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Cancer classification with a network of
chemical oscillators

Konrad Gizynski * and Jerzy Gorecki

We discuss chemical information processing considering dataset classifiers formed with a network

of interacting droplets. Our arguments are based on computer simulations of droplets in which a

photosensitive variant of the Belousov–Zhabotinsky (BZ) reaction proceeds. By applying optical control

we can adjust the time evolution of individual droplets and prepare the network to perform a specific

computational task. We demonstrate that chemical classifiers made of droplets can be designed in

computer simulations based on evolutionary algorithms. The mutual information between the dataset

and the observed time evolution of droplets in the network is taken as the fitness function in the

optimization process. We show that a classifier of the Wisconsin Breast Cancer Dataset made of a

relatively small number of droplets can distinguish between malignant and benign forms of cancer with

an accuracy exceeding 97%. The reliability of the optimized chemical classifiers of this dataset as a

function of optimization time, number of droplets involved in data processing and the method of extracting

the output information is discussed.

1 Introduction

Semiconductors have the dominant position in modern informa-
tion processing applications, however their physical properties
impose restrictions on the environments in which they can operate.
In specific systems, e.g. biological ones, or under extreme condi-
tions, e.g. high temperatures, alternative computing strategies can
lead to more efficient information processing.1,2 For instance
it is difficult to apply conventional computers at a cellular level
in living organisms due to problems such as introduction of
electronic components inside the cells, their potential influence
on biological processes, electrical energy supply etc. Nevertheless
nature has developed computing mechanisms that allow for
information processing in cells.3,4

Studies on non-standard computing strategies, structures
and substrates, inspired by chemistry, physics or biology, are
encompassed within the research field called unconventional
computation.5–9 In contrast to semiconductor devices, based on
von Neumann architecture,10 unconventional computers inter-
pret the natural time evolution of a medium as a series of
information processing operations. In a spatially distributed
medium the time evolution of all its parts proceeds simulta-
neously. As a consequence efficient algorithms executed on an
unconventional device are highly parallel.

Among many implementations of unconventional computers,
those based on reaction-diffusion (RD) media seem especially
interesting. In this paper we focus our attention on information
processing with a photosensitive, ruthenium-catalyzed variant of
the Belousov–Zhabotinsky (BZ) reaction.11 The BZ reaction is a
chemical process in which an organic substrate is catalytically
oxidized in an acidic environment. Among reagents of the reaction
one can distinguish the activator (HBrO2), whose concentration
can grow autocatalytically, and the inhibitors responsible for
suppressing production of the activator. Excitation of such a
medium, seen as a rapid increase in the concentration of the
activator and next of the inhibitor, can occur when the concen-
tration of the activator exceeds a threshold value or the concen-
tration of the inhibitor fails below a certain level. If the medium
is spatially distributed then a local excitation can expand in
space via diffusion of the activator and propagate in the form of
an excitation pulse (a spike). Such behavior seems qualitatively
similar to the propagation of excitations in the nerve system. The
FitzHugh–Nagumo model of a spiking neuron12,13 has similar
properties as the Oregonator model of the BZ reaction.14 Such
similarity motivated numerous later studies on information
processing based on the BZ reaction. Observation of spike
propagation in a medium with the BZ reaction is relatively simple
experimentally because the different states of the medium,
corresponding to the oxidized and the reduced forms of the
catalyst, have different colors. Oscillations of the photosensitive
BZ-reaction, can be efficiently controlled with illumination
because the blue light activates the catalyst and leads to produc-
tion of Br� ions that inhibit the reaction.15 An intensively
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illuminated medium does not oscillate and it also cannot be
excited by a pulse propagating from non-illuminated regions.

Many computational applications of a nonlinear medium
relate information with the presence of a spike at specific areas
of a non-uniform medium. For example binary logic can be
implemented if the logic TRUE and FALSE states are related to
the presence or absence of a spike in a selected region. Studies
on continuous BZ media, with excitable and non-excitable
regions defining the basic information processing operations
have been intensively explored.13,16–21 A new trend in chemical
information processing started with experiments on BZ medium
encapsulated inside lipid vesicles and immersed in an organic
phase.22–27 This concept seems interesting as a close analogy
to compartmentalization in biological systems e.g. the nerve
system.

The lipid molecules cover the surface of droplets and stabilize
them mechanically.23 When two droplets come in contact, the
lipids form a bilayer at the connection surface28 that enables
communication.23,25–27,29 This is so because molecules of the BZ
activator can diffuse through the bilayer and excite the medium
behind, triggering a chemical wave in the neighboring droplet.
The interacting droplets can be arranged into larger structures
that remain stable for a long time. Large networks of droplets
with well defined parameters became accessible using micro-
fluidic techniques.30,31

It has been demonstrated that BZ-droplets are equally useful
for information processing applications as the continuous
medium.32–34 Constructions of logic gates composed of sub-
excitable droplets35,36 and oscillatory ones37 have been described.
A typical logic gate needs a few dedicated droplets to operate.
Most of the papers concerned with chemical information
processing focus on logic gates and end with the conclusion
that other information processing devices can be assembled
using the gates. Although this statement is correct, such a
bottom-up approach is not efficient. For more complex infor-
mation processing tasks the devices composed of logic gates
are large and difficult to build.

In this paper we demonstrate that there are large classes of
problems for which the top-down approach seems to be more
efficient. As an example we discuss instant machines operating
as dataset classifiers. Let us consider a dataset D composed
of M records (test cases). A single record contains predictor
values p and the assigned category (output class) o and can be
represented as a list: (p1,p2,. . .,pk,o), where k is the number of
predictors, fixed for all records in the dataset. The ideal dataset
classifier is an algorithm that returns the correct class type if
the values of predictors corresponding to a dataset record are
used as its input values. Moreover, the dataset of a typical
classification problem contains a fraction of all possible cases
so it can happen that a given set of input values is not included
in it. The algorithm is supposed to guess correctly to which
class such a case belongs.

The concept of a dataset classifier generalizes many other
information processing tasks. For example, each binary logic
operation can be regarded as a classification problem for the
dataset composed of M = 4 records. Each record contains two

binary predictors representing the arguments of the operation
and the binary result of the operation that represents the
class type. For a logic gate the dataset contains all possible
combinations of the input values. A meaningful realization of
a classifier that represents the logic gate should accurately
predict the class type.

For a general classification problem a simple construction of
a classifier seems as important as its reliability. In this paper we
present the construction of a classifier for the Wisconsin Breast
Cancer Dataset38 from the Proben1 collection.39 This dataset
contains M = 699 records (cases) composed of 10 predictors
with the cancer type (benign or malignant) as the output class.
Predictors are integer numbers in the range between 1 and
10 describing the physical properties of cells. The mutual
information40 between all predictors and the output class
distribution is 0.93 bit. The analysis of the dataset shows that
the mutual information between a pair of predictors and the
dataset output reaches its maximum at 0.841 bit for predictors
(2, 6). Adding the third predictor significantly increases the
maximum mutual information. It becomes 0.916 bit for the
predictor triple (1, 2, 6). Therefore, these predictors have been
used in this paper. The increase of the number of predictors
to 4 increases the mutual information by 0.013 bit only. We
may expect that adding the fourth predictor into the evolved
structure would result in significantly more time consuming
optimization and the accuracy of the resulting structure would
not be much better than that obtained for 3 predictors. We
demonstrate that a high accuracy classification algorithm of
such a dataset can be executed by a network containing a
relatively small number of BZ droplets (r25). The described
evolutionary algorithm is general and can be applied for find-
ing the conditions at which the network performs the required
classification task in the optimal way.

2 A chemical classifier constructed
with oscillating droplets

In this section we define the family of classifiers and briefly
describe the evolutionary algorithm used for their optimiza-
tion. The methods have been already used in a number of our
recent papers and the technical details can be found there.41,42

We study the time evolution of a network of droplets in the
time interval [0,tsim] and relate the output information to the
number of excitations observed at a selected droplet within this
time interval. The value of tsim is fixed and is not changed by
the optimization procedure.

2.1 The idea of a classifier

We consider a chemical dataset classifier in the form of a single
network of n � n nodes located on a square lattice (Fig. 1). Each
node represents a droplet containing oscillating BZ medium.
We assume that the oscillations in each droplet can be indivi-
dually controlled by external illumination with blue light.43

For simplicity we consider just two illumination levels: zero
and high. A non-illuminated droplet oscillates whereas a highly
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illuminated one becomes chemically inactive. Droplets are inter-
connected with neighbors according to the von-Neumann neigh-
borhood as indicated on droplet A in Fig. 1.

The droplets in the classifier are of two types: input and
normal (see Fig. 1). They are distinguished according to their
functionality in the network. Input droplets are used to feed the
values of the predictors of each test case from the dataset into
the network. Their illumination times depend on the processed
case. The normal droplets transmit and integrate excitations.
The illumination time of each normal droplet does not change
with the test case. The droplet type along with the illumination
pattern for the normal droplets and a few other parameters
(described later) can be considered as a program that implements
classification functionality into a BZ droplet-based computer.

The values of the predictors are introduced via the illumina-
tion times of input droplets in the following way. If a dataset
contains k predictors, then k different input types are distin-
guished. For the dataset considered here k = 3 as we use
only the values of predictors p1, p2 and p6 from the dataset.
Assume that v j

s = p j
s/10 A [0,1] is the normalized value of

the predictor s (s = 1,. . .,k) for a test case j. If a droplet is
of the input type, corresponding to the predictor s, then during
the simulation of this test case it is illuminated within the
time interval [0,tstart + v j

s(tend � tstart)]. The values of tstart and
tend (0 r tstart r tend r tsim) are the same for all input droplets
in a particular network. Yet, they differ from network to net-
work and are optimized by an evolutionary algorithm.

The normal droplets are illuminated over the time interval
[0,t(i)

illum]. In this interval, a droplet cannot self-excite or be
triggered by its neighbors. For a particular network the values
of t(i)

illum remain the same for all test cases. When the illumina-
tion time for a droplet is as long as tsim, the droplet remains
inactive during the whole simulation and can be regarded as an

empty slot in the network. The set of values t(i)
illum is included in

the network program and is a subject of optimization.
The droplet type (normal, input) also undergoes optimiza-

tion and thus the number and positions of the inputs might
vary according to generation. We do not exclude cases where
there are multiple droplets of one input type and no input
droplet of another.

The output information is extracted from the observation of
time evolution of a selected droplet within the time interval
[0,tsim]. The number of excitations of this droplet (the output
droplet) should give the maximal mutual information with the
output class distribution of the dataset. Let Po be the set
of output classes of the considered dataset Po = {oj, j = 1,M}.
For each droplet i we introduce the number of excitations
si

j observed for the case j and the sets: Si = {si
j, j = 1,M} and

SiPo = {(si
j,oj), j = 1,M} that join the output class with the

network’s answer. Then the mutual information with the out-
put class distribution Po is equal to:40

I(Si:Po) = H(Si) + H(Po) � H(SiPo), (1)

where H denotes the Shannon entropy. Such mutual informa-
tion can be interpreted as the reduction of uncertainty about
the output class when seeing a particular number of excita-
tions, so it reflects the requirements for the best classifier.

If the number of excitations in a droplet is always the
same, independent of predictor values then H(Si) = 0 and
H(SiPo) = H(Po). As a result I(Si:Po) = 0. On the other hand,
if the excitation number is perfectly correlated with the dataset
output (for example one excitation for a malignant form
of cancer and three excitations for the benign one) then
H(Si) = H(Po) and H(SiPo) = H(Po). Now I(Si:Po) = H(Po)
which means that all output information of the dataset can be
extracted from the excitation number.

The sets Si are different for various droplets in the given
network. We assume that the droplet with the highest I(Si:Po)
becomes the output of the classifier. Since the mutual information
changes during optimization, the position of the output droplet
is not fixed and can also vary from generation to generation. We
also do not exclude cases in which an input droplet is used as
the output one.

2.2 Optimization of BZ networks

An evolutionary algorithm is introduced to optimize the con-
struction of the chemical classifier. We represent a network g as

a tuple of the list of functional types tp
! for each droplet, the list

of the illumination times of the normal droplets tillum
��!, and the

two parameters tstart and tend. The droplet type tpi = 0 represents
the normal droplet. If tpi = m, where m A {1,. . .,k}, then the
droplet is of the input type corresponding to predictor m. Even
for small n, the number of possible networks is enormous and
finding an optimal configuration using standard optimization
techniques is difficult. In our evolutionary optimization algo-
rithm the initial population of networks (individuals) is gener-
ated with random functional types, illumination times of
normal droplets and the parameters tstart and tend (tstart r tend).

Fig. 1 Illustration of the considered droplet classifier (here shown for
n = 5). Circles represent droplets and the intensity of the blue color is
proportional to the initial illumination time. The conversion in time to blue
color is shown on the horizontal bar. White droplets oscillate from
the beginning of the experiment whereas for intensively blue ones the
illumination time is close to tsim. An input is provided by stimulating
selected input droplets by illumination. The number of excitations
observed at one particular droplet (marked with a wide, black border), in the
interval [0,tsim] is taken as the output. The control ‘‘program’’, which we obtain
by evolution, includes a temporal illumination pattern applied to normal
droplets, parameters tstart and tend and the positions of the input droplets.
The numbers to the left and right of the network show that the droplets are
labeled row by row starting from droplet 1 in the upper left corner.
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Then, the fitness of each network is calculated as I(Si:Po) for
the output droplet. The individuals with the highest fitness
are copied into the parental population whereas the others
are discarded.

After selecting a sub-population of the most fit individuals a
number of randomly selected parents replicate, i.e. their networks
are combined to create an offspring individual as illustrated in
Fig. 2. A rectangular sub-grid of droplets from Parent 1 con-
strained by two, randomly selected points A and B replaces the
corresponding sub-grid in Parent 2 as illustrated in Fig. 2 to yield
a new individual. The illumination interval of input droplets
co-evolved with the network is copied from Parent 1 to the
Offspring. The newly generated individual is subjected to three,
subsequent mutation operators with fixed mutation rates (see
Fig. 2) to avoid quick convergence towards the closest local
maximum. The mutations are executed in the following order:

1. Mutation of input illumination interval parameters
Times determining the illumination interval of the droplet

with input types, i.e. t(Offspring)
start and t(Offspring)

end are selected
from the normal distributions with the averages t(Parent1)

start and
t(Parent1)
end respectively and s2 = 10 as follows:

t
ðOffspringÞ
start ¼N t

ðParent1Þ
start ; s2

� �

t
ðOffspringÞ
end ¼N t

ðParent1Þ
end ; s2

� �

t
ðOffspringÞ
start � t

ðOffspringÞ
end

(2)

where N(t,s2) is a random number selected from the
normal distribution with average t and variance s2. If t(Offspring)

start 4
t(Offspring)
end both times are swapped i.e. t(Offspring)

end is replaced
with t(Offspring)

start and vice versa.
2. Mutation of droplet type
We assume that input droplets can change into normal

droplets and vice versa. The probability of droplet transforma-
tion is ptype = 0.04. Regardless of droplet type the probability
of obtaining an input droplet is pinp = 0.12 and for the normal
one 1 � pinp.

3. Mutation of normal droplet illumination

If a droplet i is of the normal type, then with a probability
pillum = 0.04 its illumination time is mutated. A new illumina-
tion time for the Offspring t(i)

illum is generated from the normal
distribution with the average t(i)

illum and s2 = 25.
The values of all probabilities were selected arbitrarily as being

reasonably small, but still large enough to produce noticeable
changes in network functionality after mutation. They should have
little influence on the final, optimized classifier, but definitely
decide the rate of convergence towards the optimal solution.

Repeating the recombination and mutation operations
yields an offspring population and the evaluation process starts
again. In simulations we mixed two evolutionary strategies.44,45

At the beginning we assumed that only newly generated off-
spring are transferred to the next generation. This process is
similar to natural procreation in the sense that the parents
give birth to the offspring population and die afterwards. After
50 generations we preserved the five best parents in the next
generation along with the offspring. In this case, an individual
with a high fitness value can survive for many generations. The
whole evolution scheme is repeated until the specified number
of generations is reached.

2.3 The simplified event based model of the BZ-droplet
network

Direct simulations of networks of oscillating droplets based on
reaction-diffusion equations are time consuming. Therefore we
used a stochastic, time-continuous model46 illustrated in Fig. 3.
The continuous time makes the simulator more realistic than a
cellular automaton, because it requires no roundups to describe
the illumination times of normal droplets and the illumination
of input droplets related to a given set of predictors. Moreover
using a continuous time we can easily introduce randomness
to the time a droplet spends in the refractory, responsive and
excitation states.

We divide the oscillation cycle into three phases. A refractory
phase begins just after excitation and it is characterized by
a high level of inhibitor. In this state a droplet becomes
insensitive to chemical excitations coming from its neighbors.
Next, the inhibitor concentration decreases with time and after

Fig. 2 The offspring generation method illustrated for 4 � 4 networks. Randomly selected points A and B in the structure of Parent 1 mark a rectangle,
which replaces the corresponding part in Parent 2 to yield a new Offspring during the recombination process. The illumination interval for inputs is
copied to the Offspring from Parent 1. Then, during the mutation, droplet types and initial illumination times are modified.
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crossing some threshold value the droplet enters the responsive
phase in which a stimulus coming from any of the neighbors
can lead to an excitation. If no external triggering occurs then
the amount of inhibitor drops to a level when self-excitation
occurs. The rapid production of activator yields oxidation of the
catalyst, seen as the change of droplet color from red to blue
and named below as an excitation phase. Bearing in mind the
experimental results on interactions between droplets43,47 we
assumed that the durations of the excitation, refractory and
responsive phases are 1 s, 10 s, and 19 s respectively. These
numbers sum up to the typical oscillation period of 30 s.43

When illumination is applied the droplet is switched into the
refractory phase and remains in it. After illumination is turned
off, the excitation phase is restored immediately.43

Excitation transfer between two interconnected droplets
occurs only if an excitation pulse from one droplet has reached
the connection area and the other droplet is in the responsive
state cf. Fig. 3b. For millimeter size droplets the self-excitation
does not appear in the whole volume of a droplet but starts in its
center and propagates outwards.30 Here, to account for this
effect, yet make simulations simple, we assumed that an excita-
tion spreads from the center of a droplet regardless of whether it
self-excited or was triggered by another droplet. We introduced a
propagation time of an excitation pulse tprop = 1 s, as the time
required to travel the distance from the excitation origin to the
contact area with the neighboring droplets. Note that tprop is
equal to the duration of the excitation phase hence one can
consider a droplet as being in the excited phase if an excitation
pulse is visible in any part of it. Even after the excitation phase
ends the concentration of the activator remains at a high level
for a certain time. Thus we assume that a droplet can activate its
neighbors, up to 1 s after its refractory phase started.

A highly nonlinear chemical medium, like the BZ reaction,
is very sensitive to internal and external fluctuations. In our
event-based model stochastic effects are introduced in the
form of normal distributed noise with the standard deviation
of 0.05 added to tprop and to the times when a droplet remains
in a particular phase.

3 Results of classifier optimization

The Wisconsin Breast Cancer Dataset contains 699 records
(cases) representing cells of two cancer types: with 458 (65.5%)
benign and 241 (34.5%) malignant cases. As the starting point,
let us consider a classifier in which the output droplet is
illuminated during the interval [0,tobs], so it never gets excited.
Let us also assume that the output of the classifier is interpreted
as follows: if the number of its oscillations is smaller than 2
then the cancer type is benign. Otherwise it is malignant.
Such a classifier has 65.5% accuracy for correct prediction of
a randomly chosen record from the dataset because it always
states that the form of cancer is not dangerous and such
records are in a majority. Having such a level of accuracy in
mind we demonstrate that much better classifiers can be
obtained as the result of network optimization.

In this section we present the results of simulations. Each
result is based on 25 independent simulations of the evolutionary
optimization. In each optimization the size of the population was
30 networks. The optimization algorithm contains such arbitrarily
selected parameters as: the time within which the evolution is
optimized (tsim) and the time over which the evolution is observed
(tobs). In most of the simulations tsim = tobs = 100 s.

Presenting the results we focus on the following topics. First
we demonstrate that even a small network of BZ droplets can
reliably work as the classifier of the Wisconsin Breast Cancer
Dataset.38 Secondly we discuss the influence of various para-
meters on the classifier quality. Bearing in mind that the
optimized structure of a classifier is reached by evolutionary
optimization we study how the classifier reliability increases
with the number of optimization steps. Next, we check if the
classifier quality can be improved at specific relationships
between the oscillation period and simulation parameters.
The objective time scale of the network is defined by the
oscillation period of the BZ reaction. Usually we observe the
system for the time for which the structure is optimized,
however in general tsim can be different from tobs. In the following
we demonstrate that the optimized classifiers process information
in a highly parallel way and almost all droplets are involved
in information processing. We also discuss how the classifier
accuracy depends on the number of droplets in the network.
Finally we address the problem of classification for a case that
is not included in the dataset. To do so, we randomly select
100 cases and exclude them from the dataset used for optimi-
zation. After a classifier was optimized on the training data set
we tested its reliability on the excluded cases.

3.1 Does the classifier work?

An example of the optimized classifier based on a 4� 4 network
is illustrated in Fig. 4a. The classifier was optimized for
500 generations. Input droplets corresponding to different
predictors are marked. The output droplet is indicated by a
thick border. The intensity of the blue color for normal droplets
increases with illumination time. For example, for the droplet
to the right of the input of predictor no. 1 tilum = 0 s and for the
droplet above the output tilum B 100 s. The amount of mutual

Fig. 3 A simplified model of the time evolution of oscillatory BZ droplets.
Colors code phases of the oscillation cycle. (a) The time evolution of a BZ
droplet and the influence of illumination on it. The times of each phase
refer to the model used. (b) Interactions between neighboring droplets.
If the droplet (B) is excited then, after Dt = 1 s, the excitation passes to
all neighboring droplets in the responsive phase. No droplet that is
illuminated or in the refractory state can be excited.
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information contained in each droplet is marked in red in the
form of a pie chart where the sector size is normalized to the
maximal value of mutual information that can be obtained
from the employed inputs.

The histogram relating the total number of oscillations at an
output droplet with the cancer class is shown in Fig. 4b. If we
introduce a cut-off at the level of 5 spikes and relate all cases
that produce 4 or less oscillations to the malignant form
of cancer and all cases leading to 5 or more oscillations to
the benign one, then 679 cases of the dataset are classified
correctly. This means that that the classification accuracy is
97.14%! It can be even higher if we exclude cases that give
exactly 5 oscillations and mark them as doubtful and needing
additional consideration. If so then 100% of malignant and
94.6% of benign cases are correctly classified.

3.2 Classifier reliability as a function of optimization time

To analyze the influence of the number of optimization steps
on the quality of the classifier we compared 4 � 4 networks
optimized for 250, 500 and 750 generations. The evolved struc-
tures are shown in Fig. 5a–c and the fitness of the best classifier
as a function of the optimization step is illustrated in Fig. 5d.
As expected the fitness increased with the number of genera-
tions in the manner typical for complex optimization problems.
The increase was fast at the beginning and then the fitness
changed in steps followed by long intervals in which it
was almost constant. The fitness value of the most optimized
networks is equal to 0.802, 0.809 and 0.811 bit for 250, 500 and
750 optimization steps respectively.

In all optimized classifiers the left bottom droplet (no. 13) is
both the output one and works as the input of predictor no. 2.
There are significant differences in the locations of inputs and
illumination patterns in classifiers obtained within 250 and
500 optimization steps. The fitness functions of classifiers
optimized over 500 and 750 generations are only slightly
different and the neighborhoods of the output droplet are
identical. This suggests that for 4 � 4 networks, optimization
requires at least a few hundred generations to approach the
final configuration. We have also observed that the number of

input droplets increased with the number of optimization
steps. Networks optimized for 250, 500 and 750 generations
contained 4, 5 and 6 inputs respectively. When comparing the
networks optimized for 500 and 750 generations we see that the
appearance of an additional input droplet leads to significant
differences in the mutual information of droplets located in the
right part of the network.

The histograms relating the number of spikes to the cancer
type are shown in Fig. 4b, 6a and b. In all cases we can apply the
same cut-off at the level of 5 spikes to distinguish the malignant
and benign forms of cancer. Surprisingly the accuracy of the
classifier optimized for 500 generations was slightly higher
(97.14%) than of the one optimized for 750 steps (97.00%).
The difference comes from a single malignant case that was
correctly classified by the first classifier and incorrectly by the
second one. On the other hand the higher mutual information
of the classifier optimized for 750 generations is related with
the more compact distribution of benign cases: there are no
benign cases that produce a single output spike.

Fig. 4 (a) The structure, illumination pattern and mutual information
content in a 4 � 4 network evolved over 500 generations. The fitness
value of the illustrated network equals 0.809 bit. (b) The distribution of the
total number of excitations appearing at the output droplet of the 4 � 4
classifier shown in (a) as a function of the cancer type. For each output
class the height of the bars is normalized to the number of all cases from
this class. The dashed line marks the threshold value used to give a
classification rule that yields an accuracy of 97.14%.

Fig. 5 The structures of the best 4 � 4 network classifiers optimized
within (a) 250, (b) 500 and (c) 750 generations. (d) The fitness function
obtained in two different simulations: for 250 and 750 generations.
The respective fitness values for the networks were 0.802 bit, 0.809 bit
and 0.811 bit.

Fig. 6 Histograms relating the numbers of output excitations with the
cancer type for the networks shown in (a) Fig. 5a and (b) Fig. 5c. A single
threshold rule yields accuracies of: (a) 96.57% and (b) 97.00%.
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3.3 The influence of tsim and tobs on simulation results

At the beginning let us consider the situation in which the
excitations of the output droplet are counted for time tobs that is
different from the classifier optimization time tsim. We start
with the classifier illustrated in Fig. 4, optimized for tsim =
100 s. Using this structure, we performed dataset classification
with tobs set to 50 s or 200 s. The histograms relating the
observed numbers of excitations at the output droplet with the
cancer type are shown in Fig. 7. The values of mutual informa-
tion between the number of oscillations at the output droplet
and the dataset output were 0.721 bit and 0.813 bit, so it was
significantly reduced for tobs = 50 s. For tobs = 50 s the droplets
with 50 s r tillum r 100 s did not contribute to the output
signal and the behavior of the whole network was changed. The
corresponding histogram of excitation numbers is shown in
Fig. 7a. Obviously the numbers of excitations are smaller than
for tobs = 100 s (cf. Fig. 4b). Still introducing the cut-off at
2 spikes we obtain quite a high classification accuracy (95.56%)
despite the large reduction of fitness with respect to the tobs =
100 s case. Such a high reliability can be explained by seeing
that in the optimized classifier (cf. Fig. 4a) there are droplets
with a short tillum around the output one. They are fully active
even for tobs = 50 s.

If tobs = 200 s, then the histogram illustrated in Fig. 7b is
almost identical to the one for tobs = 100 s, but the arguments
are increased by 3 spikes. Surprisingly the mutual information
between the dataset output and the number of excitations at
the output droplet is slightly higher than that for the classifier
optimized with tobs = 100 s. The classification accuracy based
on the cut-off at 8 spikes is 97.14% and equals that of the
original classifier. This suggests that after 100 s, when all of the
droplets were not perturbed by illumination, the network was
synchronized by a single pacemaker forcing the same number
of excitations in each droplet. Such a phenomenon is frequently
observed in experiments with networks of BZ droplets.30

We can conclude by stating that classification is a transient
phenomenon. The major part of data processing is done a short
time after information is introduced into the network.

It is not surprising that the reliability of a classifier was not
increased if the data were collected for times different than the
one the classifier was optimized for (tsim a tobs). In the analysis

below we present results for tsim = tobs a 100 s. We studied two
cases: tsim = tobs = 50 s and tsim = tobs = 200 s, keeping the same
model of the BZ reaction with a 30 s period. The networks and
the histograms relating the number of output excitations with
the cancer type are shown in Fig. 8. In all cases the networks
were evolved for 500 generations. For tsim = 50 s the fitness of
the best output was 0.783 bit. The cut-off at 3 spikes leads
to a classification accuracy of 96.71%. This is higher than in
the case discussed above, when the structure optimized for
tsim = 100 s was observed for tobs = 50 s. For tsim = 200 s the
fitness of the best classifier was 0.825 bit. The corresponding
histogram is shown in Fig. 8e and the distribution of spikes is
more complex than those in the previous cases. Now it is not
obvious how to select the cut-off. Obviously it should be larger
than 8 spikes (cf. Fig. 7b). For cut-offs at the levels of 10, 11 and
12 spikes we obtain classification accuracies of 96.71%, 95.99%
and 96.14% respectively. All these values are below the reliability

Fig. 7 Output signal from a network evolved with tsim = 100 s and
observed for (a) 50 s and (b) 200 s. Fitness value and classification accuracy
for (a) drops to 0.721 bit and 95.56%. In (b) fitness increased slightly to
0.813 bit and accuracy remains at 97.14%. For comparison we plotted the
signal from Fig. 4b (hatched bars on the right) with the argument shifted
by 3 spikes.

Fig. 8 (a) The fitness function as a function of optimization progress for
4 � 4 networks with tsim set to 50 s, 100 s and 200 s. Structures of
the best classifiers for the simulation times 50 s and 200 s are shown
in (b) and (c) respectively. (d and e) The histograms illustrating how
the number of output droplet excitations are related to the cancer type
tsim = 50 s and 200 s. The results for the classifier optimized with
tsim =100 s are presented in Fig. 4.
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of the classifier optimized for tsim = 100 s despite the higher
fitness. This result indicates that there is a relationship
between the period of oscillations and tsim = tobs that leads
to the maximum reliability of a classifier. To confirm this
we plan to perform simulations based on longer classifier
optimization.

3.4 The parallelism of information processing

Efficient unconventional algorithms are parallel and executed
by the computing medium as a whole. In order to verify if all
droplets of the network contribute to the classification we
performed a series of simulations with the network shown in
Fig. 4a in which one selected, normal droplet was illuminated
within the time interval [0,tsim], and so deactivated during tobs.
The fitness values of the reduced networks with the corres-
ponding classification accuracy are presented in Table 1. In all
cases the droplet with the highest fitness is considered as the
output one. These results indicate that almost every droplet has a
role in sustaining the high mutual information content and
accuracy of the classifier. Only the deactivation of droplets 12 or
16 located far from inputs and the output did not affect the
functionality of the network. Thus one can expect that information
processing inside the network occurs in a highly parallel manner.

To examine in detail to what extent a missing droplet
changes the information content in every node of the network
we discuss two cases: (i) droplet 16 that has a negligible effect
on classification accuracy and (ii) droplet 14 that generates its
largest decrease. In scenario (i) the deactivation of droplet
16 does not seem to have any effect on the mutual information
in other droplets. The negligible role of droplet 16 in the
functioning of the network can be explained firstly by its
location in the right bottom corner, far from the output and
secondly by the fact that even without external deactivation it
was illuminated for a long time t(16)

illum B 75 s. In fact, when
droplet 16 was deactivated the output signal at droplet 13 (data
not shown) was the same as for the original network (see
Fig. 4b). In scenario (ii), illustrated in Fig. 9, the right neighbor
of the original output droplet 13 was deactivated and blocked
contacts between the output and the input of predictor no. 6.

Isolation of droplet 13 from the rest of the network resulted in a
large decrease in its mutual information content. As anticipated
its signal reduced to a simpler form. The number of excitations
ranged from 1 to 5 as shown in Fig. 9b. Based on such a signal
the classifier accuracy decreased to 92.42%. In the network with
deactivated droplet 14 the time evolution of droplet 1 had the
largest mutual information. The signal at droplet 1 (see Fig. 9c)
remained almost the same as in the original network. The same
classification accuracy is obtained if droplet 1 is used as the
output of the original network.

3.5 Does the classifier accuracy increase with the number of
droplets?

Until now we have concentrated our attention on classifiers
based on 4 � 4 networks of droplets. Now we compare their
reliability with classifiers based on a single droplet (1 � 1) and
on 2 � 2, 3 � 3 and 5 � 5 droplet systems. Obviously, a larger
network should have at least as high a reliability as a smaller
one because we can map a small classifier into a large one and
deactivate the remaining droplets.

If one droplet is considered it should function both as the
input and as the output. Without loss of generality we can
assume that tstart = 0 and tend = tsim (here tsim = 100 s) and thus
no optimization is required. If the droplet was used as an input
of predictor 1, 2 or 6 then the calculated mutual information
was 0.419 bit, 0.642 bit or 0.571 bit respectively. The corres-
ponding accuracies of these classifiers, with the cut offs set at 1,
2 or 2 spikes, were 82.8%, 89.55% or 90.13%.

The classifiers based on 2 � 2, 3 � 3 and 5 � 5 droplet
networks were optimized for 750 generations. The obtained
structures are shown in Fig. 10a–c (and Fig. 5c for the 4 � 4
configuration). In all of them the output droplet is also the

Table 1 Fitness and classification accuracy for the 4 � 4 network shown
in Fig. 4a if a selected normal droplet was illuminated for the whole
simulation time (t(i)

illum = tsim = 100 s). The illumination of droplets indicated
with arrows had the largest (14) or negligible (16) influence on classification
accuracy

Illuminated
droplet no i Network fitness [bit] Classification accuracy (%)

3 0.736 94.71
4 0.756 94.85
5 0.780 96.85
6 0.719 94.56
7 0.807 97.00
8 0.780 95.71
9 0.800 96.42
11 0.807 97.00
12 0.809 97.14
-14 0.718 94.42
-16 0.809 97.14

Fig. 9 (a) Structure of a 4 � 4 network from Fig. 4a in which droplet 14
was blocked externally during the whole simulation (marked schematically
with black color). Note that when droplet 14 is blocked droplet 1 is selected
as the output. Histograms representing the output signal in the network
from figure (a) at droplet (b) 13 and (c) 1. Classification accuracies for the
signals shown are: (b) 92.42% and (c) 94.42%.
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input for predictor no. 2 that for a single-droplet classifier
produced the highest mutual information. The fitness evolu-
tion for all considered network sizes, presented in Fig. 10d,
indicates that the increase in fitness value is faster for larger
classifiers. On the other hand the time needed to reach a
stationary value of fitness also increases with network size.
As expected the maximum fitness grows with the network size
(see Fig. 10e). The dependence of maximal fitness on the
network size suggests that the fitness of n � n droplet networks
for n Z 6 is saturating. Thus, one can expect that up-scaling
the classifier over 25 droplets does not significantly increase
classification accuracy.

The histograms presenting the number of excitations at the
output droplet as a function of cancer type are given in Fig. 11
and for the 4 � 4 network in Fig. 6b. The cut-off value increases
with the network size. It equals 4 excitations for the 2 � 2 and
3 � 3 networks, 5 for the 4 � 4 network and 6 for 5 � 5 droplet

systems. The corresponding accuracies of these classifiers are:
95.14%, 95.85%, 97% and 96.57% respectively. These values are
quite similar and thus we are not able to conclude if the
classifier based on the 4 � 4 network performs better than
the one constructed with the 5 � 5 droplet system. The slightly
reduced accuracy of the 5 � 5 network can be related to the
largest size of parameter space in which optimization is performed
and the limited number of generations in the procedure.

3.6 The predictive power of network classifiers

It is expected that a good classifier recognizes correctly the cases
used during its teaching process and, based on the gathered
knowledge, can make a correct recognition of the cases not
included in the dataset. To verify if the considered chemical
classifiers have such an ability we divided the dataset into two
subsets: the training dataset with 599 cases and the test dataset
containing the remaining 100 cases. The test dataset contained
50 malignant cases and 50 benign cases, which were randomly
selected. Within the optimization process only the training data-
set was used. Afterwards, the optimized network was evaluated
with the cases from the test dataset only. For the selected training
dataset the one-droplet-based classifier had an accuracy of

Fig. 10 The structures of the best (a) 2 � 2, (b) 3 � 3, and (c) 5 � 5
classifiers evolved within 750 generations. (d) Fitness evolution as a
function of optimization progress. (e) Maximal fitness values for 2 � 2
(0.736 bit at 495th generation), 3 � 3 (0.793 bit at 426th generation), 4 � 4
(0.811 at 706th generation) and 5� 5 networks (0.820 at 706th generation)
as a function of the number of droplets the classifier is formed with.

Fig. 11 Distributions of excitation numbers at the output of (a) 2 � 2,
(b) 3 � 3, and (c) 5 � 5 networks from Fig. 10a–c. Classification accuracy
based on a single threshold is equal to: (a) 95.14%, (b) 95.85% and (c) 96.57%.
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84.63%, 92.00% or 92.65% depending on whether the droplet
was used as the input of p1, p2 or p6. However, the accuracy of
the prediction for cases in the test dataset drops to 72%, 66%
and 58% respectively. Therefore, the predictive power of a one-
droplet-based classifier is not much better than a random
binary answer. The results are more encouraging if networks
of droplets are employed.

The analysis below is limited to 4 � 4 network classifiers
evolved within 500 generations since they yielded the highest
classification accuracy for the original dataset (cf. Fig. 4). The
fitness evolution plot and the structure optimized for the
subdivided dataset are shown in Fig. 12a and b. The fitness
value of the best network was 0.817 bit, which is higher than
the fitness for a network optimized with the original dataset
(cf. Fig. 5). Furthermore, for the reduced dataset, classifiers
with the fitness value above 0.8 bit were obtained in a smaller
number of generations (r100) while for the full dataset Z200
generations were required to optimize a network with a similar
fitness. Such an improvement is related to a larger fraction
of benign cases in the reduced dataset (68.11%) than in
the original one (65.5%). For the considered method of infor-
mation readout (cf. Fig. 4b) the probability of the correct
classification of the benign type is higher than that for the
malignant one.

The histograms representing the output signal for the cases
from the training and the test datasets are presented in Fig. 12c
and d respectively. The accuracy obtained for the training
dataset was 98%. If the same classification rule was applied
to the cases from the test dataset the accuracy was lower and
equal to 88%. Yet, one can see that even in this case both peaks
for both classes are well separated. Therefore the optimized
classifier is able to make a correct guess in a large fraction of
cases that were not included in the training dataset.

4 Conclusions

In this paper, considering the Wisconsin Breast Cancer Dataset as
an example, we demonstrated that evolutionary algorithms can
be successfully used to design chemical classifiers based on inter-
acting BZ droplets. We have shown that even a simple network,
composed of a small number of droplets can be optimized to
perform the required classification task with an accuracy exceeding
97%. Moreover, we demonstrated that network based classifiers do
have predicting power: operating on the cases not included in the
training dataset they are able to recognize the cancer type with an
accuracy exceeding 88%. In our opinion this result is surprising.
Usually it is expected that one should have some knowledge of the
problem to make predictions. It is hard to believe that a network
composed of a few interacting chemical oscillators can understand
what kind of information it processes. Yet, the applied evolutionary
algorithm was able to optimize the interactions inside the network
such that the essential correlations between the predictor values
and the cancer type are built into the droplet network and the
classifier gives correct answers for a large fraction of cases.

We think that it would be difficult to obtain a similar result
with the bottom-up approach to the classification problem. To
illustrate the difficulties let us assume that all values in the dataset
records ( p1,p2,. . .,pk,o) are binary (i.e. pi A {0,1} for i = 1, k and
o A {0,1}). For such a dataset the bottom-up construction of
a classifier that accurately classifies the dataset cases is straight-
forward. Let us assign the logic values TRUE and FALSE to
numbers 1 and 0 respectively and consider a subset of the dataset
S (S A D) such that a record ( p1,p2,. . .,pk,o) A S if o = 1. Thus S is a
dataset containing all elements of D of the TRUE type. Let us
assume that there are N records in the dataset S (N r M). The
classifier of the dataset D can be directly written as the logic
function F defined on a set of input values (r1,r2,. . .,rk) as follows:

F r1; r2; . . . ; rkð Þ ¼ r1 � p11ð Þ ^ r2 � p21ð Þ . . . ^ rk � pk1ð Þð Þ

_ r1 � p12ð Þ ^ r2 � p22ð Þ . . . ^ rk � pk2ð Þð Þ

_ . . .

_ r1 � p1Mð Þ ^ r2 � p2Mð Þ . . . ^ rk � pkMð Þð Þ
(3)

where ( p1m,p2m,. . .,pkm) A S for m = 1,N. The function F
defined as the alternative of conjunctions checks if the input
(r1,r2,. . .,rk) appears in the dataset S and in such a case returns
the logic value TRUE. In all other cases its value is FALSE, so it
perfectly solves the classification problem.

If the dataset S contains more than half of the dataset
records, then an alternative definition of a classifier based on
records in the dataset D/S leads to a simpler function:

G r1; r2; . . . ; rkð Þ ¼ � r1 � p11ð Þ ^ r2 � p21ð Þ . . . ^ rk � pk1ð Þð Þð

_ r1 � p12ð Þ ^ r2 � p22ð Þ . . . ^ rk � pk2ð Þð Þ

_ . . .

_ r1 � p1ðM�NÞ
� �

^ r2 � p2ðM�NÞ
� �

. . . ^ rk � pkðM�NÞ
� �� ��

(4)

Fig. 12 (a) Fitness evolution and (b) structure of a classifier optimized with
the training dataset within 500 generations. The output signal of the
network fed with the cases from (c) the training and (d) the test dataset.
The dashed line indicates a threshold that leads to the classification rule
with an accuracy of 98% for the training dataset. The same threshold value
applied for the test dataset gives an accuracy of 88%.
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where (p1m,p2m,. . .,pkm) A D/S for m = 1, M � N. As seen, it
checks if the input values are in the dataset D/S and if so
returns the value FALSE. In all other cases the logic value of
G(r1,r2,. . .,rk) is TRUE.

The idea of classifiers shown above can be easily generalized
for the case when the values of predictors are rational. In such a
case we should approximate their values by a finite binary
fraction and compare the subsequent bits of expansion with
the input. Although, the algorithms based on logic F or G
functions perfectly classify the dataset D their predicting power
is very limited, because all cases not included in D are mapped
onto the same logic value.

The classifiers based on logic F or G functions can be useful
if a negligible number of possible cases are not included in D.
However, it seems extremely difficult to use them for practical
construction of droplet based classifiers because at least a few
droplets are needed for a single logic operation.32–34,36,37 Thus,
even for a small dataset of circa 100 records, the direct bottom-
up construction of a classifier requires thousands of interacting
droplets located in a precisely defined geometry.

Our work has suggested a number of issues that can be
important for future studies on chemical classifiers. The
mutual information, combining the network evolution with
the output class of a record seems a good candidate for the
fitness function in the optimization algorithm. It is easy and
fast to calculate and properly reflects the trend. However, it is
not perfect. We have observed cases when a network, charac-
terized by a slightly smaller value of the mutual information,
had a greater classification accuracy than a network containing
higher mutual information. Thus in our opinion, more precise
optimization algorithms should be oriented towards increasing
the classification accuracy directly.

Within our method of output information coding, classifica-
tion is a transient phenomenon related to the number of
excitations in a specific time interval. However the described
classifiers can be modified to code the output information in a
stationary state of the system. To do so a chemical counter of
excitations48 has to be linked with the output droplet by a
channel that opens in the time interval [0,tobs]. Then, the
number of excitations is coded in the final, stationary state of
the memory.

The major part of data processing is done a short time after
information is introduced into the network. The results presented
in Section 3.3 suggest that the classifier accuracy has a maximum
at a certain ratio between tsim and the period of medium oscilla-
tions. We plan to investigate the effect considering classifiers
optimized for a much larger number of generations.

In practical application both reliability and simplicity of
construction are important. The method of droplet deactiva-
tion, used in the Section 3.4 to prove parallelism in information
processing, can be applied to analyze the information flow
through the network and trace the droplets that can be omitted
without loss of classifier accuracy. Results presented in Section
3.5 indicate that functioning of the classifiers depends on
the number of droplets they are composed of. Therefore one
has to take into consideration how far a given network can be

down-(or up-)scaled before its classification accuracy drops below
a required level (or its size exceeds some external constraints).

In the paper we have considered droplets forming a square
lattice. We have also performed calculations for droplets
located on a two-dimensional hexagonal lattice. In such a
system a droplet can have up to 6 neighbors, thus the number
of connections increases by 50% compared to the studied
network. Optimization of 4 � 4 and 5 � 5 droplet classifiers
with the hexagonal geometry leads to mutual information that
differs by 0.003 bit if compared with the classifiers described
in the text. We can conclude that the geometry of droplet
connections does not significantly change the accuracy of the
Wisconsin Breast Cancer Dataset classifier.

The presented idea of a chemical classifier can be applied to
other networks of interacting chemical oscillators. Considering
potential applications it is important to identify factors that can
inhibit oscillations in individual droplets. If these factors are
directly related with the concentrations of reagents or other
physico-chemical properties of the investigated system then
a classifier can operate autonomously and does not require
an additional interface to acquire input information. If so
the chemical classifiers can be made small enough to find
applications in such areas as intelligent drug delivery or deep
space research.
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