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Axially chiral racemic half-sandwich nickel(II)
complexes by ring-closing metathesis†
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Piotr Buchalskia

A remarkable nickelacycle has been synthesised via olefin meta-

thesis of the α,ω-diene complex [Ni(η5-C5H4R)(Br)(NHC)] (R =

C(CH3)2CH2CHvCH2, NHC = 1-(6-hexenyl)-3-(2,4,6-trimethyl-

phenyl)-imidazol-2-ylidene). Single-crystal X-ray analysis reveals a

helical shape of the molecule and stretching of some interatomic

distances in the Ni(II) coordination sphere. The Cp-NHC tethered

complex shows catalytic activity resembling that of the parent

complexes.

Asymmetric catalysis with the chiral derivatives of the ubiqui-
tous cyclopentadienyl (Cp) ligand remains an undeveloped
area of research.1 The diamagnetic complexes [Ni(Cp)(X)
(NHC)] (X = Cl, Br, I, alkyl; NHC = N-heterocyclic carbene),
initially discovered by Abernethy et al.,2 have found numerous
applications as pre-catalysts3 or robust substrates in the syn-
thesis of novel species.4 We have presumed that a convenient
synthesis of a Cp-NHC tethered nickel complex of this type
could open up access to novel axially chiral molecular frame-
works with applications in catalysis, chiral recognition, or
separation.

Transition-metal complexes bearing chelating Cp-NHC
ligands are usually prepared from bidentate pro-ligands and
suitable metal sources (Scheme 1, path i).5 Despite the con-
siderable variety of the so far reported complexes [Ni(Cp)(X)
(NHC)], to the best of our knowledge, few examples of closely
related indenyl-NHC Ni(II) complexes6 and C5Me4-NHC conge-
ners7 have been synthesised by this route. We hypothesized
that a Cp-NHC tether could be readily formed via ring-closing
metathesis (RCM)8,9 in bis-alkenyl complexes (Scheme 1, path
ii). Herein, we explore this novel route to axially chiral half-
sandwich Ni(II) complexes.

Plausible RCM substrates, the α,ω-diene complexes 1 and 2,
were prepared according to the standard procedure2 from the
appropriate imidazolium salts and 1,1′-bis-(alkenyl)nickel-
ocene (Scheme S1†).

Based on the precedence of complexes prepared from
bidentate pro-ligands that are 6- or 7-membered metalacycles
(Scheme 1b), we expected that complex 1 would readily
undergo RCM to form a 10-membered ring. Thus, 1 was
treated with 6 mol% of [Ru(vCHPh)Cl2(PCy3)(SIMes)]10 under
dilute conditions ([Ni] = 0.01 M) in refluxing toluene or CH2Cl2
(Scheme 2). Surprisingly, RCM in complex 1 proved to be
ineffective.11 The presence of the expected product 3 could be
determined only by means of mass spectrometry ([M]+ at m/z
496 (58Ni, 79Br)).

Fortunately, RCM in complex 2 catalysed by [Ru(vCHPh)
Cl2(PCy3)(SIMes)] proceeded smoothly in hot toluene to yield
the 12-membered nickelacycle 4. The formation of the Cp-
NHC tether renders all proton and carbon signals non-equi-
valent in the NMR spectra of 4, e.g. the Cp protons are rep-
resented by four multiplets at δ 4.96, 4.86, 4.61, and 4.02 ppm.

Scheme 1 (a) General synthetic approaches to Cp-NHC complexes: (i)
double deprotonation, then MX2 (ii) suitable metathesis catalyst, this
work; (b) examples of Ni(II) complexes prepared by route i.6,7
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Moreover, a detailed inspection of the 1H and 13C NMR
spectra reveals the presence of two isomeric products. This
finding is most clearly evidenced by two Ni–Ccarbene reson-
ances at δ 165.3 ppm (major) and 165.8 ppm (minor). We
identify these two products as, respectively, E and Z isomers of
the CvC double bond formed in the metathesis reaction (see
below). The two isomers were obtained in a ca. 10 : 3 ratio.12

The X-ray diffraction studies allowed us to derive the crystal
structures of complexes 1 and 4. Attempts to obtain a
sufficient quality crystal structure of complex 2 were moder-
ately successful (Fig. S1†). Nevertheless, the qualitative confir-
mation of the molecular structure of 2 shows its general simi-
larity to that of 1. Consequently, a direct comparison of 1 and
4 allows one to gain structural insights into the differences
and similarities of complexes before and after the intra-
molecular metathesis reaction.

Compounds 1 and 4 crystallise in the monoclinic P21/c and
triclinic P1̄ space groups, respectively. In both cases only one
molecule is present in the asymmetric unit (Fig. 1). As both
crystals are centrosymmetric, two enantiomers of each mole-
cule are present in the analysed crystal structures. However,
whereas in complex 1 rotation along the Ni1–C16 bond is poss-
ible, in 4 it is hindered due to the presence of the macrocyclic
ring. This makes the molecules of 4 axially chiral, which has
been confirmed in solution by NMR (Fig. 3).

We have found a small fraction of the Z isomer (ca. 2–3%)
in the crystal of 4, which is consistent with the NMR spectra.
The olefin C10 and C11 atoms of the Z isomer are quite well
visible on the residual density plot (Fig. S2†). Even though the
full refinement of both isomers was not possible, it appears
that the geometry of the CvC double bond has no significant
effect on the overall shape of the molecule.13

The coordination geometry at the nickel centre is compar-
able in both cases (Fig. 2). The most significant differences
occur for the NHC ligand, which is oriented in the solid state
in complex 1 in the opposite direction than in 4, as evidenced
by the Br1–Ni1–C16–N2 torsion angles of −112.6(2)° and
114.5(2)° for 1 and 4, respectively. This suggests that 1 must
adopt the less favourable conformation to facilitate the intra-
molecular metathesis.

The formation of the macrocyclic ring also induces con-
siderable distortions in the overall ligand arrangement. The

large ring tends to push slightly the Cp and NHC ligands away.
This is most clearly demonstrated by comparing the C16–Ni1–
Cpcg angles (131.89(8)° for 1 and 132.14(8)° for 4; Cpcg = Cp
ring centre of gravity). Moreover, the average Ni1–CCp bond
lengths are approximately 0.02 Å larger for 4 (2.157 Å on
average) than for 1 (2.140 Å on average) with the Ni1–C5 bond

Scheme 2 RCM in complexes 1 and 2: (i) [Ru(vCHPh)Cl2(PCy3)(SIMes)],
6 mol%, toluene or CH2Cl2, reflux.

Fig. 1 Molecular structures of complexes 1 (a) and 4 (E isomer) (b).
Note that in 4 the C10–C11 (1.341(5) Å) bond is the double bond with
E configuration. Atomic thermal motion is represented as ellipsoids (50%
probability level), and some hydrogen atoms are removed for clarity.

Fig. 2 Overlay of 1 (red, labels in italics) and 4 (green, labels
underlined).
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being the most significantly elongated (2.203(2) Å for 1 com-
pared to 2.252(3) Å for 4). The same trend is observed for the
Ni1–C16 bonds (1.877(2) Å in 1 and 1.884(3) Å in 4).

In order to probe the chirality of complex 4 in solution, its
NMR spectra in the presence of an NMR chiral chemical shift
reagent ((R)-(−)-1-(9-anthryl)-2,2,2-trifluoroethanol)14 (5) were
recorded (Fig. 3). Doubling of the signals due to the formation
of two diastereoisomers was clearly observed for the –NCH2

multiplet at δ 3.43 ppm, singlet of the o-CH3 group at
δ 2.74 ppm (E isomer), and singlet of the C5H4C(CH3)2 group
δ 1.26 ppm. This observation suggests that the chiral structure
of 4 is also stable in this solution.15 Moreover, we conclude
that the bromine ligand in 4 is the preferred site of its inter-
action with the polar reagent.

The catalytic activity of racemic 4 was tested in three C–C
bond formation reactions (Table S1†). In the case of Suzuki
coupling, the activity and selectivity to the desired cross-coup-
ling product was comparable to those of the parent [Ni(Cp)(X)
(NHC)] complexes (entry no. 1). Polymerization of styrene in
the presence of 4 and methylalumoxane (MAO) yielded the
expected atactic polystyrene (entries no. 2 and 3). Complex 4
with methyl methacrylate and MAO showed moderate activity
at 50 °C (entry no. 4) and almost no activity at 20 °C (entry
no. 5).

In summary, we have shown that a Cp-NHC tether can be
readily formed via olefin metathesis in the Ni(II) coordination
sphere. The length of the alkenyl substituents as well as
the dynamics of the system in solution are both the key factors
for determining the propensity of the intramolecular
reaction. The helical shape of 4 opens up prospects for its
applications in asymmetric catalysis after the resolution of
enantiomers.

W. B., Ł. B. and P. B. would like to thank the National
Science Centre for financial support (grant DEC-2011/01/B/
ST5/06297).
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