphs.

In our work we use this functionality of NAUTY in the
following way: we assume that each cluster’s configuration can
be represented as a coloured graph (Fig. 2(a) and (b)), where
each atom is treated as a vertex and its colour is determined by
the atom’s element (as a one-to-one map). In particular, the
vertex colour depends on the number of unique elements in
the system studied, thus binary, ternary, and quaternary com-
pounds will have vertices of 2, 3, and 4 different colours,
respectively. Next we identify the edges of a graph by analysing
the interatomic distances. If the distance between two atoms
(vertices) i and j is less than rgij, then we assume that there is
an edge between them (it can be thought of as a bond between
two atoms).

The graph depends on the chosen value of rgij, which were
kept fixed during our simulations to ensure that NAUTY will
generate a unique fingerprint (Fig. 2(c) and (d)). These finger-
prints are easily compared to identify duplicates that need to
be removed from the population.

Thus, we have developed and implemented a number of
new algorithms into the KLMC GA module with an aim of
maintaining and improving diversity in the evolutionary
process. We will demonstrate next the application of the
redeveloped software to the study of four chemically diverse
nanocluster systems.

Ideally, a comparison with other structure prediction
software that implements a genetic or evolutionary algor-
ithm4,8,22,28,31,32,44,45 would be useful. However, a fair compari-
son requires a level playing field, i.e. collaboration of authors
from each code, as carried out in previous studies,27,46 which
is beyond the scope of the current work.

Fig. 2 Topological analysis of a cluster in KLMC 2.0: a cluster (a) is
transformed into a coloured undirected graph (b), and analysed using
NAUTY (c), which generates a unique fingerprint (d) of the cluster.
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3. Applications
3.1. Systems

The new version of our GA in KLMC was tested on the nano-
clusters of four different types of systems: a Lennard-Jones
model system LJ38; an ionic compound (ZnO)n, n = 1–32; a
metal Ni13; and a covalently bonded molecule C60. For each
system, the energy is defined at a semiclassical level using IPs
as implemented in GULP34,35. KLMC uses GULP not only to
compute the energy and interatomic forces, but also to relax
new cluster configurations to the LM.

For the 38-atom Lennard-Jones clusters, the standard
Lennard-Jones potential, with σ = ϵ = 1, was used.

For zinc oxide, a formal charge model was employed with
additional energy contributions from Buckingham and
Lennard-Jones (LJ) IPs with potential parameters values taken
from a previous study.47 In this study we use two models:
during the GA searches, the potential energy surface (PES) is
calculated using a rigid ion model (RM) and afterwards the
RM LM were refined to the LM on the Shell Model (SM) PES.
The SM is not as robust as the RM, but does include electronic
polarization effects.

For nickel nanoclusters, the IP parameters for the
embedded atom model were taken from the Database of
Published Interatomic Potential Parameters,48 where the orig-
inal Tight Binding (TB) many-body IPs49 were reproduced as a
combination of a modified embedded-atom method model
and a Born–Mayer repulsive term.

For the carbon clusters we have employed a Tersoff’s bond-
order potential, which has successfully modelled small fuller-
ene structures.50 For some of our GA searches for C60 we also
used an artificial atom at the centre of the simulation box, in
order to guide the search away from dense, rather than
bubble-like carbon structures.

3.2. Parameters of GA simulations

Here, we present the set of parameters that were used in our
simulations. We have used fixed values for rgij (graph radii for
evaluating the fingerprint values) of 2.5, 3.4, 1.6, and 1.9 Å for
ZnO, Ni, LJ38, and C systems, respectively. These are pro-
portional to the respective bond lengths. For the geometrical
prescreening, the scaling factors are λmin = 0.6 and λmax = 1.25.
These values were chosen to avoid constraining the simu-
lations to a certain configurational subspace and to reject
systems that are physically (chemically) impossible. We do not
expect a user of KLMC to change these values when the land-
scape is defined using interatomic potentials as the sensitivity
of these parameters, in our experience, only become really
important when electronic structure methods are employed.

For all simulations, 80% of the structures from the cross-
over operation were mutated using one of the mutation move
classes, chosen at random with probability weights: 20% –

self-crossover, 10% – atom exchange, 10% – expansion, 10% –

contraction, and 50% – random displacement. The scaling
factors for the expansion and contraction are 1.8% and 0.8%
respectively.

The simulation box size, population size and the number of
generations were dependent upon the size of the nanocluster.
For (ZnO)n, n = 1–32, these parameters increased with respect to
n, taking values between 4.0–12.0 Å, 20–140, and 100–10 000,
respectively. For Ni13 we used 5.0 Å, 200, and 200, for LJ38, 8.0 Å,
100, and 10 000, and for C60, 8.0 Å, 200, and 10 000.

For our local geometry optimisations, we have chosen toler-
ances on energy, atomic forces and atomic coordinates to
ensure that, the energy, measured in eV per cluster, is con-
verged to at least seven decimal places, which has been con-
sidered essential to maintain structural diversity in previous
global optimisation studies39 and also ensures the correct
ranking of local minimum candidate structures.

Different convergence criteria were used for the problems
with known solutions and those with unknown solutions. For
known solutions, the simulations were terminated once these
targeted structures had been found with a reasonable statisti-
cal reproducibility. For simulations with no known target
structure, in particular the larger ZnO clusters, the optimum
(or minimum) number of GA iterations, m, without generat-
ing a new unique configuration that would indicate that the
search has been successfully completed is generally
unknown. With no convergence criteria, when the search has
successfully completed more GA iterations are typically per-
formed to gain confidence in the current structural predic-
tions so unfortunately a much larger value for m is typically
used. Minimising m can easily lead to missing low energy
configurations.

It is not necessary to minimise m for small system sizes,
however, for GA runs on our larger systems, we define two
subsets of the current population: the first subset, U1, includes
the lowest energy LM (which, by definition includes the tenta-
tive GM), and the second subset, U2, is composed of the next
lowest energy LM, where U1 + U2 ≤ population size and U1/U2 =
0.2. The simulation is deemed to be converged when no new
unique structures appear within subset U2 during ten consecu-
tive GA iterations (m = 10). Towards the end of a GA run, moni-
toring changes to subset U2, rather than U1, is a more robust
procedure as changes to subset U2 are more likely given (see
below) the exponential growth with energy in the number of
unique LM structures within an accessible energy range.

3.3. The double-funnel problem of the 38-atom
Lennard-Jones cluster

Although as mentioned, the difficulty of exploring a landscape
depends on the number of degrees of freedom (determined by
the size of the cluster), it also depends on the complexity of
the potential energy landscape. There are particular cases
when the GM of a smaller cluster is much more difficult to
locate than the GM of a larger cluster on the same energy land-
scape. An example of such a phenomenon is the 38-atom
Lennard-Jones cluster (LJ38) double funnel problem; the two
lowest energy LM are located in very differently sized funnels,
with the GM residing in the narrower of the two. The nature of
this puzzle has been clarified by representing this energy land-
scape with a connectivity graph51 of the energies for all LM
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and the lowest energy barriers that separate them. Let us con-
sider a typical Monte Carlo simulation on such a landscape. In
search for a low energy LM starting from a random point on
the landscape, a random walker, that performs a sequence of
small Monte Carlo steps, perhaps following the Metropolis
algorithm, would proceed to escape from a current LM most
likely in the direction of a small energy barrier to a neighbour-
ing LM. If the new LM has a lower energy, then the walker is
unlikely to return to the original LM. Once within a certain
region of the landscape, the walker is thus funnelled towards
the GM of that region. The ease of finding the true GM there-
fore depends on the relative size of the catchment area of the
funnel containing it. Funnels occupying a relatively small frac-
tion of the energy landscape require extensive exploration, for
example using very many walkers, making it computationally
very expensive. Hence, such systems are perfect for testing the
efficiency of global optimisation algorithms. More recently
ideas of niching have become more popular to direct the
search into a desired funnel, a method which benefits from
knowing how to distinguish which funnel you are in.52,53 Here,
we concentrate on developing an approach that does not use
such prior knowledge.

The complex energy landscape of LJ38 has a double-funnel
shape, where one funnel contains the fcc truncated octa-
hedron (GM) and the other funnel contains the incomplete
Mackay icosahedron (LM2).

This PES was extensively studied by several groups51,54–56

using different approaches, including Monte Carlo Basin
Hopping. These and most of the other studies addressing the
funnelling landscapes conclude that some sort of a biased
(imposed preference) method is needed in order to efficiently
explore such PES that contain multiple funnels. Thus, we have
chosen the LJ38 case as one of the examples to investigate the
performance of our improved unbiased GA.

We have performed 50 independent searches for the LJ38
double funnels using our GA implementation with the simu-
lation parameters given in the subsection 3.2. For this particu-
lar system we chose to analyse how quickly the two funnels
can be located and what is the success rate of finding them is
within 10 000 GA iterations. We have observed that the second
lowest energy structure, the incomplete Mackay icosahedron,
was found during all our simulations. In fact, averaging over the
50 GA runs, only a fifth of the 10 000 GA iterations were
required. The distribution graph of the GA iteration when the
LM2 was found for the first time is given in Fig. 3(a), with the
mean value of 1861.16, standard deviation of 1896.46, skewness
of 1.60 and kurtosis of 2.02. Similarly in Fig. 3(b) we present the
results for the GM structure, which has been found 6 times out
of 50 after a fairly high number of iterations.

As can be seen in Fig. 4, the energy distributions of the
lowest energy structures of the simulations that found the GM
(red lines) and the ones that did not (blue lines) are very
similar. Moreover, the top seven structures (excluding the GM)
have been generated during all the simulations, thus indicat-
ing that the improved algorithm is able to find all local
minima (that are probably within the larger funnel containing

LM2) and, given enough GA iterations, the GM that is within
the narrower funnel. Fig. 3 and 4 show how complicated the
PES is in this particular case, but nonetheless unbiased GA in
KLMC 2.0 was able to locate both double funnels, whereas pre-
vious studies51,54,55 employed a biased preference method
during the searches.

3.4. Performance of the GA on (ZnO)24

In order to evaluate the performance of our new GA
implemented in KLMC, we initially concentrated on (ZnO)24, a
system which was previously investigated using KLMC and
other software.2,47,57 We chose (ZnO)24 as our representative
system, as it has many metastable LM configurations, the ten-
tative GM configuration is accepted with a high confidence
level, and it is not too computationally expensive to generate
statistics for. We have performed 10 GA simulations using
KLMC with and without the newly added enhancements and
every GA simulation was run for 100 GA steps.

GA convergence tests for the two versions of the code are
presented in Fig. 5. The red line shows the mean energy evol-
ution, as a function of the number of GA cycles, of the lowest
energy structure, averaged over the ten independent runs.
Within the first twenty GA iterations, the energy curve is much

Fig. 3 Analysis of the GA convergence for the two funnels of LJ38 over
50 independent runs (red bars) and Ni38 over 10 independent runs (blue
bars) in terms of GA iteration when the funnel was first found: (a) incom-
plete Mackay icosahedron (LM) and (b) fcc truncated octahedron (GM).

Fig. 4 The energies of the lowest energy structures from simulations
that were able to find the GM and LM2 (red lines) and the ones that were
able to find the LM2 but not the GM (blue lines).
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steeper for KLMC 2.0, which was able to find lower energy can-
didate structures more quickly than its counterpart KLMC 1.0.
The energies obtained with KLMC 2.0 are also significantly
lower, and the GM was always found. In contrast, KLMC 1.0
found the GM in only three out of the ten simulations within
the given 100 GA steps.

The blue line in Fig. 5 presents the evolution of the mean
energy of the twenty lowest energy structures within a GA simu-
lation averaged over the ten GA simulations. The blue line is
also much closer to the red for KLMC 2.0 indicating that the
new version of GA was also better at finding more LM. This is
also the cause of the smaller error bars for KLMC 2.0, which
implies that it was able to find more structures which have
similar energies than KLMC 1.0. This is important, as it indi-
cates a much healthier, evolving population of competitive can-
didates, rather than one strong candidate amongst much
weaker competitors. As the number of possible candidate struc-
tures increases with the number of formula units, there will be
a high number of LM with similar energies. Different structures
may have very similar energies, which would not be recognised
if the simple energy criterion is used. The resultant population,
therefore, is forced to span over a wider energy range. By using
topological analysis, KLMC 2.0 is able to remove duplicates
based on their configurations.

In conclusion, the new more rigorous geometrical pre-
screening, the greater variety of mutation move classes and a
check for uniqueness based on the topological analysis
improved the GA diversity and convergence significantly.

3.5. (ZnO)n, n = 1–32

ZnO nanoclusters have been studied extensively2,47,57–71 and
most of the studies report that the larger LM structures
typically resemble bubbles and nanotubes. As we have access to
the data published by Al-Sunaidi et al.,47 and as it is the first
and only systematic study that also includes the low energy
metastable (ZnO)n configurations up to n = 32, we have used
these results as our benchmark. Our tentative GM and lowest
metastable LM structures are typically lower in energy or at
least comparable with the cluster configurations reported pre-

viously. Here we repeat this study using our enhanced KLMC
GA with the same local optimisers to search for LMs on the
same PES. We report only those results that differ from the
ones published by Al-Sunaidi et al.47 Previous results are
labelled using the notation from the original publication, i.e.
lower/upper case letters indicate the rank with regard to RM/
SM, respectively, whereas any missing LM found by KLMC 2.0
are marked with a star after the size number.

For n < 24, all the previously reported structures were found
at the end of the GA simulations. When the energy difference
between isomers is relatively small, the ranking is more sensi-
tive to the choice of the energy landscape, the definition of
which includes the cut-offs applied to short-range interactions.
In the previous work, additional LJ r−12 terms were added to
penalize any unphysically short interatomic distances and to
increase the robustness of the cost function used by the GA.
This is no longer deemed necessary as the implemented geo-
metrical prescreeners remove such clusters. Thus, there are a
number of cases where the LM found on the RM PES have a
slightly different ranking from that previously reported, e.g. for
n = 12, cluster 12d has a lower energy than 12c (labelled 12*c
and 12*d), and our isomer of 12h, which was labelled 12j, has
a lower energy than 12i and is approximately 0.001 eV higher
in energy than 12h.

Nonetheless, after the refinement to SM LM, the configur-
ations of the top six SM LM for n = 12 from both studies were
identical. There were, however, a few minor changes in SM
energy, which is most likely caused by the different levels of
tolerance used during the optimisation.

For bigger clusters, we have found a number of LM that
were previously missed. Two new tentative GM, as measured
using the SM, were found. In both cases, n = 24 (Fig. 6(a)) and
n = 27 (Fig. 6(c)), a capped-nanotube, or barrel configuration.
The barrel configuration for the 24*A(b) structure is capped at
each end by a hexagon and three tetragons, with one capped
ends rotated out of phase about the axis of the barrel by 45°.
This configuration could be seen as an extension of the 18A(a)
barrel structure with the rolled hexagonal sheet extended by
six ZnO dimers. 24*A(b) is 0.37 eV lower in energy (SM) than
the previously reported GM 24A(c). This result explains the
unusual findings in ref. 47 for n = 24, which contradicted the
generally observed trend for ZnO nanoclusters with octagonal
faces being less stable than structures without them. By
extending the 18A(a) structure’s hexagonal pattern by another
six dimers, a previously unreported larger nanotube 30*B(h)
can be formed with the same symmetry as 24*A(b) as shown in
Fig. 6(g).

As ranking may change when the SM is switched to a more
accurate electronic structure based model, it is important to
find all low energy LM that are at least thermodynamically
accessible. For n = 30, as mentioned, we also found a lower
energy configuration for the second lowest energy LM (SM),
labelled 30*B(h). Using the RM, it is the eighth lowest energy
structure found by KLMC 2.0, but switching to the SM, its
stability improves, and is only 0.04 eV higher in energy than
the GM.

Fig. 5 Comparison of the GA performance of KLMC (a) without and (b)
with our new enhancements. As functions of the number of GA cycles
over ten simulations, the red line shows the average energy of the
lowest energy structure and the blue line presents the evolution of the
mean energy with 1σ error bars of the twenty lowest energy structures.
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We also found another new low energy isomer for n = 30
(Fig. 6(f )); another perfect bubble formed of twenty six hexa-
gons and six tetragons. Comparing only bubbles of twenty six
hexagons and six tetragons, the 30*E(d) configuration has the
highest SM energy of the 26-6 isomers, whereas the 30*B(h)
has the highest RM energy.

Similar to the 24*A(b) structure, the 27*A(d) structure is
also a barrel, but unlike the 24*A(b), the hexagonal ends are in
phase. Other barrels of this type include 21A(a), 15A(a), and
9A(a). The 27*A(d) SM structure is our tentative GM, with a SM
energy that is 0.26 eV lower than the previously reported GM,
27*B(b).

A new nanotube-like structure 32*C(a) was also found for
n = 32 (Fig. 6(h)), which is the RM GM and ranked third using
the SM. 32*C(a) is a wider version of 24B(a) and 16C(c), with
each barrel capped with octagons that are in antiphase
(45° rotation) to each other. As with the hexagon terminated
nanotubes, there also exist barrels with octagonal caps that are
in phase also exist: 28*E(b), 20*A(a), and 12*F(d).

The ranking of larger hexagon capped nanotubes is
improved when switching from the RM to the SM. The oppo-
site is observed for the octagon terminated nanotubes, for
which a better RM rank is found than that of SM. Currently,
we are investigating larger clusters.

We were also able to find new isomers for n = 25, 25*C(c),
and n = 28, 28*B(c) and 28*C(d), Fig. 6(b), (d), and (e), respect-
ively, where 25*C(c) is an enantiomer of 25C(d). Switching Zn
and O atoms results in a slight difference in energy. For n = 28,
two new configurations, which are enantiomers of each other,
were found with very low energies that were not reported in the
previous study. With the SM, these structures are ranked
second and third and form an intermediate configuration
between a bubble and nanotube, which we refer to as a capsule.
Each end of this capsule is terminated with three tetragons
and three hexagons.

To test the reproducibility of the predicted structures from
our new algorithm, we choose to perform ten independent GA
simulations for the following sizes: n = 20, 24, 27, 28, 30, and 32.
These sizes were chosen to represent a “good” spread, starting
from less complicated n = 20, to significantly more challenging
cases of n = 27, 30, and 32, in which the barrel structures form.

In Table 1, with "we report at which iteration (N), the GM
was found during a GA search on the RM PES, and “*” marks
the selected cases, for which we show an average N over ten
simulations.

In general, the GM for small size clusters (n < 24) was
found very quickly. For n > = 20, the correlation between n and
N becomes more apparent: the task of finding the GM typically
becomes more computationally demanding as n increases.
Similar size dependencies of the success rates are presented in
the previous work,47 where an onset of lower success rates
occurred at n = 17. Thus, the new improved GA implemen-
tation is both more robust and remains efficient for larger
systems.

The lowest energy structures are perfect bubbles that
exhibit only tetragonal and hexagonal faces. The perfect
bubbles, whose structure has been discussed in detail,47

exhibit structural motifs, including tetragonal rings, that is not
present in the ground state bulk structure of wurtzite ZnO, but
is known as a part of a hypothetical body-centred tetragonal
phase, with a low calculated energy of formation.72–74 If the
largest faces in a perfect bubble are hexagonal, then according
to Euler’s rule there will only be six tetragonal faces. A certain
degree of disorder can be present as the actual location of the
tetragonal faces with respect to each other can vary to an ever
greater extent as the bubble size increases. Octagonal faces are
another type of topological defect, which can result from con-
verting two hexagonal faces to one octagonal and one tetra-
gonal face or, producing two coordinated sites, the result of
bond breaking along a shared edge between a tetragonal and a
hexagonal face. Either process results in a further increase of
possible bonding arrangements on the surface of a bubble and
therefore the computational challenge in modelling this
system originates from the number of structural motifs that
the energy landscape produces by rearranging the octagonal,

Fig. 6 SM and LM structures of (ZnO)n, n = 24–32 that were not
reported in the previous study.47 Labels include the number of hexa-
gonal–tetragonal–octagonal faces and the point group symmetry of
the LM.

Table 1 The iteration number, N, of GA simulation when the GM of
(ZnO)n is generated. “*” marks the cases where N is an average over 10
simulations

n N n N

11 0 22 42
12 1 23 13
13 1 24 33*
14 1 25 359
15 1 26 497
16 3 27 96*
17 3 28 400*
18 3 29 1335
19 7 30 590*
20 15* 31 3544
21 9 32 196*
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hexagonal and tetragonal faces on the surface of a structure,
which increases with the system size. As the clusters grow,
there emerges another structural motif of low energy defected
bubbles with atoms inside. To illustrate this behaviour, we
have plotted the density of states (Fig. 7) for the lowest 1000
energy structures of the n = 30 system.

As the density of states plot indicates, the majority of the
structures are those with the octagonal faces and atoms within
the bubbles. The energy penalty per atom for such defective
systems compared to the GM is minimal (∼0.07 eV) which
makes the search on this energy landscape more difficult as the
cluster size grows. Nonetheless, the unbiased KLMC 2.0 GA
algorithm was able to cope with such complicated PES.
Moreover, the GA in KLMC 2.0 was quicker to converge and
found missing LM, including new tentative global minima.

One advantage of studying ionic systems with formal
charges is the intrinsic Coulomb ordering that emerges both
in the short and long ranges, which severely reduces the
number of plausible candidate structures. Next we consider
Ni13, the stability of which is determined by short-range many-
body interactions.

3.6. The magic of Ni13

Nickel is a ferromagnetic late transition metal with an open
d-shell, which is widely studied using both simple interatomic
potentials and DFT. Nickel has gained its popularity among
research studies due to its applications in catalysis and hydro-
gen chemisorption. Both atomic structure and stability, and
the electronic and magnetic properties of Ni clusters have
been reported.70,75–83 Typically, in non-global optimization
studies, Ni13 is assumed to adopt the ideal Platonic icosahe-
dral configuration of Ni13 (Fig. 9(a)). The lowest energy struc-
ture on the DFT landscape has, however, been reported as a
pentagonal bipyramid.82 The icosahedral structure in that

study was found to be 0.46 eV above the GM, and ranked fifth.
As the ranking proves to be crucially sensitive to the level of
theory, it is very important to consider a complete set of the
lowest energy LM and not only the GM.

Using our new GA in KLMC, we have performed a search on
the TB PES.49 It was estimated that at least 988 LM exist for
clusters of LJ13.

84 Due to the nature of the TB potential, the TB
PES is more complex and has more LM than two body LJ PES.
Thus, in Fig. 8, we focus on showing the density of states of
the last (200th) GA generation in the subset and focus on the
2 eV energy range above the GM, which includes previously
reported low DFT energy configurations from previous studies
by Chou et al.81 and Lu et al.82

Four structures – icosahedral (ICO), triangular biplanar
(TBP), buckled biplanar (BBP) and garrison-cap layer (GCL) –
that were reported in the study81 on LDA and GGA, were
also found by us on the TB PES. These configurations are
shown in Fig. 9. Other reported LDA and GGA LM configur-
ations, such as cuboctahedral (FCC), decahedral (DEC), body-
centered cubic (BCC), hexagonal close packed (HCP) and cage-
like (CAG) were not found on the TB PES during our simu-
lations. Although some LM, including ICO and TBP (Fig. 9(a)
and (b)) match well with those previously reported, on the
other hand, others, for example, ΔBBP and ΔGCL, Fig. 9(c)
and (d), were found to become slightly distorted (where Δ
labels structures, which are similar to those reported
previously).

The missing FCC, DEC, BCC, HCP, BBP, and GCL configur-
ations were constructed by hand and optimised using GULP to
the LM on the TB PES. Structures FCC, DEC, BCC and HCP
proved to be unstable and transformed to the ICO structure
during the relaxation, whereas configurations BBP and GCL
lowered their symmetry and adopted the ΔBBP and ΔGCL LM
configurations, already found by our GA.

Fig. 7 The plot of the density of states (DOS) with energy referenced to
the GM. The lowest 1000 configurations found during n = 30 GA simu-
lation are included. The initial open region (below ca. 0.3 eV) represents
perfect bubble structures; the green region represents structures with at
least one octagonal face on the surface of the bubble; the khaki color
represents the energy range where most of the bubbles have atoms
inside them.

Fig. 8 The DOS graph of the unique Ni13 LM clusters found using the
new GA implementation in KLMC; annotations on the graph indicate
which energy region a particular structure is in; prefix Δ marks the struc-
ture which is similar to (a distorted version of) a previously reported
structure; notation LLCWm indicates structures presented in ref. 82,
where m marks its ranking.
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Comparison with GGA LM configurations82 shows that only
a subset of Ni13 structures matched: their fourth, fifth, and
sixth lowest energy structures correspond to our ΔGCL, ICO
and TBP configurations. The eighth lowest GGA energy LM,
FCC structure, was not found as a LM on the TB PES as it
relaxes to the ICO structure.

Allowing for small distortions, other matches between their
GGA LM and TB LM found during our GA search were identi-
fied. Examples are shown in Fig. 9(e)–(h), and are named
LLCWn, where n stands for the GGA energy rank reported in
the paper by Lu et al.82 KLMC was able to determine a match
by comparing their fingerprints (see section 2.4).

Curiously, employing the many-body potentials for nickel
significantly eases the global search on the potential energy
landscape compared to the much simpler Lennard-Jones
form. The stark contrast can be immediately seen comparing
our GA simulations of LJ38 and Ni38 presented in Fig. 3. Using
the TB IPs49 we were able to locate the two lowest energy struc-
tures from the LJ38 PES in ten attempts practically always
within the first few hundreds GA iterations; however, the
incomplete Mackay icosahedron is not the second lowest
energy structure but third. We conclude that many-body inter-
actions in the case of nickel proved to be powerful and selec-
tive in organising the energy landscape and effectively reduc-
ing the search space.

To summarize, KLMC 2.0 was able to find the stable and
meta-stable LM on the TB PES that matched those on the DFT
PES and therefore proved to be effective at exploring the TB
PES for Ni13 LM configurations. These can be further refined
using a higher level of theory to investigate their structural,
energetic, magnetic and other properties.

3.7. C60

In the chemistry of carbon, the discovery of the small fullerene
cage clusters has been one of the most exciting develop-
ments.85 They have a spherical cage structure and physical and

chemical properties, which are exploited in different appli-
cations, including electronics,86 due to the superconducting
phases; optics,87 due to the optical limiting properties; bio-
medical technology,88 etc.

We have applied our new GA algorithm to optimise the geo-
metry of the C60 nanocluster. Previously, a similar study4 was
carried out, which highlighted that one of the biggest chal-
lenges for a GA was the avoidance of getting trapped in certain
configurations. By studying the same system and investigating
the evolutionary process of the C60 in more detail, we have
looked to see which processes are more influential during the
search for lower energy configurations.

In our first attempt, we have performed ten independent
GA runs of 1000 iterations, each population consisting of
100 members, which is comparable to our successful GA runs
on the ZnO system of similar size. In the first GA population,
there are already chemically sensible structures but with some
clearly unfavourable features, in particular, undercoordinated
terminal atoms (Fig. 10(a)). At the end of these simulations,
the lowest energy LM formed shell structures filled with small
clusters, as shown in Fig. 10(b).

These findings are reminiscent of the problem encountered
in the structure prediction of nanoporous materials, with
semi-covalent semi-ionic frameworks, e.g. zeolites. One of the
most successful solutions has been the introduction of the
hard and soft boundary exclusion/inclusion zones.89,90

Building on that experience we have fixed at the centre of the
simulation box an artificial atom with a short-range repulsive
potential to carbon atoms (choice of parameters explained in
section 3.1). Ten simulations using the soft spherical exclusion
zone and ten unconstrained simulations will be compared
below.

In Fig. 11 we plot the energy evolution during one of our
C60 simulations with an artificial atom, which illustrates the
most common features of the GA simulations. Here, we report

Fig. 9 Ni13 LM cluster configurations found using the new GA in
KLMCs, which were reported elsewhere.81,82 Prefix Δ marks the struc-
ture which is similar to (a distorted version of) a previously reported
structure; notation LLCWm indicates structures presented in ref. 82,
where m marks its GGA ranking.

Fig. 10 Example C60 LM from our initial GA simulation. (a) Lowest
energy structure after 100 GA iterations, an unfavourable configuration
with undercoordinated atoms: orange (one-coordinated) and green
(two-coordinated), and overcoordinated: red(four-coordinated); (b)
lowest energy structure after 1000 GA iterations, blue atoms and bonds
between them represent a common low energy structural feature –

atoms in the middle of an evolving bubble, which dramatically reduces
the efficiency of the GA to locate the GM, and where purple atoms rep-
resent outer atoms to which the inner atoms are connected to.
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the twenty lowest isomer energies; the GM configuration is
that of the buckyball, a spherical fullerene molecule.

The evolutionary process starts from random configur-
ations, which during the first GA steps optimise to more
chemically inert structures, as can be seen by the initial steep
energy drop followed by a gentle slope persisting for about
300 GA iterations. Around the 100th generation a lower energy
configuration is found (Fig. 12(a)), which remains the lowest
energy structure for a few hundred iterations, until around the
400th GA generation a new lower energy cluster is found
(Fig. 12(d)). During these couple of hundred steps, even
though the energy of the lowest energy configurations did not
change, the lowest twenty configurations have improved – the
spread became tighter and the average energy decreased.

The new configuration (Fig. 12(d)) was created by a cross-
over operation between LM configurations ranked 4 and 43
from the previous generation (Fig. 12(b) and (c) respectively)

followed by a random mutation operation. Then the evolution-
ary process successfully continues until (GA generation 528)
another configuration is found (Fig. 12(e)). It remains the
lowest energy configuration for another couple of hundreds of
GA iterations.

The first successful attempt to improve this latter configur-
ation happens when a self-crossover operation was applied,
thus resulting in a lower energy structure shown in Fig. 12(f ).
It helped to evolve a new series of energetically more stable
structures. Around the 1000th GA generation, the new lowest
energy configuration (Fig. 12(g)) resembles the buckyball
shape, although with several defects and handles. During this
simulation, the latter configuration was the lowest energy
structure for more than one thousand GA iterations, during
which even more similar energy structures were found, but not
lower. This configuration remained the lowest energy structure
for more than one thousand GA iterations, until a self-cross-
over operation was performed on it, which ended up in a
slightly lower energy structure and a step closer to the bucky-
ball configuration (Fig. 12(h)).

To gain a better insight into why the GM on this PES is so
hard to find, we have followed the evolution of the twenty
lowest energy structures. The lowest energy structure, GM, is a
buckyball and the higher energy LM structures have some ir-
regularities. The perfect buckyball configuration is formed by
twelve pentagonal and twenty hexagonal rings, where no two
pentagonal rings share an edge. Any deviation from this struc-
tural configuration, i.e. a defect, increases the system’s energy
and makes it less energetically stable. The most common
defect observed was a pair of pentagonal rings sharing an edge
and the second lowest energy structure has two pairs of them
(Fig. 13(a)). Another common defect is an eight-atom ring,
which is formed by breaking the shared edge between two
pentagonal rings as shown in Fig. 13(c). The other LM out of
the mentioned twenty have a combination of paired pentago-
nal rings, up to five, and/or an eight-atom ring.

The same defects appear at the end of all our simulations,
with and without an artificial repulsive atom. During our
simulations, three out of ten simulations with an artificial
atom (Fig. 14(a)) were able to find the twenty lowest energy LM
structures. Although none of the simulations without an artifi-
cial atom (Fig. 14(b)) have yet found the buckyball configur-
ation, three simulations are very likely to converge to it rela-
tively soon. Moreover, simulations with an artificial atom
clearly converge much faster and have lower average energies
than their counterparts without the atom. Both types of simu-
lations have similar trends of having regions where average
energy decreases slowly and regions where it drops very
quickly, when a new tentative GM is found. Furthermore, we
can see that the simulations, which have converged, have a
very similar energy range of the twenty lowest energy struc-
tures, and it is slightly greater than that of the simulations
that did not converge.

Comparing the results of the simulations with an artificial
repulsive atom and without, we were not able to see similar
intermediate states, as they produce different intermediate con-

Fig. 11 Energies of C60 configurations within the population that is
evolved by a GA that targets the GM. Here the red line represents the
average energy of the presented configurations.

Fig. 12 LM structures of C60 during a GA simulation with an artificial
repulsive atom. The first number in the label indicates the iteration
number when this structure was found, where the second – its rank in
terms of energy.
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figurations. Again, this indicates that the PES has an enormous
amount of LM and every simulation follows its individual path.

4. Conclusions

We have implemented and tested a new version of KLMC’s
population based global optimisation module. The focus was
on improving the Lamarckian evolutionary algorithm, as
applied to finding low energy LM structures for nanoclusters.
The improvements included: implementing geometrical pre-
screening routines, new mutation move classes, and algor-
ithms for locating and removing duplicate structures within a
population.

Four different systems were used to check the effects on the
performance of KLMC: LJ38, (ZnO)1–32, Ni13, and C60.

We show that the double-funnel problem of the 38-atom
Lennard-Jones cluster can be successfully addressed with an

unbiased approach, which shows the power of the new method
to predict large size clusters on a complicated PES.

The new LM structures found for (ZnO)24 showed that we
not only significantly improved the convergence speed but also
increased the success rate of finding the target structures.

KLMC successfully reproduces previous results47 for (ZnO)n,
n = 1–32, found missing LM and improved on the tentative GM
for n ≥ 24. The missing LM were typically nanotubes. The dis-
covery of low energy quasi 1D structures demonstrates the
success of the new move classes introduced in KLMC 2.0.

The results from the Ni13 study show the importance of
having IPs that can describe the system of interest, i.e. can
reproduce the LM for all sought after isomers of a nanocluster.
Importantly for this study, KLMC was able to find all the
known and targeted LM configurations on the TB PES.

As the results from the C60 simulations indicate, the
number of LM increases rapidly with the number of atoms
and the GM can be contained in a relatively small energy

Fig. 13 LMs with typical defects (irregularities) in the buckyball structure. Orange atoms represent a pair of pentagonal rings sharing an edge, red
atoms – an eight-atom ring. (a) Two pairs of pentagonal rings, (b) three pairs of pentagonal rings, and (c) an eight-atom ring and a pair of pentagonal
rings.

Fig. 14 Comparison of ten GA simulations with (a) and ten GA simulations without (b) an artificial atom in terms of the average energy of the
twenty lowest energy structures during a GA iteration of each simulation. The bars in each of the simulations indicate the energy range of the twenty
lowest energy structures. The energy contribution to (a) by the artificial atom has been removed.
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basin, thus challenging to find. As expected, using soft bound-
ary exclusion zones helps to target particular structural motifs
or architectures, in our case bubble configurations. Unbiased
algorithms still prove successful, even though much less
efficient at finding the GM. This poses a question of whether
new move classes should be explored in addressing the
GA search on larger systems – cf. ref. 11. The difficulty in iden-
tifying the narrow funnel in the double funnel LJ38
problem and the success of the soft exclusion zone applied
to the location of the buckminster fullerene on the C60 buck-
minster fullerene on the Tersoff’s-potentials landscape
suggest the urgency in the development of new, learn-on-the-
fly, biasing algorithms which will be able to identify key struc-
tural features that can be targeted in future strategies of global
optimisation.

This study has proven that the improved Lamarckian evol-
utionary algorithm with the focus on maintaining the struc-
ture diversity within KLMC is more robust than its predecessor
and is a powerful tool for the structure prediction of
nanoclusters.
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