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Ab initio thermodynamic properties and their
uncertainties for crystalline a-methanol†

Ctirad Červinka *a and Gregory J. O. Beran b

To investigate the performance of quasi-harmonic electronic structure methods for modeling molecular

crystals at finite temperatures and pressures, thermodynamic properties are calculated for the low-

temperature a polymorph of crystalline methanol. Both density functional theory (DFT) and ab initio

wavefunction techniques up to coupled cluster theory with singles, doubles, and perturbative triples

(CCSD(T)) are combined with the quasi-harmonic approximation to predict energies, structures, and

properties. The accuracy, reliability, and uncertainties of the individual quantum-chemical methods are

assessed via detailed comparison of calculated and experimental data on structural properties (density)

and thermodynamic properties (isobaric heat capacity). Performance of individual methods is also

studied in context of the hierarchy of the quantum-chemical methods. The results indicate that while

some properties such as the sublimation enthalpy and thermal expansivity can be modeled fairly well,

other properties such as the molar volume and isobaric heat capacities are harder to predict reliably.

The errors among the energies, structures, and phonons are closely coupled, and most accurate

predictions here appear to arise from fortuitous error compensation among the different contributions.

This study highlights how sensitive molecular crystal property predictions can be to the underlying

model approximations and the significant challenges inherent in first-principles predictions of solid state

structures and thermochemistry.

1. Introduction

Molecular crystals are ubiquitous, and knowledge of their
thermodynamic properties is indispensable in many technological
applications. Performing calorimetric experiments is typically
straightforward at ordinary pressures and most temperatures.
However, thermodynamic data is much scarcer at high pressures
due to the complexity of the experiments and the associated
uncertainties. Therefore, a reliable computational methodology
capable of generating thermodynamic data for molecular crystals,
even at extreme conditions,1 would help to generate potentially
useful data or to explain experimentally observed phenomena
from the structural or molecular point of view. Most computa-
tional studies of molecular crystals neglect thermal contributions

to thermochemical properties at finite temperatures and pressures,
since calculating static cohesive electronic energies is much simpler
than rigorously accounting for all relevant vibrational and thermal
terms. However, predicting the most stable phase or polymorph
under certain thermodynamic conditions can require sub-kJ mol�1

accuracy,2,3 in which case factors such as thermal expansion of
the crystal and the temperature dependence of the isobaric heat
capacity can play a key role. These effects can be captured only
if the anharmonicity of the unit cell vibrations is included in
the computational model.

Dynamical strategies, based mainly on molecular dynamics,
represent perhaps the best way of calculating temperature- and
pressure-dependent thermodynamic properties, but in practice
the accuracy of such approaches is frequently limited by the
quality of the potential used to drive the dynamics. Due to a
prohibitively high computational cost of ab initio molecular
dynamics for most molecular crystal systems, such works generally
use force-field-based classical molecular dynamics or meta-
dynamics, although pioneering studies using ab initio molecular
dynamics4,5 or path integral methods6 in this context have been
published recently. Recent examples of molecular dynamics-
based studies include investigations of polymorphism,7–9

solubility10 and nucleation.11

Another option for computing thermodynamic properties
from first principles is to combine static electronic structure
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computations with a statistical-thermodynamic model. The
quasi-harmonic approximation12–14 has emerged as a versatile
and often reliable protocol, though some attempts have also
been made to capture the anharmonicity more realistically.15,16

The quasi-harmonic approximation typically employs a stan-
dard harmonic description of the crystal vibrations at a given
unit cell volume with a simple model for estimating how those
vibrational frequencies vary with changes in the cell volume.
These changes in the phonon frequencies incorporate some
anharmonicity into the harmonic model. On the other hand,
the simple quasi-harmonic model cannot necessarily describe
systems with highly anharmonic vibrational modes or systems
at high temperatures well, and the isotropic form of the quasi-
harmonic model does not always work well for crystal struc-
tures exhibiting considerable anisotropy.

Several recent studies and reviews employ the quasi-harmonic
approximation to calculate the thermodynamic properties
of molecular crystals and emphasize the importance of the
thermal terms for phenomena such as the thermal expansivity
or polymorphism.2,3,17–19 The results of those studies indicate
that the quasi-harmonic approximation sometimes enables
calculation of temperature-dependent trends in properties such
as molar volumes, sublimation enthalpies, or Gibbs energies
for various molecular crystals with a semi-quantitative accuracy
or better. This sometimes translates to sub-kJ mol�1 accuracy,
which is important for polymorph stability ranking18–20 and
predicting of phase change properties.3,12,21 Quasi-harmonic
models are also capable of capturing anomalous behavior such
as the negative thermal expansion of some systems2,4 or non-
monotonic sublimation enthalpy trends,3,12 although several
cases have been reported where the computational methodology
fails to reproduce experimental data.22 Other limitations of the
quasi-harmonic approximation arise from the high computa-
tional cost for large molecules/unit cells, flexible molecules,
and other cases where such high accuracy cannot practically
be achieved.17 To date, most quasi-harmonic calculations in
molecular crystals have relied on DFT,18,19,22–26 or they have
not examined the uncertainty and sensitivity of the calculated
thermodynamic properties in detail.12,13 A thorough study investigat-
ing the computational uncertainty and sensitivity of wavefunction-
based ab initio quasi-harmonic calculations for molecular
crystals is still missing.

Calculations of thermodynamic properties depend strongly
on the quality of the vibrational properties used, particularly
the lattice vibrational mode frequencies. Several recent works
investigate the calculations of spectral and vibrational proper-
ties of molecular crystals from first principles, aiming to
estimate the uncertainty of such calculations.22,27–30 These
studies suggest that dispersion-corrected DFT calculations
are capable of predicting the vibrational frequencies semi-
quantitatively. There are crystals for which the calculated and
experimental data are in a good agreement, as well as cases for
which the differences of experiment and theory range up to a
few tens of cm�1.22 Moreover, harmonic DFT calculations with
commonly-used density functionals systematically overestimate
the intramolecular vibrational frequencies for most organic

molecules, due to both the neglect of anharmonicity and errors
inherent in the chosen functional/basis set.31–33 This means
that dispersion-corrected DFT calculations of phonons can
impart considerable uncertainty to the evaluation of the thermal
contributions to thermodynamic properties. Therefore, the
reliability of ab initio wavefunction-based phonon calculations
and practical implementations for them need to be examined
further.

In this work, we investigate the low-temperature crystalline
polymorph of methanol, which is commonly referred to as
a-methanol, in detail. The orthorhombic a-methanol crystal
structure (space group P212121, Z = 4, Fig. 1)34 is fully ordered
and stable at low temperatures below 157.34 K,35 and up to
medium pressures roughly below 3.5 GPa.36 For this test case of
a-methanol crystal, we compare the performance of dispersion-
corrected DFT and more sophisticated ab initio wavefunction
methods up to coupled cluster singles, doubles and perturbative
triples (CCSD(T)). Properties such as molar volume (Vm) and
isobaric heat capacities (Cp) are calculated as functions of both
temperature and pressure. We examine the interplay among the
unit cell energy model, its geometry optimization, and phonons,
and we quantify the sensitivity of predicted structural and
thermodynamic properties to errors in the models. The results
highlight the challenges in predicting molecular crystal proper-
ties quantitatively from first principles.

2. Computational methods

The electronic structure and energy of the unit cells and related
properties were calculated in parallel within the periodic
DFT-D3 framework37 as implemented in VASP (version 5.4.1),38

and the hybrid many-body interaction (HMBI) model39 using
Molpro (2012.1)40 for ab initio calculations and Tinker (6.2)41 for
Amoeba force-field42 calculations. All calculations initiated from
the experimental unit cell structure and atomic coordinates,
reference code METHOL04 from the Cambridge Crystal Structure
Database.43 Both atomic positions and unit cell vectors were
optimized subject to space group symmetry constraints. Having
found the unit cell structure corresponding to a minimum on the
energy hypersurface, the electronic energies of the optimized unit
cells [Eel(V)] were calculated as a function of volume, usually for
15 discrete volume points around the energy minimum.14,22

The specific manner in which the volume expansion occurs

Fig. 1 Unit cell structure of orthorhombic a-methanol with marked two
antiparallel hydrogen bond chains passing through a unit cell.
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differs depending on the software package used. In VASP, the
volumes were scaled by a given factor and then the system was
relaxed subject to a fixed total unit cell volume, which allows
relaxation of the individual lattice constants. Data produced
from these VASP DFT geometries are labeled with a dagger (†).
Fixed volume optimizations with variable lattice constants have
not been implemented in HMBI. Instead, two different strategies
were employed. For most of the calculations, the cohesive energy
curves Eel(V) were mapped out by relaxing the crystal structures
under fixed external pressure (circle-labeled data sets, �), applying
positive pressures for compression and negative pressures for
expansion. For comparison purposes, calculations which scale
the lattice constants isotropically and hold them fixed while the
atomic positions were relaxed were also considered (star-labeled
data sets, *). Allowing the unit cell dimensions to vary indepen-
dently (instead of simply scaling the lattice parameters) when
determining the electronic cohesive energy incorporates some
anisotropy into the quasi-harmonic model.

2.1 Periodic DFT calculations

Electronic structure of the unit cells was calculated using the
projector-augmented wave (PAW)44 formalism, PBE functional45

and the semiempirical DFT-D3 dispersion correction,37 including
the Becke–Johnson dumping (BJ).46–48 A plane wave energy cutoff
of 700 eV was used for the periodic DFT calculations, along with
the so-called hard PAW potentials49 and the Monkhorst–Pack
sampling of the k-space.50 Phonon properties were calculated
for supercells (larger than 10 Å in all directions) created by
replication of the optimized unit cells using a finite displacement
method51 and the program Phonopy.52 The phonon density of
states was calculated for each of five unit cell volumes, which
enabled the construction of the Helmholtz vibrational energy
[Avib(T,V)] as a function of both temperature and volume as
needed by the quasi-harmonic approximation. Mode-specific
Grüneisen parameters were evaluated from the five sets of
frequencies to determine each vibrational frequency at an
arbitrary volume. Separately, analytical Avib(V) forms were
obtained by fitting the calculated Avib(V) values from the five
discrete volume points to a linear function.14

2.2 HMBI calculations

The HMBI model39,53–56 represents the total energy of the crystal in
terms of individual molecules (monomers) and their interactions
with other monomers via the many-body expansion.57–63 The
energies of monomers and spatially proximal dimers are com-
puted via electronic structure theory, while long-range dimers and
clusters consisting of larger numbers of molecules (many-body
effects) are treated with a computationally inexpensive classical
polarizable force field. In this work, the treatment of individual
dimers (molecular pairs) was smoothly switched from quantum to
classical over the intermolecular distance separation of 9 and 10 Å.
Exploitation of space group symmetry reduces the number of
fragments that need to be calculated significantly, further
reducing the computation cost.64

Ab initio calculations were performed using counterpoise
correction65 and second-order Møller–Plesset perturbation theory

(MP2) and CCSD(T)66 in the aug-cc-pVXZ correlation-consistent
basis sets (abbreviated avxz below).67 Unit cell optimizations
and calculations of the G-point vibrational frequencies were
performed only at the MP2/avdz and MP2/avtz levels. In addi-
tion, single-point energies were evaluated at the MP2/avqz level,
extrapolated complete basis set (cbs) limit MP2,68 and the
CCSD(T)/avtz level using the MP2/avtz unit cell geometries.
CCSD(T)/cbs energies were estimated using MP2/cbs, MP2/avtz
and CCSD(T)/avtz energies.69 As with the DFT calculations,
phonon frequencies were evaluated at five different unit cell
volumes to enable evaluation of mode-specific Grüneisen para-
meters and the Helmholtz vibrational energy.

2.3 Quasi-harmonic approximation

Summation of Eel(V) with Avib(T,V)14 yields total Helmholtz
energy profiles [Acr(T,V)] for the unit cell.14 Analytic volume-
dependent Helmholtz energy profiles were subsequently obtained
by fitting Acr(T,V) to the Murnaghan equation of state70 separately
for each temperature. The molar volume is found by differen-
tiating the fitted Helmholtz energy Acr(T,V) with respect to
volume at constant temperature and solving the standard
thermodynamic relationship for V at the desired temperature
and pressure:

pðT ;VÞ ¼ � @AcrðT ;VÞ
@V

� �
T

: (1)

Thermodynamic properties such as the Gibbs energy [Gcr(T,p)]
and isobaric heat capacity [Cp(T,p)] can then be evaluated using
fundamental thermodynamic relations:

GðT ; pÞ ¼ AðT ;VÞ þ pV ¼ AðT ;VÞ � V
@A

@V

� �
T

; (2)

CpðTÞ ¼
@H

@T

� �
p

¼ @

@T
½Gþ TS� ¼ �T @2G

@T2

� �
p

: (3)

Sensitivity analysis of the calculated molar volumes and isobaric
heat capacities on the uncertainties of the intermediate results
such as the phonon frequencies or shape of the Eel(V) were
performed by scaling these intermediate quantities and obser-
ving the changes of the final thermodynamic properties. The
quality of the fits by Murnaghan equation and their corres-
ponding impacts on the final accuracy were also investigated.

3. Results and discussion

The first two sections describe the prediction of the basic ingre-
dients for the quasi-harmonic approximation: the energy–volume
curves and the phonon frequencies. The subsequent sections
use these properties to predict thermodynamic observables—the
sublimation enthalpy, the molar volume, and the isobaric heat
capacity—that are compared against experiment.

3.1 Electronic energy–volume curves

Optimization of the unit cells retains the experimental crystal
packing of the methanol molecules, as can be seen in the structure
overlays (Fig. S1, ESI†) and tabulated coordinates (Table S1, ESI†).
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Fig. 2 compares the electronic cohesive energies for a-methanol
as functions of unit cell volume. The Eel(V) curve calculated
solely with the classical Amoeba force field differs considerably
from those predicted with electronic structure methods. It
exhibits the steepest expansion branch, while its compression
branch is less steep than expected. The shapes of the HMBI
Eel(V) curves obtained using MP2 or CCSD(T) are qualitatively
similar to one another. However, several important details should
be noted as they can considerably affect the final thermodynamic
properties. The MP2/avdz� Eel(V) curves from fixed-pressure
optimizations are very close to the constant-volume optimized
PBE-D3(BJ)† ones. Increasing the basis set from avdz to the cbs
limit decreases the optimal volume by 9% (or by 12% if using the
fully isotropic HMBI model). Similar basis set behavior is
observed in other crystals such as carbon dioxide and ice.2,12

When counterpoise-corrections are employed (as they are here),
larger basis sets typically lead to stronger intermolecular binding,
which translates to smaller unit cell volumes. For a given basis
set, switching from MP2 to CCSD(T) reduces the optimal volume
of Eel(V) by 1.5%. If one shifts the various Eel(V) curves laterally
such that they share a common minimum volume, it can be seen
that increasing the basis set/level of theory also leads to slightly
steeper compression and expansion branches about the minimum.
Compared to MP2/avdz�, the slope of the CCSD(T)/cbs� Eel(V)
curve is 1.9 times larger in the compression branch and 1.6 times
larger in the expansion branch.

Fig. 2 also contains valuable information about the depen-
dence of the Eel(V) curve shape on the source of the optimized
unit cell geometry. The HMBI MP2/avtz curves obtained using
isotropic (*) and anisotropic (�) geometries are similar, with the
anisotropic curve exhibiting a slightly softer expansion slope
(by 6%) due to the additional unit cell relaxation that model
allows. The differences between the isotropic and anisotropic
Eel(V) curves is even smaller at the CCSD(T)/cbs level, with slopes
differing by only 5%. As will be discussed in Section 3.4, the
experimentally observed thermal expansion of a-methanol is

only moderately anisotropic, so it is not too surprising that
the difference between these two modeling approaches on
Eel(V) is small.

In contrast, performing CCSD(T)/cbs single-point energies on
the periodic PBE-D3(BJ) geometries (labeled CCSD(T)/cbs†) yields
appreciably different energy curves and minima than the other
two CCSD(T)/cbs (� and *) data sets. Using the PBE-D3(BJ)
geometries shifts the CCSD(T) minimum to larger volume,
makes the compression branch steeper, and alters the expansion
branch such that the energy well is flatter near the minimum but
steeper for larger expansions. Visually, the CCSD(T)/cbs† curve
on the PBE-D3(BJ) geometry roughly mimics the average of the
PBE-D3(BJ)† curve and the CCSD(T)/cbs� one. This shape for
Eel(V) means that calculations based on the DFT-optimized unit
cell geometries will produce larger molar volumes than those
using the MP2-optimized unit cells.

The contrast between the results obtained from the MP2
and DFT geometry optimizations raises the question of what
the CCSD(T)-optimized Eel(V) curve would look like if it were
practical to compute. Some insight can be gained by examining
the performance of PBE-D3(BJ) and MP2 on the methanol dimer
from the S66x8 test set. Comparing against complete-basis-set
CCSD(T) benchmarks, both MP2 and PBE-D3(BJ) overbind the
dimer, but the overbinding is larger with DFT (root-mean-square
error 0.7 kJ mol�1 for MP2/cbs, 0.9 kJ mol�1 for PBE-D3(BJ)/avqz,
and 1.5 kJ mol�1 for PBE-D3(BJ)/PAW over the eight intermolecular
separations; see Table S2, ESI†). Notably, the PBE-D3(BJ) inter-
action energy weakens much more slowly as one moves away from
equilibrium toward either shorter or longer intermolecular separa-
tions. This erroneously flatter energy basin around the dimer
equilibrium geometry contributes to the softer compression
and expansion branches seen in the crystal.

Further insight can be found in the predicted lattice energies,
calculated for the optimized geometries obtained by minimizing
the electronic energy only, which are summarized in Table 1.
In the small aug-cc-pVDZ basis set, the MP2 lattice energy

Fig. 2 Comparison of electronic energies of a unit cell of a-methanol calculated by various quantum chemical levels of theory: left – convergence
towards the CCSD(T)/cbs limit; right – effect of the underlying geometries on CCSD(T) energy single point calculations.
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(in absolute value) is 45.4 kJ mol�1, and it increases to
52.9 kJ mol�1 at the cbs limit. CCSD(T)/cbs increases it further,
to 54.7 kJ mol�1. This contrasts the S66x8 dimer geometry, for
which the CCSD(T)/cbs interaction energies are always weaker
than the MP2/cbs ones (a reminder that analysis of dimer inter-
actions alone has limitations in the context of the crystal71).
Regardless, PBE-D3(BJ) binds even stronger, at 57.4 kJ mol�1,
while CCSD(T)/cbs† on those DFT geometries binds more weakly
at 51.5 kJ mol�1. The same holds true across the entire expansion
and compression curves—the CCSD(T)/cbs energies are more
strongly bound for the MP2 geometries than for the PBE-D3(BJ)
ones. So while actual CCSD(T)/cbs energy optimizations are
computationally impractical, this data suggests that the MP2/
avtz optimized structures are closer to the optimal CCSD(T)
structures than the PBE-D3(BJ) geometries, though it is unclear
if that also translates to the MP2 geometries producing a more
reliable Eel(V) curvature.

Based on these Eel(V) curves, it can be concluded that MP2 and
CCSD(T) yield smaller equilibrium unit cell volumes, predict less
thermal expansion will occur (due to the steeper expansion
branch), and exhibit lower compressibility for a-methanol crystals
compared to the DFT calculations here.

3.2 Vibrational frequencies

The temperature dependence of properties in quasi-harmonic
crystalline solids arises through the phonon contributions.
Fundamental vibrational frequencies of a-methanol were
calculated using both many body expansion (HMBI coupled
with MP2) and periodic DFT (PBE-D3(BJ)) calculations. This
section compares results obtained from these calculations
against each other and experimental data. Vibrational frequen-
cies calculated in ref. 22 using periodic optPBE-vdW72 calcula-
tions are also included for comparison.

Several experimental low-temperature spectroscopic studies
for a-methanol can be found in the literature.73–81 Most of them
agree on the vibrational assignment and fundamental frequen-
cies of the intramolecular modes within the reported experi-
mental uncertainty – a few cm�1 for sharp strong peaks and up
to 20 cm�1 for weak broad peaks. The main exceptions are the
frequencies of the internal methyl rotation modes, which exhibit
scatter on the order of several tens of cm�1. Several studies focus

on the intermolecular (lattice) vibrational modes,76,82,83 though,
a complete experimental assignment of individual modes has
not been performed to our knowledge.

Fig. 3 shows the relative percentage deviations between the
calculated intramolecular frequencies and the experimental
data from the most complete work.74 Both DFT functionals
yield more accurate O–H and C–H stretching mode frequencies
(deviations below 5%) than MP2 (deviations ranging from 5
to 10%). Using the larger avtz basis set instead of avdz for the
MP2 calculations leads to a slight improvement for the stretch-
ing modes (deviation decreases by 2 percentage points). All
methods overestimate the frequencies of the stretching modes,
except DFT results for O–H stretches. Predicted harmonic
frequencies are often larger than the anharmonic experimental
values. Similar trends can be observed for the intramolecular
deformation and C–O stretching modes for which all deviations
are lower than 5% in absolute value. Concerning the internal
methyl rotation modes, both DFT functionals significantly
overestimate the frequencies (PBE-D3(BJ) by 25%), while MP2
exhibits smaller deviations (5–10%). However, shifting to the
larger avtz basis set increases the MP2 errors. Detailed compar-
ison of calculated and experimental vibrational frequencies can
be found in Table S3 in the ESI.†

To enable investigations of the sensitivity of the computa-
tional model on the uncertainty of vibrational frequencies in
Sections 3.4 and 3.5, we evaluated empirical scale factors for
the MP2/avtz intramolecular frequency set. The intramolecular
frequencies were scaled separately for the low (below 2000 cm�1)
and high (above 2000 cm�1) wavelength regions, as is common
when computing ideal gas properties.31,84 The multiplicative scale
factors are intended to shift the calculated harmonic frequencies
to be in closer agreement with the anharmonic experimental data.
By comparing the calculated and experimental74 frequencies of

Table 1 Cohesive energies (Ecoh, in kJ mol�1) and sublimation enthalpies
DsubH (0 K) of a-methanol calculated using various levels of theory

Level of theory Ecoh
a DZPVE

sub Ea DsubHa Ecoh
b DZPVE

sub Eb DsubHb

MP2/avdz� �45.44 �6.72 38.72 �45.13 �6.31 38.82
MP2/avtz� �50.00 �6.77 43.23 �49.62 �6.29 43.33
MP2/avqz� �51.68 — 44.82 �51.34 �6.47 44.87
MP2/cbs� �52.93 — 46.16 �52.61 �6.60 46.01
CCSD(T)/avtz� �51.77 — 45.00 �51.47 �6.46 45.02
CCSD(T)/cbs� �54.63 — 47.86 �54.37 �6.77 47.59
PBE-D3(BJ)† �57.42 �6.96 50.46 �57.01 �6.65 50.36
CCSD(T)/cbs† �50.21 — 43.25 �49.80 �6.83 42.97
Experiment3 — — 45.7 — — 45.7

a Values calculated for the unit cell geometries obtained by optimiza-
tion of electronic energy. b Values calculated for the unit cell volumes
obtained by the quasi-anisotropic quasi-harmonic model.

Fig. 3 Relative percentage deviations of calculated (nc) fundamental
intramolecular vibrational frequencies calculated at selected levels of
theory from experimental frequencies (ne).
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the intramolecular vibrational modes and averaging over all
modes of the unit cell, scale factors of 0.9682 below 2000 cm�1

and 0.9302 above 2000 cm�1 were obtained for this crystal.
Such values lie within the typical range for MP2 or DFT
calculations of intramolecular fundamental frequencies.31–33,84

Scaling reduces the mean and absolute percentage deviations of
the calculated intramolecular frequencies versus experiment
from 4.8% and 5.8% to 0.1% and 2.5%, respectively. These
intramolecular vibrational frequency scaling parameters will be
used further in Sections 3.4 and 3.5.

Next, consider the intermolecular vibrational modes. Fig. 4
illustrates the agreement of the calculated fundamental fre-
quencies of the lattice modes of a-methanol with experimental
data measured in ref. 82 and further analyzed in ref. 76. Again,
data from ref. 22 calculated using the optPBE-vdW functional72

are included for comparison. In general, the calculated fre-
quencies of the lattice modes exhibit percentage deviations that
are one order of magnitude higher than the intramolecular
modes, which could be expected in context of the results from
ref. 22. For nearly all the lattice modes, pure Amoeba calcula-
tions yield significantly higher frequencies than the quantum
chemical calculations do. Among the electronic structure methods,
the periodic PBE-D3(BJ) calculations give the highest frequency
values. Methanol crystals contain strong hydrogen bond chains
whose vibrational modes occur at relatively high wavelengths
(above 300 cm�1). Their values are overestimated by all of the
computational methods used by up to 25%. Librational lattice
modes are expected to be found in the middle wavelength region.
The frequencies of these modes are mostly underestimated by the
quantum chemical methods used here. Translational lattice
modes should be found in the lowest wavelength region, and
most of the predicted frequencies in this region are overestimated
by up to 40%, while others are underestimated by almost 80%.

Together, prevailing overestimation of the low-frequency lattice
modes translates to considerable underestimation of calculated
thermodynamic properties such as entropy or heat capacity for
this crystal with either PBE-D3(BJ) or MP2-based vibrational
properties.

One might note that the experimental vibrational frequencies
were obtained at 20 K,82 while the predicted phonons were
obtained for the unit cell structure corresponding to the electronic
energy minimum. The latter neglects expansion due to zero-point
vibrational motion and the small amount of thermal expansion
between 0 and 20 K, which can lead to misleading comparisons.27

To estimate the thermal and vibrational effects on the lattice-
mode frequencies, the frequencies were reevaluated using the
calculated MP2 or PBE-D3(BJ) quasi-harmonic unit cell volumes at
20 K and Grüneisen parameters for the individual modes. In this
way, temperature-dependent quasi-harmonic frequencies of the
lattice modes can be approximated. The resulting frequency
values are listed in Table S4 (ESI†). With this correction, the
mean absolute percentage deviations of the lattice-mode frequen-
cies changed from 13% to 16% and from 19% to 14% for HMBI
MP2/avtz* and periodic PBE-D3(BJ)† frequencies, respectively. So
while such expansion effects do impact the comparison between
theory and experiment, they do not appear to be the principal
source of error in the predicted frequencies.

Next, these calculated phonon properties were employed to
compute vibrational Helmholtz energy profiles for a-methanol
at various temperatures as a function of unit cell volume and
interpolated via linear functions. Fig. 5 compares these Avib(V)
profiles at 0 K. Clearly, pure Amoeba calculations yield
an Avib(V) line whose slope differs considerably from the other
models. In contrast, the MP2 and PBE-D3(BJ) Avib(V) lines differ
primarily in their absolute values (by about 6 kJ mol�1), rather
than in their slopes. The PBE-D3(BJ)† Avib(V) lines exhibit slopes

Fig. 4 Relative percentage deviations of calculated (nc) fundamental
lattice vibrational frequencies calculated at selected levels of theory from
experimental frequencies (ne).

Fig. 5 Vibrational Helmholtz energies of a-methanol at 0 K as a function
of unit cell volume, as by selected quantum chemical levels of theory.
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that are 8% steeper than the MP2/avdz* ones and 2% steeper
than the MP2/avtz* ones. Including the anisotropy in MP2
HMBI calculations changes the slopes of Avib(V) by 9%, making
them less steep for MP2/avdz� and more steep for MP2/avtz�.
The basis set size clearly impacts the vibrational properties
appreciably, which will translate to observable differences in
phenomena such as the thermal expansion. Unlike the slopes,
absolute values of Avib(V) do not impact thermodynamic proper-
ties such as the density or heat capacity of a single phase.
However, absolute values of Avib(V) become extremely important
when comparing properties between different phases, e.g. Gibbs
energies and related phase equilibria.

3.3 Sublimation enthalpy

Now consider the sublimation enthalpy at 0 K. The differences
in the zero-point vibrational energy (DZPVE

sub E) between the crystal
and ideal gas phase were calculated within the harmonic approxi-
mation by combining the phonon results obtained using the
HMBI MP2/avdz, MP2/avtz and PAW/PBE-D3(BJ) levels of theory
with the fundamental vibrational frequencies of an isolated gas-
phase methanol molecule whose geometry was optimized at the
same levels of theory. No scaling factors were applied to the
calculated vibrational frequencies for this purpose. Sublimation
energies (DsubH) were evaluated at 0 K coupling the cohesive
energies and DZPVE

sub E terms, both evaluated either using a ‘‘static’’
model based on the geometries corresponding to the minimum
of the electronic energy (described in Section 3.1), or a quasi-
harmonic model based on the unit cell volumes corresponding to
the minima of the Helmholtz energy profiles at 0 K and zero
pressure (using the quasi-anisotropic MP2/avtz� phonon data).
Table 1 lists the respective cohesive energies, DZPVE

sub E terms and
DsubH values. It compares them against the reference experi-
mental value of 45.7 � 0.3 kJ mol�1, which was extrapolated
to 0 K and whose uncertainty was critically evaluated in ref. 3.
Both the static and quasi-harmonic models yield comparable
DZPVE

sub E values. The DsubH values exhibit larger scatter due to
variations in the underlying cohesive energies. Smaller basis set
HMBI MP2 calculations underestimate DsubH, and increasing
the basis set size in the MP2 calculations converges the
calculated DsubH towards the experimental value. The static
MP2/cbs DsubH value matches experiment extremely well, over-
estimating it by only 0.5 kJ mol�1, which is comparable to the
experimental uncertainty. However, switching from MP2 to
CCSD(T) increases the a-methanol cohesive energy further,
and the CCSD(T)/cbs DsubH value is 2.2 kJ mol�1 larger than
experiment. On the other hand, the CCSD(T)/cbs† DsubH value
from the DFT geometry underestimates the experimental value
by 2.4 kJ mol�1. In contrast, PBE-D3(BJ)† overestimates the
sublimation enthalpy by an even larger 5 kJ mol�1.

Comparing the static and quasi-harmonic DsubH results, one
observes that the larger unit cell volume of the quasi-harmonic
model (due to expansion from zero-point vibrational energy)
slightly destabilizes the cohesive energy of the crystal (by
0.2–0.4 kJ mol�1 depending on the curvature of given Eel(V)
curves). However, the larger volume also decreases the ZPVE in
the crystal, leading to a less negative DZPVE

sub E term. Thus, the two

contributions counteract one another and the static and quasi-
harmonic models yield DsubH values for a-methanol that differ
by less than 0.3 kJ mol�1 at 0 K.

3.4 Molar volume

Directly measurable thermodynamic properties such as density
or isobaric heat capacity can be obtained from the calculated
Eel(V) and Avib(V) curves. The appropriateness of the computa-
tional model for calculation of the structural properties can be
assessed by comparing the calculated and experimental molar
volumes at the standard pressure. The quasi-harmonic approxi-
mation enables quantification of the thermal expansion,
meaning that the temperature-dependence of the molar volume
can be discussed as well.

To our knowledge, only five references report information
on experimental molar volumes at standard pressure.34,85–88 In
Fig. 6, it can be seen that these points exhibit a non-negligible
scatter which obscures the actual extent of thermal expansion
and hinders drawing strong conclusions about the accuracy of
the calculated thermal expansivity. Qualitatively, the calculated
Vm(T) trends are generally in reasonable agreement with the
experimental data. Fig. 6 illustrates the performance of the
same hierarchy of quantum chemistry levels of theory for
predicting the molar volume. The trends in the molar volume
of a-methanol mimic those seen above for the Eel(V) curves.
Switching from DFT or small-basis MP2 to larger basis sets
and/or CCSD(T) yields smaller equilibrium molar volumes.
Compared to experimental data near 0 K, the MP2/avdz� molar
volume is overestimated by 8%, while the CCSD(T)/cbs� molar
volume is underestimated by 3.9% (by 4.3% for the fully isotropic
CCSD(T)/cbs* model). Increasing the basis set systematically
decreases the molar volume, as seen previously.2,12 At the complete
basis set limit, MP2 already underestimates the experimental molar

Fig. 6 Comparison of temperature-dependent molar volumes of
a-methanol at standard pressure calculated by various quantum chemical
levels of theory.
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volume, and switching to CCSD(T) reduces the molar volume
further in this system.

The closest agreement between theory and experiment in
the low temperature region is observed for MP2/avqz� and
CCSD(T)/cbs†, which differ from the experimental data by less
than 0.5% and 0.2%, respectively. Of course, the good agree-
ment with experiment for these two particular levels of theory
represents a fortuitous compensation of errors: MP2/avqz� uses
a large but still incomplete basis, while the CCSD(T)/cbs† result
is based on a geometry that is further from the true CCSD(T)/
cbs minimum (as measured by energy and discussed in
Section 3.1). Including the anisotropy in the computational
model (through unit cell geometry optimizations) increases the
molar volume by 0.4% at the vicinity of 0 K and by 1.7% around
the a–b phase transition temperature 157.34 K.35 Though these
changes are small, the rate of thermal expansion from the
anisotropic model appears slightly closer to the experimentally
observed result.

Since the MP2/avtz, MP2/avqz, MP2/cbs, and CCSD(T)/cbs
data sets all utilize the MP2/avtz phonons, the differences among
the molar volumes obtained at these levels of theory arise solely
from the differences in the Eel(V) curves. The slope of the
CCSD(T)/cbs� Vm(T) curve for a-methanol is 36% less steep than
those of the MP2/avtz� curve (47% less steep for CCSD(T)/cbs*),
as a result of a steeper (by 22% and 29%) expansion branches of
the Eel(V) curve, respectively. Clearly, a compensation of errors in
the calculated Eel(V) and Avib(V) functions can result in a very good
agreement of theory and experiment, e.g. too a steep Eel(V) can be
compensated for by a slower decline of Avib(V) or vice versa. This
phenomenon can also be observed when comparing the Amoeba
and MP2/avdz� data sets in Fig. 2, 5 and 6. Despite predicting
much steeper potential energy curves, Amoeba yields a molar
volume that is comparable to the MP2/avdz one. Closer inspec-
tion reveals that the MP2/avtz level of theory best reproduces the
experimental slope of the Vm(T) curve. Higher levels of theory
damp the thermal expansivity and yield less realistic Vm(T) slopes.
Notably, the Vm(T) slope of the CCSD(T)/cbs*, CCSD(T)/cbs� and
CCSD(T)/cbs† data sets are 49%, 38% and 10% underestimated
when compared to experimental data, respectively.

Table 2 summarizes the experimental and calculated
lattice parameters for the temperatures of the experimental
determination. Experimental unit cell parameters of a-methanol
at 15 K and 122 K were determined in two literature studies.34,88

Note that both this study and ref. 34 align the hydrogen bonds
along cell vector a, while ref. 88 aligns them along cell vector b.
The experimental data suggests that a-methanol undergoes
moderately anisotropic thermal expansion between 15 K and
122 K, expanding 0.1%, 1.1%, and 2.0% in the a, b, and c
directions, respectively. The anisotropy reflects the fact that the
thermal expansion preferentially occurs in directions orthogonal
to the hydrogen bonds (i.e. along the b and c vectors).

Obviously, the fully isotropic model employed here (star
labeled data sets from HMBI calculations on isotropic
MP2/avtz geometries), fails to capture the anisotropic expan-
sion, and it predicts comparable elongation of all three unit cell
vectors during the thermal expansion (see Table 2). In contrast,

both quasi-anisotropic models (dagger and circle labeled data
sets) correctly predict larger expansion along the b and c vectors
and less expansion along the a vector. However, both the HMBI
and DFT quasi-anisotropic models incorrectly predict larger
expansion along the b vector instead of the c vector.

Although it neglects the anisotropic expansion, the isotropic
MP2/avtz* model fortuitously predicts the overall unit cell
volume the most accurately. The quasi-anisotropic MP2/avtz�

model produces flatter Eel(V) and steeper Avib(V) curves, which
translates to larger unit cell volumes than those from MP2/avtz*.
On the other hand, counterpoise-corrected MP2/avtz typically over-
estimates unit cell volumes due to basis set incompleteness2,12

(see Fig. 6). Using a larger basis set would decrease the volume,
moving it in the direction of improved agreement with experi-
ment. Of course, the molar volumes computed with larger-basis
MP2 and CCSD(T) single points hint that the molar volume may
well become too small if full optimizations were performed at
higher levels of theory.

While the thermal expansivity derives from the expansion
branch of the Eel(V) curve, the compressibility of the crystal
involves both branches of Eel(V). Therefore, the comparison of a
calculated Vm(p) trend at a given temperature with experimental
data should provide more insight into the consistency and
accuracy of the theoretical model. Fig. 7 illustrates a compar-
ison of Vm(p) trends for the various computational models
against experimental data from ref. 86 at 153.2 K. Unfortu-
nately, experimental thermodynamic data in the high-pressure
region are rather scarce, and the comparison has to be limited
to the sub GPa range. In Fig. 7, all calculated Vm(p) curves
qualitatively capture the convex decline of the volume with
increasing pressure. Again, improving the basis set and correla-
tion treatment leads to lower molar volumes. MP2/avdz� yields
molar volumes overestimated by 6.0%, while CCSD(T)/cbs* and
CCSD(T)/cbs� underestimate the volume by 6.2% and 5.7%,
respectively. The best agreement in terms of slopes of the
calculated Vm(p) curves is achieved for the quasi-anisotropic
CCSD(T)/cbs† and CCSD(T)/cbs� data sets, with slopes differing
from the experimental data by only 10% and 4% on average,
respectively. The isotropic CCSD(T)/cbs* data set underestimates

Table 2 Comparison of experimental and calculated unit cell parameters
and volumes for a-methanol (in Å) at selected temperatures illustrating the
anisotropy of its thermal expansion

Data set T (K) a b c V

Experiment88 15 4.6411a 4.8728a 8.8671 200.53
PAW/PBE-D3(BJ) 4.45 5.21 9.26 215.13
PAW/optPBE-vdW22 4.60 5.15 9.33 221.23
HMBI MP2/avtzb 4.58 4.91 9.06 203.68
HMBI MP2/avtzc 4.55 4.95 9.12 205.45
Experiment34 122 4.6469 4.9285 9.0403 207.04
PAW/PBE-D3(BJ) 4.47 5.33 9.30 221.73
PAW/optPBE-vdW22 4.61 5.22 9.43 227.29
HMBI MP2/avtzb 4.64 4.97 9.17 211.39
HMBI MP2/avtzc 4.56 5.09 9.17 212.55

a Ref. 88 uses a different system of axes where a and b vectors are
interchanged. b Fully isotropic expansion quasi-harmonic model used
(star labeled in text). c Anisotropy of the electronic cohesive energy
included in the quasi-harmonic model (circle labeled in text).
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the slope by 16% relative to the experimental data. At higher
pressures around 1 GPa, both CCSD(T)/cbs* and CCSD(T)/cbs�

predict similar Vm( p) curves, indicating that the anisotropy plays
a smaller role in the compression of a-methanol than it does in
the thermal expansion. Fig. S2 (ESI†) illustrates calculated molar
volumes at selected temperatures in the high pressure region.
Because the curvature of the isotropic Eel(V) curve is flatter, lower
molar volumes are obtained with CCSD(T)/cbs* for the compres-
sion regime at pressures above 2 GPa at 0 K (this pressure
threshold increases with rising temperature).

Given that errors exist in both the predicted Eel(V) curves
and quasi-harmonic phonon frequencies, it is interesting to
investigate how uncertainty in those fundamental quantities

translates into uncertainties in the predicted molar volumes
and thermal expansivity. To study the sensitivity of these cell
volume properties to the uncertainty in the phonon frequen-
cies, we used the CCSD(T)/cbs* data set and scaled the MP2/
avtz* fundamental vibrational frequencies. Two cases were
considered: (1) scaling all modes by 0.92, or (2) scaling lattice
modes with values ranging from 0.8 to 0.6, low-frequency
intramolecular modes (below 2000 cm�1) by 0.9682, and high-
frequency intramolecular modes (above 2000 cm�1) by 0.9302
(the scaling parameters obtained in Section 3.2). These multi-
ple scale factors were developed in the same way as in ref. 31: by
comparing calculated and experimental fundamental vibra-
tional frequencies for individual modes and aiming to bring
the scaled calculated frequencies into as close agreement with
their experimental counterparts as possible. As expected, down-
scaling the phonon frequencies leads to a steeper decline of the
Avib(V) functions, which translates to decreased molar volumes
that underestimate the experimental values even more. In other
words, scaling the phonon frequencies down shifts the molar
volumes in the wrong direction, even though the intra-
molecular harmonic frequencies of are obviously overestimated
relative to the anharmonic experimental values and scale
factors lower than unity are appropriate. On the other hand,
frequency scaling does partially correct the slopes of the Vm(T)
curves relative to experiment. Without a complete experimental
assignment of the lattice vibrational modes, it is difficult to
assess the appropriate scaling of those modes more carefully.
Illustration of how the frequency scaling affects the calculated
molar volumes is given in Fig. 8 (left column). Notably, the
frequency scalings considered here affect the molar volumes by
less than 2%, which is considerably less than the difference
between theory and experiment.

An analogous procedure was performed to study the sensi-
tivity of molar volumes on the steepness of the Eel(V) curve.
A single scale factor ranging from 0.8 to 1.2 was used to scale

Fig. 7 Comparison of pressure-dependent molar volumes of a-methanol
at 153.2 K calculated by various quantum chemical levels of theory.

Fig. 8 Analysis of sensitivity of temperature dependent molar volumes of a-methanol at standard pressure to (i) left – scaling of the frequencies of the
lattice, low intramolecular and high intramolecular vibrational modes; (ii) right – scaling of the Eel(Vm) curve.
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the whole Eel(V) curve, adjusting the slopes of its branches without
altering its shape. Fig. 8 (right column) shows that modifying the
steepness of the Eel(V) curve affects the molar volume more
significantly than frequency scaling, namely up to 5%, which is
already comparable with the percentage deviation of the CCSD(T)/
cbs* molar volume results from experimental data. As expected,
making the Eel(V) curve less steep amplifies the thermal expansivity
of the crystal and vice versa. Making the Eel(V) curve 20% less steep
almost fully corrects the slope of the Vm(T) curves to the experi-
mental value although it does not correct the volume offset at zero
temperature. Making the energy well even flatter will result in
unnaturally steep V(T) curves pointing to strongly overestimated
thermal expansivity. It means that the correct volume trends
cannot be simply reached by scaling the energy well only, since
the volume is affected by a complex interplay of both the shape/
position of the electronic energy well and the phonon properties.

Another potential source of computational uncertainty lies in
the fitting procedure which is used to interpolate the discrete
points of the Helmholtz energy profiles to obtain Helmholtz energy
as a function of volume in an analytical form. Recent works14,22

have used the simple model Murnaghan equation70 which,
however, was not developed or optimized for molecular crystals.
Therefore, imperfect fits can occur for more complex shapes of
Eel(V) curves, and those fitting errors would impact the Helmholtz
energy. This can subsequently introduce considerable uncertainty
into the resulting thermodynamic properties. It should be noted
that even small root-mean-square errors (RMSE) ranging in the
order of tenths of kJ mol�1 can be problematic when sub-kJ mol�1

accuracy is required. For details on a comparison of selected
functional forms used for fitting of total Helmholtz energy, such
as Birch–Murnaghan equation, empirical equations or splines, see
Fig. S3 and Table S5 in ESI.† The Vm(T) curves differ by a few
percentage units depending on the functional forms used in the fit.
Although splines can fit the Eel(V) data perfectly in terms of RMSE,
their use cannot be recommended for this purpose because they
usually do not smooth any numerical noise in the discrete energy
points obtained from the quantum calculations. This noise can
lead to sudden, artificial changes of trends or even peaks in the
final thermodynamic properties. Such computational artifacts
occur mostly in the vicinity of the nodal points where a transforma-
tion between two spline functions occurs.

To summarize, the quasi-harmonic calculations predict the
rate of thermal expansion with decent accuracy, especially
when quasi-anisotropic models are used for the energy–volume
curves. However, predicting the actual molar volume is more
difficult, with the nominally best models of theory under-
estimating it by several percent. Sensitivity analysis suggests that
the shape of the Eel(V) curve has a larger impact on the thermal
expansivity than the magnitudes of the phonon frequencies.
However, simple scaling of either the energy–volume curve or the
phonons does not bring the predicted molar volume curves into
quantitative agreement with experiment.

3.5 Heat capacity

Structural properties of condensed phase systems (like molar
volumes) are usually easier to predict theoretically than

thermodynamic properties. This proves to be the case for
a-methanol and its isobaric heat capacities. Experimental Cp(T)
data were taken from ref. 35, which reports Cp uncertainties not
exceeding 0.5 J K�1 mol�1. There are also older works89,90

reporting data on Cp which agree very well with ref. 35.
Fig. 9 shows that CCSD(T)/cbs† calculations yield a Cp(T)

trend being in the closest agreement to the experimental data.
Still, the relative percentage deviation of this data set amounts
to 12%, equivalent to 7 J K�1 mol�1 at 150 K. In case of the
quasi-anisotropic HMBI based Cp(T) results, using larger basis
sets and CCSD(T) instead of MP2 only worsens the agreement
between theory and experiment. For example, MP2/avdz� and
CCSD(T)/cbs� underestimate Cp(T) by 21% and 29% at higher
temperatures, respectively (isotropic CCSD(T)/cbs* Cp(T) even
by 32%). Such deviations largely exceed the tolerable uncer-
tainty threshold for calculated Cp(T) for applications requiring
sub-kJ mol�1 accuracy. The fact that all calculated Cp(T)
are significantly underestimated suggests that the calculated
vibrational frequencies, especially the lattice modes, are signifi-
cantly overestimated by theory. To analyze the sensitivity of
Cp(T) on the uncertainty of vibrational frequencies and the
shape of the Eel(V) curve, the same procedure consisting in
scaling the intermediate properties was performed as in the
case of the molar volumes.

Fig. 10 (left column) reveals that heat capacities are signifi-
cantly more sensitive to the uncertainty of the vibrational
frequencies than the molar volumes were. By varying the scale
factor used for the lattice modes, we found that an optimal
value around 0.70 is capable of bringing the Cp(T) trend
obtained at the CCSD(T)/cbs* level to close agreement with
the experimental data in temperature region below 60 K. This
result suggests a substantial computational uncertainty in the
vibrational frequencies of the lattice modes of a-methanol.

Fig. 9 Comparison of isobaric heat capacities (Cp) of a-methanol at
standard pressure calculated by various quantum chemical levels of theory.
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At higher temperatures, other uncertainty sources prevail since
further lowering the scale factor below 0.70 does not improve
the quality of the calculated Cp(T). Obviously, higher-frequency
modes, especially methyl rotations, become important above
60 K. Thermal expansion also contributes more appreciably to
the isobaric heat capacity at higher temperatures.

Sensitivity trends for Cp(T) are reversed compared to those
for the molar volume, since Cp(T) depends much more on the
uncertainty of the vibrational frequencies than the uncertainty
of the Eel(V) curve. As can be seen in Fig. 10 (right column), the
shape of the Eel(V) curve becomes relevant in the temperature
region above 60 K. However, scaling the Eel(V) curve by a factor
0.80 causes a 10% change in Cp at 150 K, corresponding to
4 J K�1 mol�1. Fig. S4 (ESI†) illustrates calculated Cp at selected
temperatures in the high pressure region.

Because CCSD(T)/cbs� is assumed to be the highest level of
theory used in this work, its massive underestimation of Cp

merits closer analysis. As Cp is significantly affected by both
vibrational frequencies and the thermal expansivity, errors in
both parameters accumulate to give a 30% underestimation
of Cp. Anisotropic CCSD(T)/cbs� data on both Cp(T) and Vm(T) are
in closer agreement with experiment than the corresponding
isotropic CCSD(T)/cbs* data sets. The quasi-anisotropic model
softens the overly steep CCSD(T)/cbs* expansion branch, improv-
ing the quality of the calculated thermal expansivity. Still, the
CCSD(T)/cbs� Eel(V) curve is burdened with some uncertainty as
it is constructed only using single point CCSD(T)/cbs calcula-
tions on MP2/avtz� geometries, not on CCSD(T)/cbs geometries.
When combined with the errors in the MP2/avtz� phonon
frequencies, the resulting CCSD(T)/cbs� Cp exhibits one of the
largest deviations from the experimental data among all of the
levels of theory employed here (larger than lower-level MP2
providing less steep Eel(V) curves). Using higher-level methods
makes the Eel(V) well steeper and attenuates the already under-
estimated thermal expansion, causing the higher-level methods

to yield Cp in worse agreement with experiment. In contrast,
CCSD(T)/cbs† predicts Cp much better (percentage deviation
more than halved related to CCSD(T)/cbs�), possibly due to
partial compensation of errors of the phonons and thermal
expansivity. This result contradicts the methanol dimer bench-
marks described earlier, where MP2 provided a much better
description of both the binding energy and the shape of the
potential energy well. In other words, it once again appears that
error cancellation between the calculated lattice energy, unit cell
volume, and phonons plays a significant role in the quality of the
thermodynamic and structural predictions.

4. Conclusions

We calculated vibrational, structural and thermodynamic
properties of a-methanol using wavefunction-based ab initio
methods in the HMBI formalism and periodic DFT calcula-
tions, both coupled with the quasi-harmonic approximation.
The results of this study provide a mixed picture. On the one
hand, experimental properties such as the sublimation enthalpy
at 0 K and the thermal expansivity are reproduced fairly well by
the higher levels of theory. On the other hand, other properties
prove more problematic to be predicted reliably. The intra-
molecular vibrational frequencies are often significantly over-
estimated, as one might expect from a harmonic vibrational
model. The intramolecular modes can be corrected somewhat
through frequency scaling. However, the errors in the lattice
phonons are proportionally much larger and vary more in sign
and magnitude, which is particularly troublesome given the
large impact these modes have on many finite-temperature
properties. Using MP2/avtz instead of DFT does not provide
appreciable improvements in the predicted phonons for
a-methanol. Although the models predict the rate of thermal
expansion reasonably, the best calculations underestimate the

Fig. 10 Analysis of sensitivity of temperature dependent isobaric heat capacity of a-methanol at standard pressure to (i) left – scaling of the frequencies
of the lattice, low intramolecular and high intramolecular vibrational modes; (ii) right – scaling of the Eel(Vm) curve.
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unit cell volume appreciably, suggesting that the models over-
bind the crystal somewhat (which is also supported by the
sublimation enthalpies). The isobaric heat capacity is substan-
tially underestimated as well.

Sensitivity analysis was performed to investigate how errors
in the fundamental computed quantities affect the observed
properties. We find that crystal phase densities are more sensi-
tive to the shape of Eel(V) curve, while isobaric heat capacities
depend more on the quality of the vibrational frequencies. The
shapes of the Eel(V) curves do converge with increasing basis set/
level of theory. The assumption of isotropic crystal expansion in
the model, leading to artificially steep walls on the CCSD(T)/cbs*
curve, can impact the resulting structural thermodynamic prop-
erties by attenuating the thermal expansion. This can be partially
corrected by allowing the unit cell to expand anisotropically,
though the quasi-anisotropic model used for the CCSD(T)/cbs�

and CCSD(T)/cbs† data sets is not capable of capturing the
anisotropic effects completely (because the phonons depend
only on the cell volume, rather than the specific cell shape).
Even though the quasi-anisotropic results are always in a closer
agreement with experimental data than the isotropic data are,
the magnitude of the computational errors observed here cannot
be fully explained by the crystal anisotropy. Nevertheless, aniso-
tropy affects both the cohesive energy and vibrational frequen-
cies and is a non-negligible source of the computational
uncertainty for the structural and thermodynamic properties
for molecular crystals. A three-dimensional extension of the
quasi-harmonic approximation which would allow a rigorous
treatment of the anisotropic expansion would provide an inter-
esting topic for future work.

For the heat capacities, uncertainties in the frequencies
are particularly apparent at low temperatures (below 60 K for
methanol). At higher temperatures, uncertainty in the thermal
expansivity contributes appreciably to the errors in Cp as well.
These issues cause an underestimation of the calculated
isobaric heat capacities that reaches 30% for the CCSD(T)/
cbs� level of theory, easily exceeding the acceptable levels of
uncertainty for applications requiring sub-kJ mol�1 accuracy.
Reducing the uncertainty in Cp would require simultaneously
improving the quality of the vibrational frequencies and the
thermal expansivity trends which are dominated by Eel(V) as
well as accounting for the anisotropy of all such contributions
properly.

One of the interesting observations here is how much com-
pensation of errors among the different electronic energy, geo-
metry, and phonon properties impacts the final results. Despite
evidence that the CCSD(T) results based on the MP2 geometries
are probably superior to those on the DFT geometries, properties
such as the heat capacities predicted from the DFT geometries
actually agree more closely with experiment. Ideally, one would
compute all properties at the large-basis CCSD(T) limit, but of
course that is computationally infeasible in practice. Employing
single-point energies with the higher electronic structure
methods did clearly improve the quality of the predicted sub-
limation energies and are probably worthwhile. In contrast, MP2
phonons did not appear to provide significant improvements

over the DFT ones, so one might reduce the computational effort
required by computing phonons with DFT (potentially on unit
cells predicted with either DFT or MP2) instead of MP2.
That said, the limited accuracy of the harmonic phonons from
either method remains a significant issue. The fact that one can
compute thermodynamic properties in molecular crystals at
such high levels of theory represents how much theoretical
progress has been made in recent years. Nevertheless, it is clear
that additional theoretical advances are needed before crystal
properties can consistently be predicted quantitatively at finite-
temperature and pressure properties. The errors among ener-
gies, volumes, and frequencies are all closely coupled, and
improving the treatment of the phonons and the crystal expan-
sion could significantly impact all of the predicted properties.
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