

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

 Cite this: *Phys. Chem. Chem. Phys.*, 2017, 19, 18777

Correction: Structural characterization of gas-phase cysteine and cysteine methyl ester complexes with zinc and cadmium dications by infrared multiple photon dissociation spectroscopy

 Rebecca A. Coates,^a Christopher P. McNary,^a Georgia C. Boles,^a Giel Berden,^b Jos Oomens^{bc} and P. B. Armentrout ^{id} ^{*a}

DOI: 10.1039/c7cp90144e

rsc.li/pccp

 Correction for 'Structural characterization of gas-phase cysteine and cysteine methyl ester complexes with zinc and cadmium dications by infrared multiple photon dissociation spectroscopy' by Rebecca A. Coates *et al.*, *Phys. Chem. Chem. Phys.*, 2015, **17**, 25799–25808.

Although the overall conclusions of the original article remain unaffected (no experimental or theoretical IR spectra are changed, nor is any calculated thermochemistry at 0 K), the thermal corrections to the Gibbs free energy at 298 K were mistakenly overestimated. Corrected 298 K values for Tables 1 and 2 from the original manuscript are given below. Notably, only very subtle changes are found such that the relative order of all 298 K theoretically determined low-energy species remains the same for the $[\text{Zn}(\text{Cys-H})]^+$, $[\text{Cd}(\text{Cys-H})]^+$, $[\text{Zn}(\text{CysOMe-H})]^+$, $[\text{Cd}(\text{CysOMe-H})]^+$ and $\text{CdCl}^+(\text{CysOMe})$ systems. Therefore, we have not corrected the relative energies used throughout the text.

Table 1 B3LYP,^a B3P86, and MP2(full) relative free energies (kJ mol⁻¹) at 298 K of low-lying conformers of $[\text{M}(\text{Cys-H})]^+$ and $[\text{M}(\text{CysOMe-H})]^+$ ^b

Complex	Structure	Zn	Cd
$[\text{M}(\text{Cys-H})]^+$	$[\text{N},\text{CO},\text{S}^-]\text{tgg}$	0.0 (0.0), 0.0, 0.0	0.0 (0.0), 0.0, 0.0
	$[\text{N},\text{CO},\text{S}^-]\text{cgg}$	24.4 (24.0), 24.0, 23.2	25.1 (24.9), 24.7, 25.9
	$[\text{CO},\text{S}^-]\text{cgg}$	27.8 (32.8), 31.5, 45.0	23.1 (28.5), 28.1, 33.0
	$[\text{N},\text{S}^-]\text{tgt}$	30.8 (35.1), 37.7, 38.0	27.7 (34.0), 29.8, 44.0
	$[\text{CO}^-, \text{S}^-]\text{cgf}^c$	36.0 (36.9), 40.5, 42.0	30.5 (29.4), 34.9, 30.9
	$[\text{N},\text{OH},\text{S}^-]\text{tgg}$	38.2 (36.3), 42.1, 35.2	41.7 (46.0), 44.4, 58.0
	$[\text{CO},\text{S}^-]\text{ctg}$	50.2 (54.0), 54.6, 68.5	44.8 (46.2), 46.1, 49.9
	$[\text{N},\text{CO}^-, \text{S}]\text{tggg}$	60.6 (57.7), 60.9, 58.2	55.9 (60.2), 60.0, 65.7
	$[\text{N},\text{S}^-]\text{ctg}$	63.9 (67.2), 70.2, 71.5	77.0 (86.0), 91.5, 98.7
	$[\text{N}^-, \text{CO}, \text{S}]\text{tggg}$	100.5 (101.2), 101.5, 102.8	104.5 (108.8), 106.6, 112.6
	$[\text{S}^-]\text{tgg}$	143.8 (150.7), 164.3, 179.9	86.3 (95.2), 100.7, 107.9
$[\text{M}(\text{CysOMe-H})]^+$	$[\text{N},\text{CO},\text{S}^-]\text{tgg}$	0.0 (0.0), 0.0, 0.0	0.0 (0.0), 0.0, 0.0
	$[\text{N},\text{CO},\text{S}^-]\text{cgg}$	36.2 (33.4), 35.2, 36.2	37.2 (34.6), 36.0, 37.6
	$[\text{N},\text{OMe},\text{S}^-]\text{tgg}$	43.7 (38.9), 46.3, 37.2	36.7 (32.8), 39.5, 33.2
	$[\text{N},\text{S}^-]\text{tgt}$	36.9 (41.2), 43.4, 46.5	27.0 (32.4), 31.5, 37.2
	$[\text{CO},\text{S}^-]\text{tgg}$	55.5 (61.2), 64.0, 74.1	50.7 (57.4), 57.3, 70.0
	$[\text{CO},\text{S}^-]\text{ctg}$	76.9 (77.6), 83.5, 93.6	72.3 (74.2), 77.0, 90.6
	$[\text{N},\text{S}^-]\text{ctg}$	84.3 (84.7), 89.5, 92.8	73.1 (74.5), 76.3, 82.1
	$[\text{N}^-, \text{CO}, \text{S}]\text{tggg}$	102.3 (102.6), 103.3, 105.9	104.4 (104.6), 106.4, 112.7

^a Values including empirical dispersion corrections are given in parentheses. ^b Calculations performed at the B3LYP, B3P86, and MP2(full) levels of theory using a 6-311+G(2d,2p) basis set for Zn-containing complexes and def2TZVPP for Cd-containing complexes. Geometries and vibrational frequencies calculated at the B3LYP/6-311+G(d,p) level for Zn-containing complexes and B3LYP/def2TZVP for Cd-containing complexes. ^c Salt bridge between NH_3^+ , CO_2^- , and S^- groups.

^a Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA. E-mail: armentrout@chem.utah.edu

^b Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, NL-6525ED Nijmegen, The Netherlands

^c van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands

Table 2 Relative free energies (kJ mol⁻¹) at 298 K of low-lying CdCl⁺(CysOMe) conformers^a

Structure	B3LYP ^b	B3P86	MP2(full)
[N,CO,S]tggg ₊	0.0 (0.0)	0.0	0.0
[N,CO,S]tggg ₋	1.1 (1.7)	1.2	1.7
[S ⁻]tcg ^c	17.6 (19.0)	18.2	21.5
[N,CO]tgtg ₋	20.1 (29.3)	24.9	31.1
[N,CO]tggg	20.7 (29.2)	25.3	30.7
[N,CO]tcgg	21.2 (30.2)	25.9	31.8
[N,S]tgtg	23.4 (30.3)	26.0	33.7
[N,CO]tgtg ₊	23.4 (32.8)	28.3	35.0
[CO,S ⁻]ttg ^c	26.0 (30.1)	26.7	31.0
[N,OMe,S]tggg ₊	27.7 (22.2)	28.6	21.5
[N,OMe,S]tggg ₋	32.2 (27.7)	33.4	26.7
[N,CO,S]cggg	38.8 (36.1)	37.9	39.2
[CO,S]ttgt	51.0 (58.8)	56.8	72.6
[CO,S ⁻]cg ^c	66.2 (66.8)	64.7	72.2
[CO,S]ctgt	82.5 (88.9)	87.6	104.2

^a Calculations performed at the stated level of theory using a def2TZVPP basis set. Geometries and vibrational frequencies calculated at the B3LYP/def2TZVP level of theory. ^b Values including empirical dispersion corrections are given in parentheses. ^c Salt bridge between NH3⁺, CO₂⁻, and S⁻ groups.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.