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The synthesis of a n°-coordinated LiCp complex by simple addition
of a Li-salt in benzene is presented. A strongly zwitterionic
fulvalene serves as the Cp-precursor. Evidence for the coordi-
nation of Li* was obtained by the characterisitic ’Li NMR chemical
shifts, variable temperature experiments in solution and by X-ray
structure analysis in the solid state.

Lithium cyclopentadienide derivatives are important Cp-trans-
fer reagents in the synthesis of metallocenes and half-
sandwich complexes of transition metals." Usually, their
preparation follows one of the three major routes (Scheme 1)*:
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Scheme 1 Methods for the synthesis of LiCp compounds.
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Synthesis of a lithium—cyclopentadienide complex
by addition of LINTf, to a zwitterionic fulvaleneti
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(a) deprotonation of cylcopentadiene with a strong base,
(b) reduction of cyclopentadiene with lithium metal (dehydro-
genation), or (c) nucleophilic carbolithiation at the exocyclic
double bond of a fulvene or its enolisation (deprotonation),
wherein the five-membered ring plays the role of the carbonyl
group.® Usually, all these reactions are carried out in coordi-
nating solvents, for example THF, diethylether or liquid NH;.?

In 1972 Miiller-Westerhoff showed that dipolar 6,6-bis(di-
methylamino)fulvene can serve as a Cp-precursor upon reac-
tion with FeCl,,"* a reaction that takes advantage of the high
stability of ferrocenes and the dipolar character of the
aminofulvene.

Over the past few years, we reported zwitterionic fulvalenes
1 and 2 (Fig. 1, Scheme 1d) and their straightforward conver-
sion to imidazolium-substituted metallocenes*” and half-sand-
wich complexes.” Together with their structural features, we
concluded that they can be regarded as organic cyclopentadie-
nide equivalents and are best depicted in their zwitterionic
resonance forms 1’ and 2.° Thus, they are similar to phos-
phonium cyclopentadienylides,” for which the addition to
transition metal complexes has been shown in the past,® and
only one case of a neutral Li-adduct was reported for the solid
state.” As fulvalenes provide a high versatility in metallocene
chemistry, we set out to test their potentials and limitations in
coordination chemistry. For this purpose, we wanted to probe
whether Li* ions are able to form stable cyclopentadienide
complexes by simple addition of lithium salts to fulvalene 2
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Fig. 1 Zwitterionic diazafulvalenes 1’ and 2’ are organic Cp analogues.
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(Scheme 1d) that bears the strongest ylidic character of all
6,6-diaminofulvenes or -fulvalenes.

At first, we reacted 2 and LiOTf in acetonitrile-d; as well as
2 and LiNTf, in THF-dg, but a prolonged reaction time neither
at room temperature nor at 60 °C caused any significant shift
of the peaks in the 'H NMR and "Li NMR spectra. To avoid any
competing coordination of the solvent to the Li" cation, we
chose benzene-d, as a solvent. Heating 2 and LiOTf at 60 °C in
benzene-d¢ did not show any reaction, possibly due to the
extremely low solubility of lithium triflate. However, keeping a
mixture of 2 and LiNTf, for 16 h at room temperature leads to

Fig. 2 Detail of the *H NMR spectrum (400.1 MHz) of 2 in C¢Dg before
(bottom) and after addition of LiNTf, and at 16 h at 60 °C (top) showing
the imidazolium (blue), the Cp signals (red) as well as the solvent peak
(CHDs) (black).
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differences in the chemical shift of all but the tert-butyl
signals of 0.05 to 0.25 ppm in the "H NMR spectrum. Heating
the mixture up to 60 °C for 16 h increased these differences to
0.10-0.41 ppm (Fig. 2).

The Cp-H signals are shifted upfield by 0.4 ppm, while the
signals of the dipyridoimidazolinylidene moiety are shifted
partly both upfield and downfield. These shifts indicate the
formation of the coordination complex 3 rather than a mere
change in the polarity of the solution upon addition of LiNTf,.
The "Li NMR spectrum of 3 shows a singlet at —5.6 ppm in
toluene-dg as well as in benzene-ds. In both cases, no signal
was detected at the beginning of the reaction due to the poor
solubility of LiNTf, in both solvents. This chemical shift is
characteristic of a contact ion pair (-5 to —8.5 ppm)'® in which
the Li resides above the centre of an aromatic ring, and has
also been observed for Cp-substituted Li-phosphoniumylides
recently."’ In contrast, solvent separated ion pairs show the Li
signal typically between 1 and —1 ppm."® To gain more insight
into the bonding situation in solution, we carried out variable
temperature NMR experiments. Cooling down the sample in
10 °C steps reveals a significant broadening of the "H NMR
signals at —50 °C down to —80 °C (Fig. 3, left). Below —70 °C
an additional broad signal set appears. Due to the different
shapes of the ¢Bu signals, a hindered rotation about the exo-
cyclic C-C bond that leads to two non-equivalent sides of the
dipyrido moiety cannot explain this result. For comparison, we
also cooled a sample of fulvalene 2 in toluene-dg to —80 °C
and did not observe any significant broadening of the signals.
A ’Li NMR experiment shows not only the broadening of the Li
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Fig. 3 VT NMR experiments of 3 in toluene-dg. In the *H NMR spectrum (400.1 MHz) (left) an additional (broader) signal set indicating the presence
of a second species at —80 °C is observed. In the ’Li NMR spectrum (194.4 MHz) two new peaks in a 1: 1 ratio at —0.5 ppm and —11 ppm are observed
in addition to the signal at —5.8 ppm at —80 °C. The respective lithium atoms exchange at this temperature as revealed by an EXSY experiment (see

the ESI}).
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signal at —50 °C but also the formation of two additional
peaks in a 1:1 ratio at —0.5 and —11 ppm at —80 °C (Fig. 3,
right). This behavior was reported in the literature before and
is diagnostic for the formation of a lithiocene species (—10 to
—-12 ppm) and a solvent separated Li-cation.’” By applying
these results to our case, we conclude that a mono-cationic
lithiocene 4 and the negative counterion 5" that consists of a
lithium cation coordinated by two NTf,” ligands are formed
(Scheme 2). Moreover, an EXSY experiment at —80 °C reveals
lithium exchange of all three species (see the ESI}).

By slow diffusion of dichloromethane into a solution of 3 in
CeDs at room temperature, we obtained single crystals suitable
for X-ray diffraction analysis.

The molecular structure (Fig. 4) clearly shows a n*-coordi-
nation between the Li" cation and the cyclopentadienide ring.
The Li-Cpcentroia distance of 2.057 Aisin complete agreement
with those of other LiCp complexes (1.910 A to 2.086 A).** The
Li-carbon distances range from 2.354(4) A to 2.422(4) A, which
is a typical range for n’>-coordinated LiCpL,, compounds.*

The remaining coordination sphere of the Li-cation is occu-
pied by three oxygen atoms of the two bridging bis(trifluoro-
methanesulfonyl)imide anions with Li-O distances between
2.033(4) A and 2.057(4) A. Complex 3 crystallises as a dimeric
variation of the “donor ligand stabilised neutral monomer”
motif of alkali metal cyclopentadienides.” Following the
nomenclature established for LiNTf, crystalline solvates,
complex 3 shows an aggregate coordination (AGG) in the trans-
oid form (C,) regarding the position of the CF; groups relative
to the S-N-S plane."® As three oxygen atoms are coordinated to
two Li" cations, the so called AGG-Ib-C, coordination mode is
realised in the solid state of complex 3.

Fig. 4 X-ray crystal structure of complex 3 with anisotropic atomic dis-
placement parameters at the 50% probability level. Hydrogen atoms and
three benzene molecules (1.5 per asymmetric unit) are omitted for
clarity.

This journal is © The Royal Society of Chemistry 2017
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Fast equilibrium between the LiCp complex 3 and a solvent separated salt that consists of monocationic lithiocene 4 and lithiate 5 at

Although the coordination of the lithium cation to the Cp
ring could be demonstrated clearly for 3 both in solution and
in solid states, this bond formed is rather weak. This can be
deduced from the fact that during monitoring the course of
the reaction of 2 and LiNTf, only one species is observed in
the "H NMR spectra, which implies a fast equilibrium between
the free fulvalene and the coordinated species. This leads to
the continuous shifting of the signals until the final values for
compound 3 (fulvalene:Li = 1:1) are reached. Using two
equivalents of Li(NTf), does not lead to further shifting of the
signals. Another argument is the fast Li* exchange at —80 °C
revealed by the EXSY spectrum. Furthermore, already one equi-
valent of added THF leads to a recognisable shift of the
signals into the direction of the free fulvalene 2 in the "H NMR
spectrum. With 8 equivalents of THF, the signals of pure 2 are
almost obtained back. This is also corroborated by the ESI
mass spectrum of complex 3 in which only the signal of the
decoordinated, protonated fulvalene 2 [M + H]" is detected.

In conclusion, we have presented a simple method for the
preparation of a n’-cyclopentadienide lithium complex by
addition of LiINTf, to a highly zwitterionic fulvalene. While a
dimeric structure forms in the solid state, the complex under-
goes fast exchange in solution at room temperature. Evidence
for an equilibrium between 3 and a monocationic lithiocene
species 4 together with the [Li(NTf,),]” counter ion (5) at
—80 °C was obtained by the characteristic “Li NMR chemical
shifts. An EXSY experiment at —80 °C revealed Li exchange
between all of these three species.

We will now put our efforts in applying this method to
other group 1 and group 2 metal salts, and also on probing the
utility of 3 as a Cp-transfer reagent in non-polar solvents.

We thank Kristina Strohmaier for help with the VI NMR
experiments as well as Karl W. Tornroos and Eva Jiirgens for
help with X-ray structure analysis. We also thank a referee for
suggesting the titration as well as the VT 'Li NMR experiment.

Notes and references

1 P. Merino, Sci. Synth., 2009, 45a, 109-156.

2 (@) C. Elschenbroich, Organometallchemie, B. G. Teubner/
GWYV, Wiesbaden, 2008; (b) P. Jutzi, W. Leffers, S. Pohl and
W. Saak, Chem. Ber., 1989, 122, 1449-1456; (c) G. Erker,
G. Kehr and R. Frohlich, Organometallics, 2008, 27, 3-14.

Dalton Trans., 2017, 46, 29-32 | 31


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6dt03355e

Open Access Article. Published on 29 November 2016. Downloaded on 1/21/2026 4:46:03 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Communication

Review on the reactivity of fulvenes: (a) P. Zeller, Methoden
Org. Chem. (Houben-Weyl), 1985, 5/2¢, 504-684;
(b) M. Neuenschwander, in The Chemistry of Double-bonded
Functional Groups, ed. S. Patai, Wiley & Sons, Chichester,
1989, vol. 2/2, suppl. A.

(@) U. Mueller-Westerhoff, Tetrahedron Lett., 1972, 13,
4639-4642; (b) D. Kunz, E. @. Johnsen, B. Monsler and
F. Rominger, Chem. — Eur. J., 2008, 14, 10909-10914.

D. Schmid, A. Seyboldt and D. Kunz, Z. Anorg. Allg. Chem.,
2015, 641, 2228-2232.

D. Schmid, A. Seyboldt and D. Kunz, Z. Naturforsch., B:
Chem. Sci., 2014, 69, 580-588.

F. Ramirez and S. Levy, J. Am. Chem. Soc., 1957, 79, 67-69.
(@) J. H. Brownie and M. C. Baird, Coord. Chem. Rev., 2008,
252, 1734-1754; (b) F. G. Schroder, C. Lichtenberg,
M. Elfferding and J. Sundermeyer, Organometallics, 2013,
32, 5082-5091.

In this case, the complex was formed by deprotonation of
phosphoniumecyclopentadiene iodide  with BulLi:
F. G. Schroder, Dissertation, Philipps-Universitdt, Marburg,
2014.

32 | Dalton Trans., 2017, 46, 29-32

10

11

12

13

14

15

View Article Online

Dalton Transactions

(@) R. H. Cox and H. W. Terry, J. Magn. Reson., 1974, 14,
317-322; (b) D. Johnels, A. Boman and U. Edlund, Magn.
Reson. Chem., 1998, 36, S151-S156.

C. Lichtenberg, N. S. Hillesheim, M. Elfferding,
B. Oelkers and J. Sundermeyer, Organometallics, 2012, 31,
4259-4266.

(@) M. M. Exner, W. Waack and E. C. Steiner, J. Am. Chem.
Soc., 1973, 95, 7009-7018; (b) L. A. Paquette, W. Bauer,
M. R. Sivik, M. Biihl, M. Feigel and P. v. R. Schleyer, J. Am.
Chem. Soc., 1990, 112, 8776-8789; (c) K. Kunz, G. Erker,
G. Kehr and R. Frohlich, Organometallics, 2001, 20, 392-
400.

The existence of anion 5 was demonstrated for ionic
liquids. (a) A. Shirai and Y. Ikeda, Inorg. Chem., 2011, 50,
1619-1627; (b) Q. Zhou, K. Fitzgerald, P. D. Boyle and
W. A. Henderson, Chem. Mater., 2010, 22, 1203-1208.

R. Michel, R. Herbst-Irmer and D. Stalke, Organometallics,
2011, 30, 4379-4386.

D. M. Seo, P. D. Boyle, R. D. Sommer, ]J. S. Daubert,
O. Borodin and W. A. Henderson, J. Phys. Chem. B, 2014,
118, 13601-13608.

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6dt03355e

	Button 1: 


