Open Access Article. Published on 01 December 2016. Downloaded on 7/29/2025 8:49:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental

Science
Nano

ROYAL SOCIETY

OF CHEMISTRY

View Article Online
View Journal | View Issue

CrossMark
& click for updates

Cite this: Environ. Sci.: Nano, 2017,
4,346

Received 14th September 2016,
Accepted 28th November 2016

DOI: 10.1039/c6en00399k

rsc.li/es-nano

Environmental significance

Addressing a bottle neck for regulation of
nanomaterials: quantitative read-across
(Nano-QRA) algorithm for cases when only
limited data is available

A. Gajewicz,? K. Jagiello,” M. T. D. Cronin,® J. Leszczynski® and T. Puzyn*®

The number and variety of engineered nanoparticles have been growing exponentially. Since the experi-
mental evaluation of nanoparticles causing public health concerns is expensive and time consuming, effi-
cient computational tools are amongst the most suitable approaches to identifying potential negative im-
pacts, to the human health and the environment, of new nanomaterials before their production. However,
developing computational models complimentary to experiments is impossible without incorporating con-
sistent and high quality experimental data. Although there are limited available data in the literature, one
may apply read-across techniques that seem to be an attractive and pragmatic alternative way of predicting
missing physico-chemical or toxicological data. Unfortunately, the existing methods of read-across are
strongly dependent on the expert's knowledge. In consequence, the results of estimations may vary de-
pendently on personal experience of expert conducting the study and as such cannot guarantee the repro-
ducibility of their results. Therefore, it is essential to develop novel read-across algorithm(s) that will provide
reliable predictions of the missing data without the need to for additional experiments. We proposed a
novel quantitative read-across approach for nanomaterials (Nano-QRA) that addresses and overcomes a
basic limitation of existing methods. It is based on: one-point-slope, two-point formula, or the equation of
a plane passing through three points. The proposed Nano-QRA approach is a simple and effective algo-
rithm for filling data gaps in quantitative manner providing reliable predictions of the missing data.

Though nanomaterials have been intensively studied for the last 25 years, there are still gaps in the reliable experimental data that would provide

comprehensive information related to their structures, properties and environmental impacts. Such gaps hamper safe developments and applications of

new nanomaterials. Concerning the increasing number of existing and newly synthetized nanomaterials and the serious health risk that they may

introduce, developing new read-across algorithms for filling data gaps, without the necessity of performing time consuming and expensive experimental

studies on large set of nanomaterials, is of very high importance for the whole society, including companies designing new chemicals, end-users and the

administration regulatory bodies. We believe that computational technique developed by us and reported in this manuscript allows to overcome such a bot-

tle neck providing novel tool for the general use in risk assessment of new species.

Introduction

mutagenic and/or neurotoxic health effects."™ Since

engineered nanoparticles may introduce the effect of ageing,

Apart from providing a wide range of potential benefits, the
use of engineered nanoparticles (NPs) may also endanger hu-
man health through the potential induction of cytogenetic,
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transformation, and biomolecule coating under environmen-
tal or biological conditions, it is still largely unknown which
properties govern their toxicity. Therefore, a great effort
should be put into defining and developing methods for NPs
characterization as well as the assessment of exposure, engi-
neering controls, potential toxicity, fate and transport, and
their life cycle.’

The great need for the development of novel, fast, and in-
expensive procedures for risk assessment that would not only
reduce the necessity of extensive animal testing but also pro-
vide details on the potential mechanisms of toxicity at the

This journal is © The Royal Society of Chemistry 2017
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molecular level was stressed multiple times, in the REACH
legislation,® the European Chemicals Agency,”*° United
States — Canadian Regulatory Cooperation Council,"* as well
as the Organization for Economic Co-operation Development
(OECD).">"* In addition, the idea of developing intelligent
testing strategies (ITS)'* also known as alternative testing
strategies (ATS)" or risk assessment strategies (RAS)'® has
also been the topic of extensive discussions for over three
years, through many national or international political incen-
tives or scientific research projects. Regardless of the names
used for this strategy, the main idea standing behind refers
to specific challenges for engineered nanoparticles and al-
lows the risks assessment of nanomaterials to be performed
accurately, effectively and efficiently.'”” Some of the key-
priority research components of such strategy can be defined
as follows: (1) grouping/categorization based on: variations in
chemical structure and physico-chemical properties, possible
mechanisms of metabolism and/or mode of action, (2) identi-
fying data gaps in physico-chemical characterization, expo-
sure assessment, and hazard assessment within the defined
groups/categories, (3) using modeling approaches (i.e. com-
putational methods such as: quantitative structure-activity/
property relationships (QSAR/QSPR) and read-across) for the
prediction of missing data for specific NPs within the defined
groups/categories; and finally (4) using research outcomes for
the prioritization of hazardous NPs, regulatory decision-mak-
ing, and in safe-by-design principle along the value chain of
an innovation.

Table 1 Definitions of key terms used in the field of non-testing approaches
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All of the methods listed above, i.e.: grouping, chemical
category formation, QSAR/QSPR and read-across form a
group of non-testing approaches. They are often mismatched
and some of them are incorrectly used as synonyms. This
“glossary problem” is a source of many misunderstandings
and false explanations. Table 1 provides definitions of many
of the terms used in the field of non-testing approaches.

In light of the definitions presented in the Table 1, it
should be clearly stated that grouping is not the same as
read-across. According to OECD the concept of grouping in-
cludes: (1) chemical category formation and/or (2) chemical
analogue(s) identification. Thus, it is restricted to techniques
for creating groups of somehow similar chemicals. At the
same time, the term read-across is reserved for one of the
techniques available for filling data gaps.'® In other words,
when groups (or categories) of NPs are already established
one may start fill the data gaps within the groups/categories
by using read-across or other techniques.

Additionally, quantitative structure-activity relationship
approach (QSAR) has been also pointed out as a promising
approach for filling data gaps within the groups/categories.
However, this approach could be only used when there is al-
ready a large experimental dataset — unfortunately, it can not
be applied when is a limited amount of experimental data.
Nevertheless, the successful concept and application of
Nano-QSAR to predict toxicity of NPs has been already
demonstrated.?** However, there are serious limitations re-
lated to the development of Nano-QSARs.***® The limited

Term Definition

Analogue
approach

OECD defines an analogue as “a chemical whose intrinsic physicochemical, environmental or toxicological properties are
likely to be similar to those of another chemical based upon a number of potential properties including structural and

physicochemical properties”."® The term analogue approach is used when “the grouping involves a very limited number of
chemicals (typically two chemicals) and trends or regular patterns in properties are not apparent”.”"?

Categorization

grouping, ranking, and read-across as examples of types of categorization”.
OECD defines a chemical category as “a group of chemicals whose physicochemical and human health and/or
environmental toxicological properties and/or environmental fate properties are likely to be similar or follow a regular
The term category approach is used when “read-across is employed between

Category
approach

pattern as a result of structural similarity”.*

“Categorization describes the general approach to the grouping of chemicals. Categorization strategies may include

55 15

several substances that have structural similarity. These substances are grouped together on the basis of defined structural

s 9,13

similarity and differences between the substances”.
Grouping

“Grouping describes the general approach to assessing more than one chemical at the same time. It can include formation

of a chemical category or identification of a chemical analogue for which read-across may be applied. Substances that are
structurally similar with physicochemical, toxicological, ecotoxicological and/or environmental fate properties that are likely
to be similar or to follow a regular pattern may be considered as a group of substances. These similarities may be due to a
number of factors: (i) common functional group (i.e. chemical similarity within the group), (ii) common precursors and/or
likely common breakdown products via physical and/or biological processes which result in structurally-similar degrading
chemicals, (iii) a constant pattern in the changing of the potency of the properties across the group (i.e. of physico-chemical

and/or biological properties)”.”"?

For some time now, there has been an ongoing discussion on how to develop scientifically

based categorization strategies, how to identify the grouping needs and possibilities as well as on how to define the key
physico-chemical features and toxicological responses allowing the effect-driven grouping of nanomaterials. The overview on

the existing concepts, schemes and various criteria for grouping nanomaterials can be found in the literature.
Under OECD, qualitative or quantitative structure-activity relationships is a mathematical technique that relates a (sub)

[Q]sARs

18-21

structure to the presence or absence of a property or activity of interest. [Q|SAR is based on dependencies defined between
the variance in molecular structures, encoded by so-called ‘descriptors’, and the variance in biological activity in a set of

similar chemicals.™
Read-across

Read-across is a data gap filling technique within an analogue or category approach. Can be qualitative or quantitative.”

Under REACH, read-across is a technique for predicting endpoint information for one substance (target substance), by using
data from the same endpoint from (an) other substance(s), (source substance(s)).®

This journal is © The Royal Society of Chemistry 2017
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size of the experimental dataset available for modeling®” re-
mains the large obstacle for progress in this area. In the ab-
sence of relevant and sufficient data to build an appropriately
validated Nano-QSAR model, one needs apply a method
based on limited amount of data - read-across approach.

In principle, the read-across approach is based on the as-
sumption that chemicals that are structurally similar, or fol-
low a regular pattern as a result of structural similarity,
should exhibit similar physico-chemical, toxicological and
eco-toxicological properties.'> Once similar chemicals have
been grouped together (at the stage of grouping), endpoint
information (e.g. toxicity) for one, or more, chemical(s) (the
so-called “source chemical(s)”) can be used to make predic-
tions of the same endpoint for another chemical (the “target
chemical”).">'? Read-across can be carried out in one of the
four schemes: one-to-one, one-to-many, many-to-one and
many-to-many. In the first two cases, the use of the endpoint
value for source substance as the estimated value of the tar-
get substance is the only possible way to make the prediction.
However, when sufficient data allow the endpoint values
from two or more source chemicals can be used to predict
the same endpoint for target substance by averaging or tak-
ing the most conservative value among the source chemicals
within the whole category of similar substances.'*"?

Some studies have investigated the possibility of grouping
and read-across predictions for nanomaterials based on
methods of similarity analysis. In the work of Xia et al.®®
grouping of nanomaterials was carried out using principal
components analysis (PCA). Recently Gajewicz et al.*° have
employed a two-dimensional hierarchical cluster analysis to
identify groups of nanoparticles based on similarity in their
structural features and then use the activity data for such de-
fined groups (i.e. source chemical(s)) to assess the biological
activity for empirically untested nanomaterials (i.e. target
chemical(s)). However, the mentioned methods provide only
the qualitative information and may be used exclusively to
obtain a ‘yes/no’ answer for the presence (or absence) of the
same property/activity for one or more target chemical(s).

Following the OECD official guidance documents'® and
other'®*° the prediction with quantitative read-across can be
conducted with one of four main concepts such as:

e Reading across from the endpoint value of a similar
chemical (e.g., the closest source chemical);

e Applying a mathematical scale to the trend in available
experimental results from two or more chemicals similar to
the target chemical (e.g., trend analysis or structure-activity
relationships);

e Processing the endpoint values from two or more source
chemicals (e.g., by averaging, by taking the most representa-
tive value), o.

e When sufficient data allow, taking the most conservative
value among the source chemicals within the whole category.

Unfortunately, despite a broad consultations at interna-
tional level up to the date the existing international princi-
ples and guidelines on read-across do not provide clear rec-
ommendations on how to apply these concepts, and the
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existing methods of read-across have not been sufficiently
standardized yet.*' Consequently, as evidenced by the results
of a round-robin exercise on read-across*” very often the re-
sults of estimations with read-across are “expert-dependent”
i.e. they may vary dependently on personal experience of ex-
pert conducting the study. Moreover, the level of uncertainty
in predictions as well as the reproducibility of the results
from the read-across evaluation depends on the approach se-
lected. Thus, in order to reduce the differences in expert
judgment results, there is clearly a need to proceed towards a
new concept, namely the development of quantitative read-
across that will be widely accepted by regulatory bodies as a
“golden standard”.

This paper describes development and application of
novel, effective algorithms for filling data gaps in quantitative
manner. We rationalize that this approach provides reliable
predictions of the missing data without the need for addi-
tional experiments.

Novel approach: Nano-QRA algorithm

Within a group/category, the compounds are often related to
each other by a trend in the empirical data for a given end-
point. Thus, their property changes in a predictable manner.
When a consistent trend (i.e. increasing, or decreasing pat-
tern in the changing potency of the properties of member(s)
across the group) is observed, the missing values can be esti-
mated by simple scaling from the empirical data for a given
endpoint to fill in the data gaps. The data gaps can be filled
in a number of ways, including interpolation and extrapola-
tion from one or more other group members."? Interpolation
refers to the estimation of the activity/property of a chemical
using empirically measured values from two chemicals on
“both sides” of that chemical within a defined group. When
the estimated activity/property is bracketed on only one side
by empirical data (ie. beyond the range of the measure-
ments), then read-across through extrapolation may be used
to fill data gaps. However, it needs to be emphasized that ex-
trapolation will become increasingly uncertain and poten-
tially more unreliable the further from the source chemical
the target is. Therefore there is a preference for the use of
interpolation rather than extrapolation.*?

It should also be noted that for both interpolation and ex-
trapolation approaches, there will be an increase in uncer-
tainty if a trend (linear or otherwise) in the empirical data for
a given endpoint is poorly defined or missing. Since the qual-
ity of the relationship influences the uncertainty, it is intui-
tive that interpolation/extrapolation based on a large number
of data, leads to lesser uncertainty than interpolation/extrapo-
lation based on few data points adopted from different
sources. In addition, since the relationship depends on the
quality of the independent variable (i.e. descriptor), thus a
key aspect of the approach presented here is to ensure that
the structural property is - in some way - related to the activ-
ity being modeled.

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6en00399k

Open Access Article. Published on 01 December 2016. Downloaded on 7/29/2025 8:49:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science: Nano

Ideally, the independent variable(s) should be selected ar-
bitrarily, based on the well-known mechanism of action.
However, very often one does not know which chemical prop-
erties or structural features are associated with biological ac-
tivity. In such a case, the selection of descriptor(s) is
performed on a statistical, rather than mechanistic, basis. Re-
gardless the method used to select the descriptor(s), it is im-
portant to provide a mechanistic interpretation of a given
model and to ensure that some consideration is given to the
possibility of a mechanistic association between the
descriptor(s) and the endpoint being modeled.

Since the arrangement of the species in a matrix of
selected descriptor(s) and endpoint should ideally reflect any
trend within the group of similar compounds, the considered
chemicals should be arranged in a suitable order, ie.
according to increasing or decreasing value of selected inde-
pendent variable. Thus, by plotting the selected descriptor
with empirical data, any trends can be easily verified. If the
trend has been found to be statistically sound and the inves-
tigated property of compounds display a notable trend, then
the missing values can be estimated by simple scaling the
available experimental data from one source compound (i.e.
extrapolation) or two and more source compounds (ie. inter-
polation) to the target compound.

In the simplest case, when only one descriptor is selected,
we have proposed to use the two-point slope formula
(Fig. 1A) to perform interpolation and find intermediate
point(s) in the data.

The equation that goes through the two given points
(MeOx_4, MeOx_,) represented as (xi, ¥;) and (x,, y,) respec-
tively, was computed according to eqn (1):

A Yoo¥a_Yit¥
(YA Xo-X2  Xi-Xo
Mer_l A (XO-X2)+Y1 (xl 'Xo)
(X1 ¥1) Yo~ X%
15 Yo) MeOx
(Xp Yo)
(X1, Xo)
(Yo Y2) MeOx ,

(%o Yz_)
(X0, %)

X)

B o yo=m - (xo-X1) +y,
Ay N
AX X -Xp
MeOx
(o Yo)
Ay =Yo=¥i MeOx
(x5, ¥1)
AX =X,- X,
MeOx ,

(%2 ¥5)

X)

Fig. 1 Predicting missing data: interpolation using one-point-slope
formula (A), and extrapolation using two-point formula (B).
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y0:YJ(xo_x2)+J’2(x1—xo) (1)

X=X

Yo= W :yl_yr) N

X=X X=X

where: x; is a particular value of a given independent variable
for MeOx ; y; is the value of the endpoint for MeOx ;.

To extrapolate the predicted value for chemicals beyond
the range of the measurements, we employed a one-point-
slope formula (Fig. 1B). Thus, in order to estimate the miss-
ing value of a given endpoint (y,) for MeOx_, from source
chemical MeOx_, represented as (x4, y;) we applied eqn (2):

Yo =m-(xo — x1) + 1 (2)

where: x; is a particular value of a given independent variable
for MeOx ;; y; is the value of the endpoint for MeOx ; m is
the slope which was calculated using the gradient formula

(eqn (3)):

A -
m=—y=yl Y2 3)
Ax  x —x,

It should be noted, however, that in some cases the trend
in the empirical data will be difficult to establish based only
on one descriptor. Therefore, if the studied activity/property
is expected to follow a trend based on two relevant structural
characteristics (i.e. descriptors) then the use of the equation
of a plane passing through three points would be required.
To determine the equation of a plane in three-dimensional
space, three points represented as (xi, y1, 21), (X2, Y2, 22) and
(x3, y3, 23) are required. To compute the third-order determi-
nants (i.e. 3 x 3 matrix) we used Sarrus's rule, presented
graphically in Fig. 2. By assuming that the resolved equation
of a plane in three-dimensional space has the form as shown
in eqn (4) and, if the chemicals belong to the plane, it is pos-
sible to interpolate the missing value of a given endpoint (y,)
for desired point (MeOx ,):

bo + biXmeox, T DaYmeox, T DsZmeox, = 0 (4)

where: b, is the intercept; by, b,, b; are the coefficients; x and
z are a particular value of a given independent variable for
MeOx ,; y is the value of endpoint.

Even if a point does not lie directly on the plane, the pro-
posed approach may also be acceptable in certain cases for
extrapolation.

Methods

The methodology applied in this study involved the following
steps: (i) exploring the multidimensional space of molecular
descriptors in order to select the independent variable(s) that
may reflect the endpoint of interest; (ii) identifying a trend in
the experimental data for a given endpoint across chemicals;
(iii) undertaking read-across analysis, ie. predicting a

Environ. Sci.: Nano, 2017, 4, 346-358 | 349
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Fig. 2 Workflow of estimating missing data using the equation of a
plane passing through three points.

particular activity for an unknown chemical(s) using interpo-
lation and extrapolation approaches: one-point-slope, two-
point formula, or the equation of a plane passing through
three points.

Experimental data

As metal oxide nanoparticles (MeOx NPs) become more com-
monly used in everyday products, they were selected as a
group case study. Data on cytotoxicity to bacteria Escherichia
coli, for 17 metal oxides nanoparticles, expressed in terms of
the concentration of metal oxide nanoparticles that reduces
bacteria viability of 50% (ECs,), were taken from our previous
study.>® These toxicity data were supplemented by additional
information on the toxicity of 18 metal oxide nanoparticles to
the human keratinocyte (HaCaT) cell line, expressed in terms
of the concentration of metal oxide nanoparticles that caused
a 50% reduction of the cells after 24 h exposure (LCj,).*

To ensure that the outcome of the current study is directly
comparable with the results obtained from the Nano-QSAR
modeling,**** we employed the same method of data split-
ting into training and validation sets. The training sets (i.e.
training source compounds) were later used to identify the
trends in the experimental data for a given endpoint across
chemicals and to predict a particular activity for compounds
from validation and prediction sets, whereas the external vali-

350 | Environ. Sci.: Nano, 2017, 4, 346-358
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dation sets (ie. validation source compounds) were applied
to evaluate the predictive ability of Nano-QRA models. Fi-
nally, the proposed here predictive tools were applied to pre-
dict the toxicity towards bacteria E. coli and human
keratinocyte (HaCaT) cell line for untested metal oxide nano-
particles (i.e. target compounds) from the prediction sets.

Descriptors

The parameters quantitatively describing variability of the
nanoparticles’ structure (i.e. structural descriptors) were
taken from our previous studies.”>** The descriptors have
been auto-scaled, which means that the average value was
subtracted from the descriptors and the resultant values di-
vided by the standard deviation to ensure the same scale and
range of all variables (eqn (5)):

L =5 (5)

where: z; - is the transformed value of a given variable; x; - is
the original value of a given variable; X; - is the mean value
of a given variable for all studied compounds; s; - is the stan-
dard deviation of a given variable for all studied compounds.

Statistical analysis and computational modeling methods

To verify how well the read-across algorithm based on the
equations of lines and planes accounts for the variance of the
response in the training set, the determination coefficient
(R*) was calculated according to the formula (eqn (6)):

n 2

$m-r)

R =1~ : ©)

n

Y-y

i=1

where: yi*? is the experimental (observed) value of the prop-
erty for the ith compound, yP™¢ the predicted value for the
ith compound, y ** the mean experimental value of the
property in the training set, n the number of training source
compounds.

The predictive power (i.e. prognostic ability) of the pro-
posed approach was additionally confirmed by employing the

external validation coefficient (Qg,”) defined as (eqn (7)):

-y
QFz2 =l-m (7)
-y )
J

where: yi*? is the experimental (observed) value of the prop-
erty for the jth compound, yP™¢ the predicted value for the
Jjth compound, y “*? the mean experimental value of the
property in the validation set, k the number of validation
source compounds.

This journal is © The Royal Society of Chemistry 2017
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Finally, in order to assess the uncertainty of the read-
across predictions, the error propagation analysis was
performed. For quantifying the uncertainty of prediction the
following metrics have been employed:**

(1) The average absolute percentage error (AAPE) (eqn (8)):

exp _  pred

yl 1
exp
i

AAPE=1% x100% (®)

nizi

(2) The average absolute error (AAE) (eqn (9)):

pred

-y 9)

AAE = lz
niog
(3) The root mean square deviation (RMSD) (eqn (10)):

(10)

where: y§*? is the experimental (observed) value of the prop-
erty for the ith compound, yP™® means the predicted value
for the ith compound, 7 is the number of compounds in the
training set.

In addition, we assumed that the predicted toxicity of
metal oxide nanoparticles to bacteria E. coli and the human
keratinocyte (HaCaT) cell line obtained through the Nano-
QRA approach presented above should not be substantially
different from the values obtained experimentally, as well as
those predicted from the Nano-QSAR models. To verify
whether the hypothesis and conclusions can be extended to
other activities/properties and groups of nanoparticles, a
pairwise comparison was performed. To this end, we
employed a pairwise ¢-Student's test to verify whether the av-
erage residuals from the predictions from Nano-QRA tech-
nique differed significantly from the experimental values, as
well as those predicted from the Nano-QSAR modeling.

Results
Case study 1: one dimensional read-across

Our previous study on the cytotoxicity of 17 metal oxides
nanoparticles to E. coli** utilized a single descriptor; conse-
quently the same descriptor was used in the current study to
perform read-across. The selected descriptor i.e. the enthalpy
of formation of a gaseous cation with the same oxidation
state as that in the metal oxide structure (AHy.-) refers to the
detachment of metal cations from the surface of MeOx NPs.
AHy- was well correlated to toxicity (r = -0.92). This indi-
cates that the descriptor, describing the ionization enthalpy
of the (detached) metal atoms, explains approximately 85%
of the variability of the cytotoxicity the metal oxide
nanoparticles.”®

To determine the trend in the empirical data, all training
source compounds were sorted according to the decreasing
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value of the standardized descriptor (AHy:). Subsequently,
the distributions of independent and dependent variables for
the training set were plotted to investigate any trends in the
data (Fig. 3).

Since all training source compounds are well correlated,
as indicated by the strength of the correlation coefficient be-
tween dependent and independent variables (r > [0.7]),** we
assumed that the trend is statistically significant. Before
starting the interpolation and extrapolation of missing E. coli
cytotoxicity data using the two-point formula and one-point-
slope respectively, all validation source compounds and tar-
get compounds (i.e. from prediction set) were incorporated to
the training set. To achieve this, the theoretical values of the
selected descriptor for compounds from the validation and
prediction sets were rescaled using the mean and standard
deviation values from the training set. Then, to ensure that
all validation source compounds and target compounds (i.e.
experimentally untested NPs) were arranged in a suitable or-
der, all nanoparticles were once again sorted along with the
decreasing values of rescaled AHy-. Finally by using eqn (1)
(for interpolation) and eqn (2) (for extrapolation) we esti-
mated missing values of cytotoxicity data for training and val-
idation source compounds. The predicted results together
with the calculated residuals are presented in Table 2.

The quantitative assessment of the uncertainty of the
Nano-QRA model was expressed by the: AAPEy = 3.71%; AAEy
= 0.10; RMSDy = 0.13 in training set and AAPEy = 3.96%;
AAEy = 0.13; RMSDy, = 0.19 in validation set, respectively. All
metrics for evaluating performance and uncertainty of Nano-
QRA model were low (<5%). Additionally, the determination
coefficient in the training set (R* = 0.94) as well as the exter-
nal validation coefficient (Qp,> = 0.83) in the validation set
were high and close to 1. Consequently, we can conclude that
the developed model is well-fitted and has satisfactory predic-
tive capabilities.

To compare log(ECs,) values calculated with the Nano-
QRA approach with experimental ones (graphically presented
in Fig. 4A)), as well as with those obtained with Nano-QSAR
model, we have performed a pairwise ¢-Student's test for each
pair in the data sets. Differences were not considered to be
statistically significant (p > 0.001) (Table 3). The observed
differences between the experimentally measured and values
predicted from both modelling methods (i.e. Nano-QRA and

-1

4.0

3.0
® oo

%9
2.0 ()

Observed values of log(ECso)™"

0.0

-2.0 -15  -1.0 -0.5 0.0 0.5 1.0 15
Independent variable (AHye,)

Fig. 3 Two-dimensional trend analysis performed for 10 metal oxide
nanoparticles from training set.
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Table 2 Summary table of selected independent variable and computational results for the metal oxides considered

Calculated AHye+ Rescaled AHyge+

Experimental values

Predicted values of

MeOx [keal mol™] [keal mol™] of 1og(ECso) ™" [molar] Set log(ECs,) " [molar] Residuals
TiO, 1575.73 1.28 1.74 T Extrapolation 1.71 0.03
SnoO, 1717.32 1.20 2.01 T Interpolation 1.79 0.22
ZrO, 1357.66 0.92 2.15 \% Interpolation 2.08 0.07
Sio, 1686.38 0.49 2.20 T Interpolation 2.25 -0.05
Ga,0; 1384.15 0.43 N/A P Interpolation 2.24 —
Fe,0; 1408.29 0.36 2.29 T Interpolation 2.30 -0.01
TL,03 1341.37 0.32 N/A P Interpolation 2.32 —
Au,04 1302.95 0.22 N/A P Interpolation 2.41 —
Al,O4 1187.83 0.13 2.49 T Interpolation 2.56 -0.07
Cr,05 1268.70 0.13 2.51 A% Interpolation 2.49 0.02
Sb,0; 1233.06 0.04 2.64 \Y% Interpolation 2.63 0.01
In,0; 1271.13 -0.08 2.81 T Interpolation 2.69 0.12
Bi,0; 1137.40 -0.21 2.82 T Interpolation 2.83 -0.01
La,0; 1017.22 -0.31 2.87 A% Interpolation 2.84 0.03
Yb,0; 1039.03 -0.46 N/A P Interpolation 2.86 —
Er,0; 1016.15 -0.52 N/A P Interpolation 2.87 —
Mn,0; 1017.99 -0.52 N/A P Interpolation 2.87 —
Y,0; 837.15 -0.52 2.87 T Interpolation 2.93 -0.06
Ho,0; 1009.60 -0.54 N/A P Interpolation 2.88 —
Eu,0; 1006.60 -0.55 N/A P Interpolation 2.88 —
Tb,03 999.00 -0.57 N/A P Interpolation 2.89 —
Gd,0; 991.37 -0.59 N/A P Interpolation 2.90 —
Sm,0; 974.40 -0.63 N/A P Interpolation 2.92 —
Nd,0; 962.80 -0.66 N/A P Interpolation 2.93 —
Ag,03 831.56 -0.97 N/A P Interpolation 3.06 —
V,0; 1097.73 -0.99 3.14 \Y% Interpolation 3.06 0.08
FeO 748.98 -1.21 N/A P Interpolation 3.15 —
AuO 712.50 -1.30 N/A P Interpolation 3.19 —
CuO 706.25 -1.32 3.20 T Interpolation 3.38 -0.18
ZnO 662.44 -1.43 3.45 T Extrapolation 3.22 0.23
NiO 596.70 -1.59 3.45 v Extrapolation 3.81 -0.36
CoO 601.80 -1.60 3.51 \% Extrapolation 3.84 -0.33
MnO 548.13 -1.73 N/A P Extrapolation 4.13 —
MgO 543.10 -1.74 N/A P Extrapolation 4.15 —
PbO 499.19 -1.85 N/A P Extrapolation 4.40 —

Nano-QSAR) were comparable and did not exceed 0.40 of a
log unit, which was consistent with our assumption. Addi-
tionally, the results of a comparison between the statistical
quality of Nano-QSAR model (R” = 0.85, RMSDy = 0.20, Qp> =
0.83, RMSDy = 0.19)** and Nano-QRA model (R*> = 0.94,
RMSDy = 0.13, Qr,> = 0.83, RMSDy, = 0.19) indicate that both
models have the same and very high predictive capabilities.
Furthermore the Nano-QRA model has a slightly better good-
ness of fit (>R?). In addition, in both cases the difference be-
tween R”> and Q7 value is small (<0.3) indicating stability of
the models.

Furthermore, the strong linear correlation between experi-
mental data describing the cytotoxicity of MeOx NPs to bacte-
ria E. coli and the values predicted with Nano-QRA algorithm
(Fig. 4B)), additionally confirms validation results.

Finally, after detailed validation with external set of com-
pounds (i.e. validation source compounds), in the next step
we applied the eqn (1) (for interpolation) and eqn (2) (for
extrapolation) to estimate the values of cytotoxicity to the bac-
teria E. coli for 18 target compounds (i.e. MeOx NPs, for
which the experimental data have been unavailable). The
obtained results, presented graphically in Fig. 4C), show a
very good agreement with those predicted with Nano-QSAR

352 | Environ. Sci.: Nano, 2017, 4, 346-358

model. They also correspond to the mechanism of cytotoxicity
previously discussed and described in detail by Puzyn et al.>*

Case study 2: two dimensional read-across

The results presented in the previous section proved that the
predictions of cytotoxicity reported for a series of metal oxide
nanoparticles are characterized by acceptable levels of uncer-
tainty. However, we must not forget that the read-across pre-
dictions were made from only one theoretical structural fea-
ture (i.e. descriptor) and sometimes a single parameter may
be not enough to cope with the complexity of NPs. Thus, the
next logical step for the development of read-across method-
ologies should be an attempt to extend the proposed ap-
proach for predicting of various properties (physico-chemical
as well as toxicological) based on two independent variables,
which individually may have a lower correlation with activity,
but in combination provide the mechanistic interpretation of
the toxicity source. Therefore, in the current study, we have il-
lustrated an efficient Nano-QRA approach predicting the tox-
icity of metal oxide nanoparticles to a human keratinocyte
cell line (HaCaT) based on two descriptors that were recently
employed in a Nano-QSAR model.*> These descriptors,

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 A) Predicted values of cytotoxicity (in log units) to the bacteria
E. coli for 17 metal oxide nanoparticles (i.e. training/validation source
compounds); B) experimentally determined (observed) versus predicted
log values of (ECs0)™™. The straight line represents perfect agreement
between experimental and calculated values; C) predicted values of
cytotoxicity to the bacteria E. coli for 18 MeOx NPs, for which the
experimental data have been unavailable target compounds.

Table 3 Comparison of the residuals derived from the predictions of
log(ECs0)* and log(LCso) ™t with Nano-QRA approach and obtained exper-
imentally as well as estimated with Nano-QSAR models using the pairwise
Student'’s t test

Nano-QRA

VS.
Statistics Experiment Nano-QSAR
Case study 1: one dimensional read-across
t-Test statistic 0.396 0.669
t-Test critical value (4 ¢.001) 4.015 4.015
p-Value 0.694 0.513
Case study 2: two dimensional read-across
t-Test statistic 0.186 0.201
t-Test critical value (4 o.001) 3.965 3.965
p-Value 0.852 0.843

derived from quantum-mechanical calculations, i.e. the en-
thalpy of formation of metal oxide nanocluster representing a
fragment of the surface (AHf) and Mulliken's electronegativity
of the cluster () are connected closely with the modeled ac-
tivity and have been demonstrated to be associated with the
toxicity of the metal oxide nanoparticles to the HaCaT cell
line. These descriptors refer to the two types of processes re-
lated to (or properties of) the NPs: the first process concerns

This journal is © The Royal Society of Chemistry 2017
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the release of metal cations from the surface of nano-
particles, whereas the second one is related to the surface re-
dox activity of nanoparticles. Consequently, both processes
lead to the formation of highly reactive hydroxyl radicals,
which are mainly responsible for the induction of oxidative
stress in the cells and thus can be considered as a pre-cursor
to toxicity.*?

The selected descriptors (i.e. AHf and x) have the values
of Pearson correlation coefficient (r) with toxicity of 0.48 and
0.81 respectively, as well as a very low correlation coefficient
with each other (r = -0.05). In order to visualize the relation-
ship between the three variables (i.e. both descriptors (AHf
and x°) and the endpoint (log(LCs,) ") and to reveal the distri-
bution trend in the training data set in the most efficient
way, we have created a 3D scatterplot (Fig. 5). Moreover, an
additional data dimension represented by a gradual colour
change was used to highlight the changing potency of toxicity
among the training set compounds. Colours represent the
logarithmic values of the toxicity to human keratinocyte cell
line (HaCaT) measured for metal oxide nanoparticles: dark
blue means the lowest value of the endpoint, whereas dark
red - the highest cytotoxicity. One can notice that the trend
in the experimental data across the chemicals from the train-
ing set has been confirmed.

Since a consistent trend in the properties within the
chemicals in the training set was observed, we assumed that
data gaps can be filled by interpolation and extrapolation to
other group members, using the equation of a plane passing
through three points. To achieve this, the descriptors for
nanoparticles from the validation set (i.e. validation source
compounds) and prediction set (i.e. target compounds) were
rescaled using the mean and standard deviation values from
the training set. Finally, all compounds were sorted by de-
creasing values of rescaled x°, since this descriptor has
higher correlation coefficient with the endpoint. As a result,
we estimated the missing values of toxicity for 18 MeOx NPs
(i.e. training source compounds and validation source com-
pounds) to the HaCaT cell line, utilizing the workflow
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Fig. 5 Three-dimensional trend analysis performed for 10 metal oxide
nanoparticles from training set.
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presented in Fig. 2. The results we obtained are summarized
in Table 4.

Analogously to the first case study, the uncertainty of the
result of read-across predictions was evaluated by the: AAPEy
= 8.71%; AAEy = 0.19; RMSDy = 0.26 in training set and
AAPEy = 6.48%; AAEy = 0.15; RMSDy, = 0.19 in validation set,
respectively. Also in this case, low value of all metrics for
evaluating the uncertainty of Nano-QRA model and simulta-
neously high value of the determination coefficient in the
training set, and the external validation coefficient in the vali-
dation set indicated model's goodness-of-fit and it good pre-
dictive ability.

By the means of the pairwise ¢-Student's test we confirmed
that the values of log(LCso)" obtained from Nano-QRA ap-
proach did not differ significantly from those measured ex-
perimentally (p = 0.852), as well as those predicted from the
Nano-QSAR model (p = 0.843) (Table 3). In addition, we com-
pared the differences in values calculated between the experi-
mentally measured toxicity and that predicted with Nano-
QRA (Fig. 6A)). However, it should be noted that one metal
oxide, namely TiO,, is characterized by higher residual com-
pared to the rest of the other training/validation source com-
pounds, which might be due to a fact that it has the lowest
toxicity to human keratinocyte (HaCaT) cell line whilst having
the highest value of the rescaled value of second descriptor
(AHf). Additionally, we compared the statistical quality of
Nano-QSAR model (R> = 0.93, RMSDy = 0.12, Q> = 0.83,
RMSDy, = 0.13)** and Nano-QRA model (R*> = 0.65, RMSDy =
0.26, Qp,> = 0.62, RMSDy, = 0.19). The obtained results indi-
cate that Nano-QSAR model yields a better statistical fit and
predictive capability than the Nano-QRA model. However, af-
ter removing TiO,, which shows the lowest toxicity to human
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Fig. 6 A) Predicted values of cytotoxicity (in log units) to HaCaT cell
line for 18 MeOx NPs (i.e. training/validation source compounds); B)
experimentally determined (observed) versus predicted values of
log(LCs0) ™. The straight line represents perfect agreement between
experimental and calculated values.

keratinocyte (HaCaT) cell line the statistical quality of Nano-
QRA model (R* = 0.86, RMSDy = 0.14) is significantly increas-
ing and is being comparable to the statistical quality of
Nano-QSAR model.

High correlation between the observed and estimated
values of log(LCso)™* for MeOx NPs to HaCaT cell line in case
of both training source compounds and validation source
compounds (Fig. 6B)) provides another proof of the model's
quality (i.e. very good fit and the high predictive ability).

Finally by utilizing the workflow presented in Fig. 2, we es-
timated the missing values of toxicity towards HaCaT cell line

Table 4 Summary table of selected independent variables and computational results for metal oxide

Calculated Calculated Rescaled

values of y©  values of AHf  values of y°  Rescaled values  Experimental values of Predicted values of
MeOx  [eV] [eV] [eV] of AHS [eV] log(LCso) " [molar] Set  log(LCso) ' [molar]  Residuals
ZnO 8.33 —449.4 1.80 0.03 3.32 T 3.19 0.13
CoO 7.44 -786.8 1.25 -0.73 2.83 T 3.03 -0.20
In, 03 6.78 -52.1 0.84 0.92 2.92 T 3.03 -0.11
WO,3 6.73 -715.4 0.81 -0.57 2.56 \'% 2.67 -0.11
La,03 6.45 -157.7 0.64 0.68 2.87 v 2.76 0.11
PbO, 6.13 -269.5 0.44 0.43 N/A p 2.67 —
Gd,0; 5.91 -234.1 0.30 0.51 N/A P 2.62 —
FeO 5.88 —883.2 0.28 -0.94 N/A p 2.38 —
Bi,0; 5.34 -148.5 —-0.05 0.70 2.50 T 2.68 —-0.18
PbO 5.12 -306.3 -0.19 0.35 N/A P 1.99 —
Mn,03 5.00 -96.3 —-0.26 0.82 2.64 T 2.63 0.01
ZrO, 4.95 -638.1 -0.30 -0.39 2.02 T 2.31 -0.29
TiO, 4.91 -1492.0 —-0.32 -2.31 1.76 T 1.07 0.70
Sno, 4.57 -266.6 -0.53 0.44 2.67 \% 2.26 0.41
NiO 4.47 68.0 —-0.59 1.19 2.49 v 2.39 0.10
Sb,03 4.46 -206.7 —-0.60 0.57 2.31 T 2.19 0.12
Cr,03 4.36 -235.3 -0.66 0.51 2.30 v 2.30 0.00
CuO 4.25 -76.3 -0.73 0.87 N/A P 2.37 —
Fe, O3 4.21 -378.5 -0.76 0.19 2.05 v 2.23 -0.18
Sio, 3.81 -618.3 -1.00 -0.35 2.12 T 2.07 0.05
Al,O5 3.44 -600.0 -1.23 -0.31 1.85 \'% 2.10 -0.25
Y,03 3.35 -135.3 -1.29 0.73 2.21 v 2.25 —-0.04
V,03 3.24 -139.5 -1.36 0.72 2.24 T 2.32 —-0.08
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for five experimentally untested metal oxides (i.e. target com-
pounds) (Table 4).

Nano-QRA versus the existing Nano-QSAR models

It was also interesting to compare performance of the
presented Nano-QRA models with previously reported Nano-
QSAR studies related to the same endpoints. Whenever one
wants to compare the performance of in silico models each
other, one usually starts from evaluating their statistical char-
acteristics. Without doubt, in case study 1 the measures of
goodness-of-fit and predictivity (Table 5) favour the Nano-
QRA approach. Higher correlation coefficients and lower
values of the root mean square errors for both the training
and the validation sets proved that Nano-QRA algorithm can
be used as more efficient tool for filling data gaps in quanti-
tative manner then the previously developed Nano-QSAR
models. Nano-QRA provides more reliable predictions of the
missing data.

Moreover, considering the statistical parameters (Table 5)
one can observe that the presented Nano-QRA model is com-
parable to the previous Nano-QSAR models.

Nano-QRA versus the existing concepts of read-across

As mentioned above, according to the OECD official guidance
documents™ several concepts for quantitative read-across
may be applied. When the experimental enpoint has been
measured for at least two compounds, the endpoint values
for those two or more co-called “source chemicals” can be
used to predict the endpoint value for untested “target
substance(s)”. This can be done either by averaging or taking
the most conservative value among the source chemicals. An-
other option is to use mode or median value calculated for
the group of source compounds.

In order to make a detailed comparison between the pro-
posed Nano-QRA approach and commonly used read-across
concepts, we estimated log(ECso)™" of 7 validation source
compounds to bacteria E. coli (case study 1) and log(LCsq) ™"

Table 5 Comparison of statistical parameters between the presented
Nano-QRA and previous Nano-QSAR models

Training set Validation set

Ref. R? RMSE n R

RMSE n
Case study 1

Nano-QRA 0.94 0.13 10 0.83 0.19 7
Puzyn et al.”® 0.85 0.20 10 0.83 0.19 7
Toropov et al.*® 0.74-0.84 0.17-0.26 11 0.83-0.96 0.14-0.34 6
Kar et al.”® 0.82 0.23 11 0.78 0.22 6
Sizochenko et al.** 0.93 0.13 13 0.78 0.32 3
Pan et al.** 0.89 0.18 10 0.82 0.26 7
Singh et al.*® 0.91 0.20 14 0.86 0.29 3
Case study 2

Nano-QRA (after 0.86 0.14 9 0.82 0.14 8
removing TiO,)

Gajewicz et al. 0.93 0.12 10 0.83 0.13 8
Sizochenko et al.** 0.96 0.10 14 0.92 0.12 3
Pan et al.>* 0.96 0.08 13 0.83 0.25 5
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of 8 validation source compounds to HaCaT cell line (case
study 2), respectively. For this purpose, we used following
types of approximation: (i) average, (ii) most conservative,
(iii) median, (iv) lower-median, and (v) higher-median value
among the source chemicals (i.e. training source com-
pounds). Subsequently, we calculated the external validation
coefficient (Qp’) as a measure of the predictive power, as well
as: the average absolute percentage error (AAPE), the average
absolute error (AAE) and the root mean square deviation
(RMSD) as the measures of reliability of predictions (Table 6).

The obtained results reveal that Nano-QRA approach far
surpasses the other considered read-across methods with dif-
ferent types of approximation, in both: predictive power
(>Qr’), and reliability of predictions (<AAPEy, AAEy,
RMSDy).

Discussion

One can notice that the philosophy standing behind Nano-
QRA is somewhat similar to that of Nano-QSAR modelling
based on the k-nearest neighbour principle (KNN-QSAR).*®
Both methods rely upon the analogue approach, which im-
plies that similar compounds display similar biological activ-
ity. In effect, the activity of an untested compound can be
predicted by using the activities of k the most similar
compound(s). Along with the ANN-QSAR algorithm the activ-
ity of each compound is predicted as the average activity of k
most chemically similar compounds from the data set.*®
However, as it was highlighted by the same authors in their
previous paper, the KNN-QSAR method was designed for ana-
lyzing relatively large data sets, where a multitude of different
classes of compounds is represented in the training set.”” In
effect, no reliable kXNN-QSAR model can be developed for the
limited data set. In contrast to KNN-QSAR method, and tak-
ing a step beyond the currently used types of value approxi-
mations (e.g. average), we have introduced new Nano-QRA ap-
proach for filling data gaps in quantitative manner for cases
when only limited data is available. In case of Nano-QRA, the
prediction is based on the two-point formula, which over-
comes the problem of kKNN.

Based to the presented results, we may draw the conclu-
sion that proposed Nano-QRA approach is an simple and ef-
fective algorithm for filling data gaps in quantitative manner
that provides reliable predictions of the missing data. How-
ever, the logical question that appears here is about the un-
certainty as well as the acceptable level of uncertainty of the
read-across prediction to fill the data gaps for a specific regu-
latory purpose? Over the last few years a number of initiatives
have been taken to determine the areas/opportunities for
making read-across more robust, reliable, less uncertain and
more available to a broader array of stakeholders.’®*° Along
with the most comprehensive scheme for addressing the vari-
ous facets of uncertainty for read-across, the following key is-
sues should be taken into consideration: (1) data uncertainty
should be separated from the read-across prediction uncer-
tainty, (2) the method of modeling itself should be as
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Table 6 Results of comparison between Nano-QRA approach and existing concepts of read-across using different types of approximation

Read-across using following types of approximation

Statistics Nano-QRA Average Most conservative Median Lower median Higher median
Case study 1: one dimensional read-across

O 0.83 -0.43 -1.42 -0.28 -0.76 -0.03
AAPEy 3.96% 14.85% 22.91% 14.31% 16.16% 14.31%
AAEy 0.13 0.45 0.57 0.43 0.50 0.41
RMSDy 0.19 0.56 0.72 0.53 0.62 0.47
Case study 2: two dimensional read-across

Or? 0.62 -0.09 -9.00 -0.01 -0.04 -0.16
AAPEy 6.48% 12.36% 42.38% 12.06% 11.56% 12.61%
AAEy 0.15 0.27 0.95 0.27 0.27 0.28
RMSDy 0.19 0.33 1.00 0.32 0.32 0.34

transparent as possible, (3) the predictive ability of a read-
across should be examined with appropriate measures of
goodness-of-fit and predictivity.>>>"

Certainly, the degree of uncertainty and the predictive ac-
curacy of the in silico predictions depend on the reliability of
the experimental data. It is also obvious that the experimen-
tal data always have an uncertainty of their own. Thus, in or-
der to reduce the epistemic uncertainty of experimental
values as much as possible, in the presented case studies we
have used only high-quality experimental data measured by a
standardized experimental protocol within one laboratory at
the same conditions. In addition following the current guide-
lines for reporting nanotoxicology research, all tested nano-
materials have been fully characterized by transmission
electron microscopy (TEM). It needs to be also acknowledged
that in order to demonstrate the reliability and the scientific
robustness of the read-across predictions, the uncertainty of
model was assessed by estimation of the average absolute
percentage error (AAPE), the average absolute error (AAE) and
the root mean square deviation (RMSD). By analyzing
obtained results, we found that uncertainty (in both
presented case studies) was relatively low. This implies that
the accuracy of the read-across prediction is high and the
overall encouraging performance of Nano-QRA approach as-
sures that this algorithm could be used as an attractive and
pragmatic technique to fill data gaps.

When dealing with in silico methods, one has to keep in
mind that the method of modeling itself should be as trans-
parent as possible. Therefore to ensure the transparency in
the read-across algorithm for filling data gaps we have used
basic equations of lines and planes (i.e. one/two-point-slope
formula and equation of a plane passing through three
points). As such, the read-across model's predictions may be
independently reproduced by others at any time in the future
regardless of the scientific expertise.

It is well recognized that, the only way to determine the
true predictive power of any in silico model is its external vali-
dation. Thus, in order to measure how well the model pre-
dicts the endpoint for new compounds the external validation
was carried out using an external set of compounds. Since
this type of assessment requires the use of an independent
set of compounds (i.e. compounds that were not previously
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used for the identification of a trend in the experimental data
for a given endpoint across chemicals), one can be sure that
they do not affect the model development. In the presented
study the predictive ability of the developed read-across
model was examined with the set of seven and eight MeOx
NPs from the validation set, respectively. We received relevant
estimation for all of validation source compounds what was
finally confirmed by high value of Qg,” and low value of er-
ror. The predictive power of proposed approach was addition-
ally confirmed by employing pairwise ¢-Student's. It was
found that the values obtained from the read-across tech-
nique do not differ significantly from those measured
experimentally.

Using the pairwise ¢-Student's test, we have confirmed that
the values obtained from the proposed read-across tech-
niques do not differ significantly from those measured exper-
imentally. However, the above-mentioned algorithms are lim-
ited by the possibility of using only one descriptor in case of
one/two-point formula, and maximum two descriptors in case
of the equation of the plane passing through three points. It
needs to be emphasised, however, that in some cases a one
or even two descriptors may be not enough to cope with the
complexity of the expected mode of toxic action. In addition,
the methods proposed within this study require the existence
of a visible trend between the endpoint and descriptor(s).
One should be aware that, in some cases, the linear trend in
the empirical data would be difficult to observe. Thus, the
next logical step is to develop new techniques employing
more than two descriptors and working also when the linear
trend is not present. In addition, future directions for an in-
creasing acceptance of read-across in the hazard assessment
of nanomaterials should include design of novel and suitable
numerical algorithms that would be transparent, reproduc-
ible and clearly documented. The feasibility and predictive
ability of newly developed read-across algorithms should be
verified and validated. Therefore, it would be very practical to
establish the principles for the validation of read-across ap-
proaches by means of suitable case-studies (i.e. using external
data obtained from regulatory (eco)toxicity tests). Further-
more, the recommendations on existing read-across ap-
proaches, which are the most relevant for filling data gaps
for nanomaterials, should be delivered. In a further
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perspective, the acceptable and sufficiently standardized
algorithm(s) should be implemented into the user-friendly
software (e.g. OECD QSAR Toolbox).

Conclusions

The present study provides novel and effective algorithms for
filling data gaps in quantitative manner. The interpolation
and extrapolation of data performed here allowed us to esti-
mate a particular activity for a series of unknown metal oxide
nanoparticles with acceptable levels of uncertainty. The pro-
posed method is the first published example of the use of
one-point-slope, two-point formula as well as equation of a
plane passing through three points approaches to estimate
the biological activity for empirically untested metal oxide
nanomaterials. The case study performed with MeOx NPs
serves as the proof-of-the-concept of the proposed new read-
across algorithms. It could be easily adapted to any group of
species. Thus, in future, the concept will be extended to other
materials and substances. A great advantage of presented
method is the fact that it is based on information extracted
from very few known species (i.e. 10 training source com-
pounds) and enables the prediction for groups of NPs, for
which the number of experimental data is insufficient to de-
velop appropriate Nano-QSAR model(s). It opens new oppor-
tunities for research groups and industrial labs to evaluate
the potential negative impact of nanomaterials to the human
health and the environment without the necessity of
performing time consuming and expensive experimental
studies on large set of NPs. In addition, in the light of the
different regulatory frameworks and guidance published in
the EU, USA, Canada, Japan, and Australia as well as in the
context of current and future efforts to develop the Alterna-
tive Testing Strategies, the proposed method provides an effi-
cient tool to support the risk assessment of nanomaterials.
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