Issue 12, 2017

Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information

Abstract

Cysteine S-sulfenylation is a major type of posttranslational modification that contributes to protein structure and function regulation in many cellular processes. Experimental identification of S-sulfenylation sites is challenging, due to the low abundance of proteins and the inefficient experimental methods. Computational identification of S-sulfenylation sites is an alternative strategy to annotate the S-sulfenylated proteome. In this study, a novel computational predictor SulCysSite was developed for accurate prediction of S-sulfenylation sites based on multiple sequence features, including amino acid index properties, binary amino acid codes, position specific scoring matrix, and compositions of profile-based amino acids. To learn the prediction model of SulCysSite, a random forest classifier was applied. The final SulCysSite achieved an AUC value of 0.819 in a 10-fold cross-validation test. It also exhibited higher performance than other existing computational predictors. In addition, the hidden and complex mechanisms were extracted from the predictive model of SulCysSite to investigate the understandable rules (i.e. feature combination) of S-sulfenylation sites. The SulCysSite is a useful computational resource for prediction of S-sulfenylation sites. The online interface and datasets are publicly available at http://kurata14.bio.kyutech.ac.jp/SulCysSite/.

Graphical abstract: Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2017
Accepted
18 Sep 2017
First published
18 Sep 2017

Mol. BioSyst., 2017,13, 2545-2550

Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information

Md. M. Hasan, D. Guo and H. Kurata, Mol. BioSyst., 2017, 13, 2545 DOI: 10.1039/C7MB00491E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements