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The allergenic potential of airborne proteins may be enhanced via post-translational
modification induced by air pollutants like ozone (O3z) and nitrogen dioxide (NO,). The
molecular mechanisms and kinetics of the chemical modifications that enhance the
allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine
nitration and oligomerization upon simultaneous exposure of Oz and NO, were studied
in coated-wall flow-tube and bulk solution experiments under varying atmospherically
relevant conditions (5-200 ppb Oz, 5-200 ppb NO,, 45-96% RH), using bovine serum
albumin as a model protein. Generally, more tyrosine residues were found to react via
the nitration pathway than via the oligomerization pathway. Depending on reaction
conditions, oligomer mass fractions and nitration degrees were in the ranges of 2.5-
25% and 0.5-7%, respectively. The experimental results were well reproduced by the
kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). The extent of
nitration and oligomerization strongly depends on relative humidity (RH) due to
moisture-induced phase transition of proteins, highlighting the importance of cloud
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processing conditions for accelerated protein chemistry. Dimeric and nitrated species
were major products in the liquid phase, while protein oligomerization was observed to
a greater extent for the solid and semi-solid phase states of proteins. Our results show
that the rate of both processes was sensitive towards ambient ozone concentration, but
rather insensitive towards different NO, levels. An increase of tropospheric ozone
concentrations in the Anthropocene may thus promote pro-allergic protein
modifications and contribute to the observed increase of allergies over the past decades.

1. Introduction

Allergies represent an important issue for human health and the prevalence of
allergic diseases has been increasing worldwide over the past decades."” Among
other explanations, air pollution has been proposed as a potential driver for this
increase.>* It is well established that air pollutants, especially diesel exhaust
particles (DEPs), can act as adjuvants and facilitate allergic sensitization in the
human body.”® Air pollutants like nitrogen dioxide (NO,), sulfur dioxide (SO,),
and ozone (03) have been shown to interact with and modify allergen carriers like
pollen grains and fungal spores, increasing the release of allergenic proteins.*®
Moreover, post-translational modifications (PTM) of allergenic proteins can be
induced by reactive trace gases such as Oz and NO, which modifies their structure
and activity, thus altering the immunogenicity of the proteins.'*™*?

Airborne allergenic proteins (aeroallergens) are contained not only in coarse
biological particles such as pollen grains,* but also in the fine fraction of air
particulate matter (aerodynamic diameter < 2.5 pum).***” The occurrence of
allergenic proteins in fine particles can be explained by several processes,
including the release of pollen cytoplasmic granules (PCGs) from the rupture of
pollen grains,® fragmentation of airborne cellular material,'® and contact transfer
of allergenic proteins onto fine particles.'®*® Therefore, aeroallergens can be
directly exposed to ambient O; and NO,, promoting chemical modifications like
tyrosine (Tyr) nitration and oligomerization.

Laboratory and field investigations have shown that proteins can be oxidized,
nitrated and/or oligomerized upon exposure to NO, and O; in synthetic gas
mixtures or polluted urban air."*>**?° The mechanisms of protein nitration by O3
and NO,, and protein cross-linking (oligomerization) by Oz both involve the
formation of long-lived reactive oxygen intermediates (ROIs), which are most
likely tyrosyl radicals, as proposed earlier.’»**** The ROIs can subsequently react
with each other forming dityrosine (DTyr) crosslinks with NO, to form nitro-
tyrosine (NTyr) residues, or undergo further oxidation reactions. Using quantum
chemical methods, Sandhiya et al.*> showed that six different intermediates can
be formed through the initial oxidation of Tyr residues by Os, out of which the
tyrosyl radical is favorable due to a small energy barrier, particularly in the
aqueous phase. In the absence of NO,, tyrosyl radicals can undergo self-reaction
to stabilize in the form of dimers. Under physiological conditions, Pfeiffer et al.*®
found that DTyr was a major product of Tyr modification caused by low steady-
state concentrations of peroxynitrite, while high fluxes (>2 pM s~ ') of nitrogen
oxide/superoxide anions (NO/O, ) are required to render peroxynitrite an efficient
trigger of Tyr nitration. Thus, kinetic competition between Tyr nitration and
dimerization (or oligomerization) upon protein exposure to O; and NO, can be
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expected, which needs to be explored in detail to assess the relevant atmospheric
conditions that favor potentially health relevant protein modifications.

In this study, we explored the oxidation, nitration, and oligomerization reac-
tions of proteins induced by O; and NO,, and their kinetics under different
atmospherically relevant conditions using bovine serum albumin (BSA) as
a model protein. Coated-wall flow-tube and bulk solution experiments were per-
formed to study the kinetics of protein nitration and oligomerization at O; and
NO, concentrations of 5-200 ppb, and relative humidities (RH) of 45% and 96%,
utilizing a size exclusion chromatography/spectrophotometry method. Addition-
ally, we used the kinetic multilayer model of aerosol surface and bulk chemistry
(KM-SUB)*® to investigate which chemical reactions and transport processes
control the concentration and time dependence of protein oligomerization and
nitration.

2. Experimental
2.1. Materials

Bovine serum albumin (BSA, A5611) and sodium phosphate monobasic mono-
hydrate (NaH,PO,-H,0, 71504), were purchased from Sigma Aldrich (Germany).
Sodium hydroxide (NaOH, 0583) was purchased from VWR (Germany). 10x Tris/
glycine/SDS (161-0732) was purchased from Bio-Rad Laboratories (USA). High
purity water (18.2 MQ cm) for chromatography was taken from a Milli-Q Integral 3
water purification system (Merck Millipore, USA). The high purity water (18.2 MQ
cm) was autoclaved before use if not specified otherwise.

2.2. Protein O;/NO, exposure setup

Reactions of BSA with O3/NO, mixtures were performed both homogeneously in
aqueous solutions and heterogeneously via the exposure of BSA-coated glass
tubes to gaseous O;/NO, at different levels of relative humidity (RH). Before the
exposure experiments, BSA solutions (0.6 mL, 0.33 mg mL ™ ') were loaded into the
glass tube and dried by passing a nitrogen (N,, 99.999%) flow at ~1 L min™"
through a specific rotating device,” which is essential to ensure homogeneous
coating and experiment reproducibility. The BSA-coated glass tube was then
connected to the experimental setup. The experimental setup (Fig. S1, ESI}) was
described previously,* and was extended by incorporating an additional flow of
NO, after the humidifier.

Briefly, ozone was produced from synthetic air passed through a UV lamp
(L.O.T.-Oriel GmbH & Co. KG, Germany) at ~1.9 L min~*. The gas flow was then
split and one flow was passed through a Nafion® gas humidifier (MH-110-12F-4,
PermaPure, USA) operated with autoclaved high purity water, while the other flow
remained dry. RH could be varied in a wide range by adjusting the ratio between
the dry and humidified air flow. During the experiments, the standard deviation
from the set RH values was <2% RH. The gas flow with a set O; concentration and
RH was then mixed with a N, flow containing ~5 ppmV NO, (Air Liquide, Ger-
many). The NO, concentrations were adjusted by varying the flow rate (20-80 mL
min~') of the ~5 ppmV NO, flow. The combined gas flow was then directed
through the BSA-coated glass tube. The concentrations of O; and NO, as well as
RH were measured using commercial monitoring instruments (Ozone analyzer,
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49i, Thermo Scientific, Germany; NO, analyzer, 42i-TL, Thermo Scientific, Ger-
many; RH sensor FHA 646-E1C with ALMEMO 2590-3 instrument, Ahlborn, Mess-
und Regelungstechnik, Germany). After exposure, the proteins were extracted
from the glass tube with 1.5 mL of 1x Tris/glycine/SDS (pH 8.3) buffer to avoid
precipitation of protein oligomers in the extract solution.

For homogeneous bulk solution reactions, the O3/NO, gas mixtures were
directly bubbled through 1.5 mL of 0.13 mg mL™~" BSA aqueous solutions (pH 7.0
+ 0.2; measured by a pH meter, model WIW multi 350i, WTW, Germany) at a flow
rate of 60 mL min ! using a Teflon tube (ID: 1.59 mm). All heterogeneous and
homogeneous exposure experiments were performed in duplicate.

2.3. SEC-HPLC-DAD analysis

Product analysis was performed using high-performance liquid chromatography
coupled to diode array detection (HPLC-DAD, Agilent Technologies 1200 series).
The HPLC-DAD system consisted of a binary pump (G1379B), an autosampler
with a thermostat (G1330B), a column thermostat (G1316B), and a photodiode
array detector (DAD, G1315C). ChemStation software (Rev. B.03.01, Agilent) was
used for system control and data analysis. Molecular weight (MW) separation by
size exclusion chromatography (SEC) was carried out using an AdvanceBio SEC
column (Agilent, 300 A, 300 x 4.6 mm, 2.7 um). Isocratic separation at a flow rate
of 0.35 mL min~' was carried out using a mobile phase of 150 mM NaH,PO,
buffer (adjusted to pH 7 with 10 M NaOH (aq)) after injecting 40 pL of sample. The
absorbance was monitored by the DAD at wavelengths of 220, 280 and 357 nm.
Each chromatographic run was performed in duplicate.

A protein standard mix 15-600 kDa (69385, Sigma Aldrich, Germany) con-
taining bovine thyroglobulin (MW = 670 kDa), y-globulin from bovine blood
(MW = 150 kDa), chicken egg albumin, grade VI (MW = 44.3 kDa), and ribonu-
clease A (MW = 13.7 kDa) was used for SEC column calibration (elution time vs.
log MW). Details can be found in Fig. S2 in the ESL7 It should be noted that SEC
separates molecules according to their hydrodynamic sizes, thus only approxi-
mate molecular masses can be obtained by this calibration method.

2.4. Determination of protein oligomer mass fractions and nitration degrees

A detailed description of the simultaneous determination of protein oligomer
mass fractions and nitration degrees using the SEC-HPLC-DAD analysis described
above can be found in Liu et al.*® Briefly, we report the formation of BSA oligomers
as the temporal evolution in the ratios of the respective oligomers (dimers,
trimers, and oligomers with 7 = 4) to the sum of monomer and all oligomer peak
areas at the absorption wavelength of 220 nm. Assuming that the molar extinction
coefficients of the individual protein oligomer fractions are multiples of the
monomer extinction coefficient, the calculated oligomer ratios correspond to the
mass fractions (w) of the individual oligomers. Nitration degrees (NDs), defined as
the concentration of nitrotyrosine (NTyr) divided by the sum of the concentra-
tions of NTyr and Tyr, were obtained for BSA monomers and dimers, using the
respective peak areas of the monomer and dimer signals at wavelengths of
280 nm and 357 nm. For calculation of the total protein ND, the sum of the peak
areas of all protein signals at wavelengths of 280 nm and 357 nm was used. Note
that corresponding to the definition of the ND, the same number of nitrated Tyr
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residues in a BSA monomer and dimer will lead to a factor of 2 difference in the
individual NDs, because a BSA dimer contains twice the number of Tyr residues
compared to the monomer. Further information on the calculation of NDs can be
found in Liu et al*® The values and errors of the calculated NDs and oligomer
mass fractions represent the arithmetic mean values and standard deviations of
duplicate experiments.” The commercially available BSA also contains dimers
and trimers of the protein as well as pre-nitrated monomers and dimers (~NDs
0.9%). Therefore, the reported values of oligomer mass fractions and NDs were
corrected for these background signals.

3. Results and discussion
3.1. Protein oligomerization

Fig. 1 and 2 show the effects of varying NO, and O; concentrations on protein
oligomerization for homogeneous bulk solution and coated-wall flow-tube
experiments, respectively. Exposures were carried out at fixed NO,
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Fig. 1 Temporal evolution of protein oligomer mass fractions (w (%), monomer, dimer,
trimer and oligomer (n = 4)) in the aqueous phase reaction of BSA with Oz/NO,: ((a)—(d)) at
a fixed NO, concentration of 50 ppb with varied Oz concentrations; ((e)—(h)) at a fixed Oz
concentration of 50 ppb with varied NO, concentrations. The data points and error bars
represent the arithmetic mean values and standard deviations of duplicate experiments.
The dashed lines are the results of the kinetic model.
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Fig. 2 Temporal evolution of protein oligomer mass fractions (w (%), monomer, dimer,
trimer and oligomer (n = 4)) upon exposure of BSA films (thickness 34 nm) to various Osz/
NO, concentrations: ((a)—-(d)) at 45% RH; ((e)-(h)) at 96% RH. The data points and error bars
represent the arithmetic mean values and standard deviations of duplicate experiments.
The dashed lines are the results of the kinetic model.

concentrations with varying O; concentrations and vice versa. The exposure time
was varied from 0.5 up to 12 h. While in bulk solution experiments dimers were
generally observed as the major reaction products of BSA with Oz and NO,,
trimers or higher oligomers can be dominant products in the coated-wall flow-
tube experiments at longer exposure times, depending on the experimental
conditions.

The results of the bulk solution experiments on protein oligomerization are
illustrated in Fig. 1. Generally, the mass fractions of dimers, trimers, and higher
oligomers increase with increasing reaction times, reaching up to 21 £+ 1% for
dimers, 9 + 1% for trimers, and 4 £+ 1% for oligomers with n = 4 after 12 h of
exposure. The minimum mass fraction of monomers correspondingly was found
to be 66%. While varying the O; concentrations (Fig. 1a-d, fixed 50 ppb of NO,)
from 5 to 200 ppb significantly affected the temporal evolutions observed for the
mass fractions of the different oligomers, changing the NO, concentration
(Fig. 1e-h, fixed 50 ppb of O3) in the same range did not result in significant
changes in oligomer mass fractions. The solubility of O; and NO, in water is
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~107> mol mL™" (derived from their Henry’s law constants: Ksol,ce,0, = Ksol,ce,No,
~ 10> M atm ')* under our experimental conditions. Increasing O; and NO,
gas concentrations between 5 to 200 ppb should result in concentrations of O;
and NO, between 7 x 10™"" to 3 x 107° M in the aqueous phase. Thus, the
insignificant change of oligomer mass fractions with varied NO, concentration
should not be caused by a saturation of dissolved NO, in the concentration range
investigated (5 to 200 ppb).

Mechanistically, the reactions between O3/NO, and protein Tyr residues
involve the formation of ROIs (tyrosyl radicals) resulting from the reaction of Tyr
with O;. These ROIs can then either react with NO, to form NTyr residues or cross-
link due to intermolecular DTyr formation.**® Ozonolysis of Tyr may also result in
other oxidized products such as 3,4-dihydroxyphenylalanine (DOPA).** However,
the reaction mechanism for the formation of these oxidized products is not the
focus of this study and we only consider these modified Tyr derivatives in the
proposed mechanism (Table S17) as a portion of the oxidized amino acid resi-
dues. Regardless, an inhibition of intermolecular DTyr cross-linking would be
expected with increasing NO, concentrations. However, no such behavior was
observed. Furthermore, similar protein oligomer mass fractions were observed
previously in the absence of NO, for BSA exposed to O; in bulk solution experi-
ments with comparable levels of O; (50 and 200 ppb).*® This observation may be
due to the high number of accessible Tyr residues on the dissolved BSA molecules
in solution, because after 12 h of exposure, 66% of BSA (Fig. 1a) is still present in
monomeric form.

The results of the coated-wall flow-tube experiments on protein oligomeriza-
tion are illustrated in Fig. 2. In these experiments, thin protein films were exposed
to O3/NO, mixtures. A film thickness of ~34 nm, or roughly five layers of BSA, can
be calculated assuming an even distribution of the BSA molecules on the inner
surface of the glass tube.?® The experiments were performed at 45% and 96% RH
with O3/NO, concentrations of 50/50, 200/50, and 50/200 ppb, respectively.
Generally, the reactive sites accessible for oligomerization reactions of the
proteins are limited here compared to aqueous solutions, leading to smaller mass
fractions of protein oligomers. Furthermore, we observed a 30-40% reduction of
the overall oligomer mass fraction (dimer, trimer, and oligomer =4) compared to
similar flow-tube experiments in the absence of NO, for comparable RH and O;
concentrations.* Apparently, the lower diffusivity of the proteins in this solid
(45% RH) or semi-solid (96% RH) state induces a competition between DTyr and
NTyr formation, also indicated by the observation of slower reaction rates for
oligomerization in the bulk of the thin protein film compared to its surface.?**

In contrast to the bulk solution experiments, which show a steady increase of
the oligomer mass fractions with exposure time, dimer and trimer mass fractions
in the flow tube experiments peaked at exposure times of 2—-4 h, depending on RH
and trace gas concentrations, while only higher oligomers steadily increased over
the course of the reaction time (see Fig. 2). This result indicates that as the
exposure proceeds, the formation of dimers and trimers becomes slower than
their consumption converting them into higher oligomers. The characteristic
residence times (lifetimes) of biological particles in the atmosphere can range
from hours to weeks, depending on their sizes, aerodynamic, and hygroscopic
properties.®> Our observation indicates that the initial exposure (<2-4 h) of
proteins to Oz and NO, mainly leads to the formation of protein dimers and
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trimers, and as the exposure proceeds, protein oligomers could be the dominant
protein species, e.g., on the surface of bioaerosol particles.

3.2. Protein nitration

Fig. 3 and 4 show the effects of varying NO, and O; concentrations on the
nitration of protein monomers and dimers in homogeneous bulk solution and
coated-wall flow-tube experiments, respectively. Exposures were carried out at
fixed NO, concentrations with varying O; concentrations and vice versa. The
exposure time was varied from 0.5 up to 12 h. While in previous studies total
protein nitration degrees (NDs) were investigated upon exposure to Oz and
NO,,"*** we explicitly explored and characterized the reaction kinetics of protein
nitration, resolving the individual NDs of the protein monomer and its various
oligomers over the course of reaction time.

The results of the bulk solution experiments on protein nitration are illus-
trated in Fig. 3. The maximum ND of protein monomers and dimers were found
to be 7% and 5% after 12 h exposure to 200 ppb Oz and 50 ppb NO,, respectively.
These results correspond to 1.4 NTyr residues per monomer molecule and 2 NTyr
residues per dimer molecule (NTyr/monomer and NTyr/dimer are shown as
secondary y-axes in Fig. 3 and 4). We found a positive relationship between the
NDs and O; concentration (Fig. 3a and b), particularly that the increase of O;
concentration by one order of magnitude from 5 to 50 ppb resulted in an increase
of NDs from 4.2 + 0.2% to 6.9 &+ 0.2%, and 2.0 & 0.3% to 4.5 £ 0.3% after 12 h
exposure for the monomer and dimer, respectively. Also, for protein nitration, no
significant difference was found when concentrations of NO, were varied from 5
to 200 ppb at a fixed O; concentration of 50 ppb, as shown in Fig. 3¢ and d. These
results are in accordance with the observations made by Shiraiwa et al.>® on the
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Fig. 3 NDs of protein monomer and dimer (primary y-axis), and NTyr number per
monomer and dimer (secondary y-axis) plotted against reaction time in the aqueous phase
reaction of BSA with Oz/NO,: (a) and (b) at a fixed NO, concentration of 50 ppb with varied
Oz concentrations, and (c) and (d) at a fixed Oz concentration of 50 ppb with varied NO,
concentrations. The data points and error bars represent the arithmetic mean values and
standard deviations of duplicate experiments. The dashed lines are the results of the
kinetic model.
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Fig. 4 NDs of protein monomer and dimer (primary y-axis), and NTyr number per
monomer and dimer (secondary y-axis) plotted against exposure time upon the exposure
of BSA films (thickness 34 nm) to various Oz/NO, concentrations: (a) and (b) at 45% RH,
and (c) and (d) at 96% RH. The data points and error bars represent the arithmetic mean
values and standard deviations of duplicate experiments. The dashed lines are the results
of the kinetic model.

study of the reactive uptake of NO, by aerosolized proteins. They found that the
uptake coefficient of NO, (yno,) increased with increasing O; concentrations
while yno, decreased gradually with increasing NO, concentration. Thus, our
results confirm that the protein reaction with O; and formation of ROI is the rate-
limiting step for protein nitration.*>** Shiraiwa et al.>* have excluded NO; or N,O5
(formed through NO, oxidation by O3) as major contributors to protein nitration.
Ghiani et al.** reported that nitration of proteins can also occur by nitrate ions in
bulk solutions without UV irradiation under acidic conditions (pH < 3 for BSA).
The reaction of NO, with water can form nitric acid and thereby nitrate ions might
appear in the BSA solution. However, we found that the pH of the BSA solutions
stayed relatively constant (pH 6.6 + 0.2; pH meter model WTW multi 350i) for
a reaction time of 12 h at 200 ppb NO, and 50 ppb Os, indicating that nitration
induced by nitrate ions is likely a minor or negligible pathway in this study. This
hypothesis is consistent with the results in Fig. 3c and d that show only a slight
increase in ND (monomer, 6.3 £ 0.3% to 6.9 &+ 0.2%, and dimer, 4.0 £+ 0.3% to 4.5
=+ 0.3%, for 12 h reaction) for a one order of magnitude increase in the NO,
concentration from 5 to 50 ppb.

The results of the temporal increase of NDs of monomer and dimer for reac-
tions of the thin protein films with O; and NO, concentrations of 50 and 200 ppb
at 45% and 96% RH are illustrated in Fig. 4. Here, the NDs for monomer and
dimer at 45% RH were found to be around 1% and 0.8% for 12 h exposure,
corresponding to 0.2 NTyr/monomer molecule and 0.3 NTyr/dimer molecule.
Note that the protein coating consisted of ~5 layers. Therefore, the results likely
indicate that on average one Tyr per BSA monomer molecule located on the
surface of the protein film was efficiently nitrated, while the bulk nitration
occurred at much slower rates. This highly reactive site could be the Tyr residue at
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position 161 (Y161), as suggested by Zhang et al** The maximum NDs for
monomer and dimer reached up to 2.5 £ 0.1% and 2.0 + 0.1% at 96% RH,
respectively. However, both of the maximum NDs at 45% and 96% RH were much
lower than those obtained for O3/NO, exposure in aqueous solutions (200 ppb Os;
and 50 ppb NO,). This discrepancy can be explained by a decrease in viscosity and
an increase in diffusivity on going from an amorphous solid (45% RH) or semi-
solid (96% RH) protein on a coated wall to an aqueous protein solution and was
able to be reproduced using a model (see below).***” Furthermore, the NDs of BSA
in this study are comparable to those found by Yang et al*® using the same
protein, whereas the nitration efficiency of BSA in general is found to be much
lower than the one observed for the major birch pollen allergen Bet v 1 in similar
exposure experiments,'” indicating a strong influence of molecular structure and
potentially the amino acid sequence of the reacting protein. From previous mass
spectrometric analysis of the site selectivity of protein nitration by O3/NO,, it is
known that only 3 out of 21 Tyr residues in BSA can be detected in the nitrated
form, while in Bet v 1, 4 out of 7 Tyr residues can be nitrated.>** Thus, besides the
types of nitrating agents (e.g. ONOO™ or O3/NO,) and reaction conditions (in
aqueous solution or heterogeneous exposure), the nitration efficiency also
depends on the fraction of reactive Tyr residues in the investigated protein.

3.3. Kinetics and mechanism of protein nitration and oligomerization by O3/
NO,

The model results for the reactions of proteins with O3/NO, under the various
exposure conditions are shown as the dashed lines in Fig. 1-4. A chemical
mechanism involving 19 reactions (see Table S17 for details) was applied in two
kinetic models, i.e., a box model for bulk solution experiments and a kinetic
multilayer model for aerosol surface and bulk chemistry (KM-SUB)?® for flow tube

Nitrated Protein Dimer

; 2"NO,

Protein Dimer Protein Tetramer

Nitrated Protein Trimer

Protein Trimer ROI-5

Nitrated Protein Monomer

Protein Tetramer

Fig. 5 Schematic overview of the most relevant reactions for protein nitration and olig-
omerization upon exposure to ozone and nitrogen dioxide. The reactions correspond to
protein surface Tyr nitration and oligomerization in the mechanism presented in Table S1.}
The molecular structure of the protein (BSA, PDB accession number 3V03) was created
using RCSB PDB protein workshop (4.2.0) software.
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experiments to fit the experimental data. The most relevant reactions for this
mechanism are illustrated in Fig. 5. The first step in the mechanism is the
reaction of a Tyr residue with O; forming tyrosyl radicals as long-lived reactive
oxygen intermediates (ROIs). In the second step of the process, the ROIs can react
with each other to form dimers, or with NO, to form nitrated monomers. Note
that for simplification, each molecule only contains one reactive tyrosine residue,
while nitrated and oxidized monomers, dimers and trimers are unable to take
part in further reactions in the kinetic model. A dimer can react further with O; to
form a dimeric ROI, which may react with NO, to form a nitrated protein dimer,
with monomeric ROI to form a protein trimer or with another dimeric ROI to form
a protein tetramer.

The following assumptions were made to enable modelling of the reaction
system for bulk solution and coated-wall flow-tube experiments using the sets of
physicochemical parameters shown in Table S1 (ESIf): BSA molecules have
reactive amino acid residues on their surface (AA1) and in their bulk (AA2), both of
them reactive towards Oz;. While ROIs formed in the protein bulk can only react
with NO, to form NTyr, they are unable to form intermolecular DTyr due to steric
hindrance.’® These assumptions were also applied to dimers and trimers. Besides
Tyr, O; can also oxidize other amino acid residues, i.e., cysteine (Cys), tryptophan
(Trp), methionine (Met) and histidine (His).** Among them, only Cys is able to
cross-link proteins directly upon O; exposure, yielding intermolecular disulfide
bridges, as one free Cys is available in BSA.** This reversible cross-linking
mechanism has been shown to be only a minor contributor to protein oligo-
merization upon O3/NO, exposure previously.”® The kinetic parameters were ob-
tained using a global optimization method combining a uniformly-sampled
Monte Carlo search with a genetic algorithm (MCGA method).**** The genetic
algorithm was terminated when the correlation between experimental data and
model output reached an optimum. Concentrations of O; and NO, in the aqueous
phase can be estimated using the published Henry’s law constant of Ky cc,0, =
Ksol,ceno, = 107> M atm™ ', which were used as fixed values in the model.*

The temporal evolution of NDs and oligomer mass fractions in aqueous
solution is well reproduced by the model (Fig. 1 and 3). For the heterogeneous
reactions studied in the coated-wall flow-tube experiments at 45% RH and 96%
RH, some substantial deviations between modelled and measured data can be
observed, and the coefficient of determination (R” value) is approximately a factor
of two lower than for the aqueous data. For example, the oligomer mass fractions
w at 45% RH in Fig. 2a-d are qualitatively captured fairly well, while the model
fails to reproduce their evolution at higher RH, especially for the dimer and trimer
(Fig. 2f and g). The observed reduction of dimers in flow tube experiments could
be reproduced by the model including the reactions on the surface, where the
rates are four orders of magnitude higher than that of bulk reactions. Despite
simple model assumptions when describing the complex reaction system that
was studied, the model reproduces the experimental data reasonably well with an
overall R” value of 0.88 for Fig. 1-4. Most of the optimized parameters obtained for
the flow tube experiments were close to or the same as those for aqueous solu-
tions (for details see Table S1, ESIT). However, note that some of the rate coeffi-
cients would be expected to change as the liquid water content and viscosity
varies. Water could actively take part in some of the reactions and its presence at
different concentrations could lead to changes in experimental conditions, such
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as pH, which would influence the rate of the reactions. As the viscosity increases it
is also expected that some rate coefficients would decrease as they become
diffusion-limited as per the Smoluchowski diffusion equation.****

The second-order rate coefficients obtained as model outputs and shown in
Table S1f are mostly consistent with previous studies.”** However, as the
complex reaction mixture has been reflected in only 19 chemical reactions, the
absolute numbers of the rate coefficients obtained for the individual reactions
likely do not reflect reality, because further secondary chemistry of various kinds
is not included explicitly. It should also be noted that different types of tyrosine
residues have not been explicitly included within the model, although these can
nitrate at different rates and have different surface accessibilities.**** Neverthe-
less, qualitatively, the model results suggest that protein nitration occurs at faster
rates than protein oligomerization. The observed and modelled preference of
nitration over oligomerization can be rationalized by comparing the mass fraction
of nitrated monomer (calculated by multiplying the mass fraction of monomer
with NTyr/monomer) with the total oligomer mass fraction. Nitrated monomers
were observed to have two times or higher mass fractions compared to all other
oligomer mass fractions combined under all experimental conditions. This result
indicates that Tyr nitration outcompetes the dimerization/oligomerization

process.”>**

4. Implications and conclusions

In this study we investigated the kinetics and mechanism of the nitration and
oligomerization of proteins induced by O; and NO, under different atmospheri-
cally relevant conditions. We showed the concentration and time dependence of
the formation of dimers, trimers and higher protein oligomers as well as their
individual nitration degrees. The temporal evolution of the concentrations of
these multiple reaction products was well reproduced by a kinetic model with 19
chemical reactions. Protein nitration was found to be kinetically favored over
protein oligomerization under the experimental conditions studied in this work.
On the basis of the observation that nitrated oligomers formed upon exposure to
03/NO,, we suggest further investigation on the allergenic and immunogenic
effects by nitrated protein oligomers. The nitrated oligomers were also found in
the physiologically-relevant peroxynitrite-induced protein nitration and oligo-
merization,*® for which the mechanism is similar to the one we reported here.>>*

The implications of protein chemistry with O; and NO, under atmospherically
relevant conditions are illustrated in Fig. 6. The overall nitration and oligomeri-
zation rates were both almost one order of magnitude higher in the aqueous
phase than for 45% RH, indicating an increased relevance of the processes under
cloud-processing conditions. Also, the yields of protein nitration and oligomeri-
zation can be strongly influenced by changes in relative humidity leading to
changes of phase states. The protein dimers can yield up to 20% (by mass) for 12 h
exposure in the liquid phase and the NDs of monomers and dimers can be up to
7% and 5%, respectively. This result indicates that on average, 1.4 Tyr residues in
each monomeric protein molecule and 2 Tyr residues in each dimeric molecule
are present in their nitrated forms. For proteins in solid or semi-solid phase
states, our measurement and model results suggest that higher protein oligomers
are likely to be found at lower RH, e.g., on the surface of bioaerosols, whereas the
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Fig. 6 Atmospheric protein chemistry by ozone (O3) and nitrogen dioxide (NO,). Reaction
rates are limited by the phase state of proteins and hence the diffusivity of oxidants and
protein molecules, which changes with relative humidity (RH) and temperature (7). Air
pollutants such as NO, and Oz can enhance allergen release from bioaerosols (e.g., pollen)
with Oz being more important in triggering the nitration, cross-linking and oxidation of

allergenic proteins in bioaerosols and other protein-containing particles (e.g., Bet v 1 on
urban road dust™).

NDs of monomers and dimers remain at ~1-2%. Using ab initio calculations,
Sandhiya et al** also showed that increased temperature can speed up the
formation of tyrosyl radicals by ozonolysis. Thus, it is expected that nitrated and
dimeric protein species could be important products of exposure to O; and NO,
under tropical or summer smog conditions. These differences in reaction kinetics
should be taken into account in studies on the physiological effects of proteins
exposed to anthropogenic air pollutants, as the allergenic proteins in various
oligomerization and nitration states might have a different immunogenic
potential.

Both increasing levels of O; and NO, are able to damage pollen grains and
facilitate the release of allergens in polluted environments.>*® However, our
results show that the tyrosine nitration and cross-linking of proteins are sensitive
towards an increase in O; concentration and rather insensitive towards changes
in ambient NO, concentrations. Therefore, effective control of the enhanced
allergenicity induced by air pollutant-modified aeroallergens should point
towards the decrease of ambient ozone concentrations.
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