Volume 204, 2017

Kinetic control in the temperature-dependent sequential growth of surface-confined supramolecular copolymers

Abstract

We report the sequential growth of supramolecular copolymers on gold surfaces, using oppositely charged dendritic peptide amphiphiles. By including water-solubilising thermoresponsive chains in the monomer design, we observed non-linear effects in the temperature-dependent sequential growth. The step-wise copolymerisation process is characterised using temperature dependent SPR and QCM-D measurements. At higher temperatures, dehydration of peripheral oligoethylene glycol chains supports copolymer growth due to more favourable comonomer interactions. Both monomers incorporate methionine amino acids but remarkably, desorption of the copolymers via competing sulphur gold interactions with the initial monomer layer is not observed. The surface-confined supramolecular copolymers remain kinetically trapped on the metal surface at near neutral pH and form viscoelastic films with a tuneable thickness.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2017
Accepted
12 Apr 2017
First published
12 Apr 2017

Faraday Discuss., 2017,204, 53-67

Kinetic control in the temperature-dependent sequential growth of surface-confined supramolecular copolymers

S. Engel, D. Spitzer, L. L. Rodrigues, E. Fritz, D. Straßburger, M. Schönhoff, B. J. Ravoo and P. Besenius, Faraday Discuss., 2017, 204, 53 DOI: 10.1039/C7FD00100B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements