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Explicit description of complexation between
oppositely charged polyelectrolytes as an
advantage of the random phase approximation
over the scaling approach

Artem M. Rumyantsev ab and Igor I. Potemkin *abc

A polyelectrolyte complex (PEC) of oppositely charged linear chains is considered within the Random

Phase Approximation (RPA). We study the salt-free case and use the continuous model assuming a

homogeneous distribution of the charges throughout the polyions. The RPA correction to the PEC free

energy is renormalized via subtraction of polyion self-energy in order to find the correlation free energy

of the complex. An analogous procedure is usually carried out in the case of the Debye–Hückel (DH)

plasma (a gas of point-like ions), where the infinite self-energy of point-like charges is subtracted from

the diverging RPA correction. The only distinction is that in the PEC both the RPA correction and chain

self-energy of connected like charges are convergent. This renormalization allows us to demonstrate

that the correlation free energy of the PEC is negative, as could be expected, while the scaling approach

postulates rather than proving the negative sign of the energy of interactions between the blobs. We

also demonstrate that the increasing concentration of oppositely charged polyions in the solution first

results in the formation of neutral globules of the PEC consisting of two polyions as soon as the

concentration reaches a certain threshold value, cgl, whereas solution macroscopic phase separation

(precipitation of globules) occurs at a much higher concentration, ccoac, ccoac c cgl. Partitioning of

polyions between different states is calculated and analytical dependencies of cgl and ccoac on the

polyion length, degree of ionization and solvent polarity are found.

1 Introduction

Correlation effects are of major importance in many charged
systems, especially if they comprise macro- and/or multivalent
co- and counterions,1 which control the strength and character of
electrostatic interactions. In addition to the valency of the ions,
phase behavior of charged liquids (solutions of colloidal particles,
polyelectrolytes (PEs), etc.) depends on relative ‘‘asymmetry’’ of
co- and counterions. For example, bulky macroions (like charged
colloidal particles, microgels2,3 or linear PEs4) with small (point-
like) monovalent counterions can be attributed to strongly
‘‘asymmetric’’ charged solutions where high entropic mobility
of the counterions protects complete local neutralization of the
system and formation of a condensed phase. Therefore, the presence
of charged groups in such asymmetric systems can promote
solubility of the macroions. In contrast, in charge ‘‘symmetric’’

systems, like solutions of oppositely charged PEs,5–9 condensa-
tion of the macroions occurs in the isoelectric point (total charge
of the macrions is equal to zero). Therefore, the electrostatic
attraction decreases the solubility of the macroions in the
‘‘symmetric’’ system.10–12 In the intermediate cases of the asym-
metry or beyond the isoelectric point, the interplay between
attractive and repulsive electrostatic interactions is responsible
for the clustering of the macroions in soluble aggregates. In
many cases, solubility of the aggregates is provided by the effect
of overcharging (charge inversion):13–16 the total charge of the
complex becomes opposite to the bare charge of the macroions.

The spatial charge distribution in the ‘‘asymmetric’’ systems
is essentially inhomogeneous. It allows developing mean-field
theories (Poison–Boltzmann or multi-zone approximation) like for
dilute solutions of PE micelles17–20 or microgels.21 On the other
hand, the inhomogeneous charge distribution means strong spatial
charge fluctuations which are equivalent to the strong charge
fluctuations at a certain spatial coordinate evolving over time as
long as the ergodic hypothesis is valid. Therefore, calculations of
the fluctuation contribution to the free energy in such systems are
sophisticated. In contrast, charge fluctuations are much smaller
in the ‘‘symmetric’’ solutions and the mean-field treatment is
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not able to describe the Coulomb interactions properly (they
are equal to zero at this level). The electrostatics due to the
small charge fluctuations can be taken into account within the
framework of the Random Phase Approximation (RPA), which
is a linear response approximation analogous to the one-loop
approximation used in quantum field theory.

Over 90 years ago, Debye and Hückel (DH) have considered the
problem of electrolyte solutions (the simplest ‘‘symmetric’’ system)
demonstrating deviations from the ideal gas behaviour.22 Using the
Poison–Boltzmann equation linearization, they have calculated
corrections to the osmotic pressure and to the free energy of the
ideal gas, both are negative. However, independently of the valency
of the ions, their condensation or ion pair formation cannot be
described within such an approach. The condition for linearization
is that the energy of the electrostatic interactions between the
ions is much smaller than the energy of their thermal motion.
Three decades later, the first theoretical attempt to describe
saline solutions of oppositely charged PEs was undertaken by
Overbeek and Voorn.23 They have treated non-electrostatic inter-
actions within the Flory–Huggins lattice theory, while Coulomb
interactions between all charges of the system (mobile low-
molecular-weight ions and charged groups of the chains) have
been described using the DH expression. Thus, connectivity of
the charged groups into the chains was neglected.

In the late 1980s in pioneer works of Borue and Erukhimovich,
the RPA was applied to semidilute PE solutions and complexes,
where the charge connectivity into the chain was taken into
consideration by the addition of the polyion conformational
entropy term to the free energy functional.24,25 The beauty of
the RPA for the oppositely charged PEs is that the condensation of
the chains (complex formation) can properly be described at this
level because polymer chains are known to be ‘‘poor in entropy’’:
even small attraction between charged groups is able to overcome
the entropic penalty due to the complex formation. Possibility of
microphase separation in semidilute PE solutions and mixtures of
oppositely charged polyions was predicted within the framework
of this approach.24,26–28 Later on, similar theory was applied for
the description of PE multilayers,29 polyampholytes30 and over-
charged interpolyelectrolyte complexes.31,32 Further development
of the RPA included consideration of ion pairing,28,33,34 short
wavelength integration cutoff,33,35 hard-core and finite-size ion
effects.33,34,36,37 In our group, fluctuations of polymer and charge
densities were examined independently (discrete charge distribu-
tion), which allowed getting a general expression for the free
energy unifying different limiting cases.38 The RPA theory for
rod-like polymer chains capable of liquid-crystalline ordering was
developed in ref. 39–42. Treatment of single PE chain trapping
own counterions as one-component plasma (i.e. point-like charges
immersed into homogeneously and oppositely charged background)
is also based on the RPA.35,43–46 Castelnovo and Joanny,47 and
then Fredrickson and co-workers48 extended the fluctuation
theory of complexation beyond the RPA.

Recently account for fluctuations by means of liquid state theory
approaches allowed describing solutions49 and complexes50 of
highly charged PEs. In the framework of this method it was
theoretically shown that low-molecular-weight salt ions prefer a

supernatant rather than a coacervate,50 in contrast to predictions
of Vroon–Overbeek theory that neglects both connectivity of PE
charges and excluded volume interactions.37,51,52 This finding on
salt ion partitioning being in principal agreement with experi-
ment was later confirmed using computer simulations.53,54

In the present paper, we propose a procedure of physically
motivated renormalization of the RPA results for the symmetric
PEC allowing us to distinguish the correlation (free) energy of
the PEC and self-energy of polyions in the salt-free case. Proper
renormalization makes possible to find partitioning of polyions
between different states (non-aggregated chains, neutral PEC
globules and coacervates) in a stoichiometric mixture of polyanions
and polycations. Threshold concentrations of globule formation
and macroscopic phase separation are found analytically.

The model with a charge continuously smeared throughout
the flexible chain is used for the theoretical treatment of the
PEC.24,55 The RPA correction to the free energy is known to be
convergent within the framework of this model.29–32 However,
the knowledge of this positive expression, which allows us to
find the electrostatic contribution to the osmotic pressure and
the polymer volume fraction in the complex properly, is not
enough for calculation of the correlation (free) energy. Nonzero
self-energy of the chains caused by connectivity of the charged
groups has to be calculated and subtracted from the RPA results.
The self-energy takes into account repulsive interactions of the
charges in each individual chain. Due to the subtraction proce-
dure, the correlation energy, which corresponds to the attraction
between oppositely charged chains, occurs to be negative as
one would expect. In contrast to the scaling approach, where
the interaction energy between the blobs was postulated to be
negative,56 the RPA proposes a straightforward way for calcula-
tion of the correlation free energy defining the numerical factor
as soon as one deals with the polymers in a Y-solvent. In
particular, the knowledge of the self-energy allows quantifying
the association of single chains into a complex (calculation of
the critical concentration of association).

Here it is necessary to mention that initially a renormaliza-
tion procedure of the RPA results for PE solutions based on the
subtraction of chains self-energy was proposed by Mahdi and
Olvera de la Cruz who motivated it primarily by mathematical
convenience.36 Lately Shen and Wang have explicitly distin-
guished self-energy of polyions in PE solution and found
solution correlation energy via subtraction of the chain self-
energy from the formal field-theoretic result.57 In the present
paper, we apply the same renormalization procedure to the case
of the PEC. It makes possible to argue for the first time the
negative sign of the complex correlation energy within the RPA.

In order to make the calculation of the correlation free energy
in the case of PECs more lucid and clear, we use analogy with well-
known DH plasma wherein subtraction of infinite self-energy of
point-like ions from the diverging RPA result is necessary to get
a finite negative expression for the correlation free energy. An
analogy between correlation functions in the case of the PE
complex and the DH plasma also occurs to be very useful.

The paper is organized as follows. In the next section the
DH plasma is discussed in detail, first without and then with
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volume interactions, and well-known results for ion–ion corre-
lation functions and correlation free energy of plasma are
reproduced. In Section 3, we move on to the case of the PEC
and propose a renormalization procedure of the RPA free
energy correction. It allows us to obtain the correlation free
energy of the complex. Section 4 deals with the calculation of
the critical concentrations of PEC formation and coacervation.
Closed-form expressions for these concentrations are found.

2 Debye–Hückel plasma

We consider a neutral plasma consisting of oppositely charged
ions, each of the size a and volume a3. Let the average volume
fractions of positively and negatively charged ions are equal:
hn+i = hn�i = n0. Here n0 is dimensionless, so that the concentration
of each type of the ions equals n0/a3. Neglecting short-range
interactions between the ions under the condition of a small
concentration, n0 { 1, one gets the classical case of the DH plasma
of point-like charges. The total free energy is a sum of two terms:

Ftot{n+(r), n�(r)} = Ftr + Fel-st (1)

the ideal gas entropy

Ftr

kBT
¼ 1

a3

ð
nþðrÞ ln

nþðrÞ
e

� �
þ n�ðrÞ ln

n�ðrÞ
e

� �� �
d3r (2)

and the energy of long-range Coulomb interactions between
the ions

Fel�st
kBT

¼ lb

2a6

ð
nþðrÞ � n�ðrÞð Þ nþðr0Þ � n�ðr0Þð Þ

jr� r0j d3rd3r0: (3)

Here, lb = e2/(ekBT) is the Bjerrum length.
Correlated electrostatic attraction makes the osmotic pressure

of the DH plasma lower than that of the ideal gas. The RPA can
be used in order to find the free energy correction to the ideal gas
term and to calculate the density–density correlation functions
of the DH plasma. The concentration fluctuations are defined as
dnk(r) = nk(r) � n0, and Fourier transforms are given by

dnkðqÞ ¼
ð
dnkðrÞeiqrd3r (4)

dnkðrÞ ¼
1

ð2pÞ3
ð
dnkðqÞe�iqrd3q (5)

where k = +, �. Deviation of the free energy functional from the
mean-field value, FMF/kBT = 2Vn0 ln(n0/e)/a3, in the Gaussian
(square) approximation reads:

dFtot

kBT
¼ 1

2ð2pÞ3n0a3
ð

dnþðqÞj j2þ dn�ðqÞj j2
h i

d3q

þ 2plb
ð2pÞ3a6

ð
dnþðqÞ � dn�ðqÞj j2

q2
d3q

(6)

where V is the total system volume. Owing to the following
representation of the free energy fluctuations

dFtot

kBT
¼ 1

2

ð
Gkl
�1ðqÞ
ð2pÞ3 dnkðqÞdnlð�qÞd3q (7)

and introducing the Debye radius rD
2 = a3/(8plbn0), one can

obtain the direct matrix of the plasma correlation functions in
the Fourier space:

GklðqÞ ¼
n0a

3

1þ rD2q2ð Þ

1

2
þ rD

2q2
1

2

1

2

1

2
þ rD

2q2

0
BB@

1
CCA (8)

The spherically symmetric density–density correlation functions
Gkl(r) = hdnk(0)�dnl(r)i are calculated using the inverse Fourier
transforms and take the form

GþþðrÞ ¼ G��ðrÞ ¼ n0a
3dðrÞ � lbn0

2 e
�r=rD

r
(9)

Gþ�ðrÞ ¼ G�þðrÞ ¼ lbn0
2 e
�r=rD

r
(10)

The second set of the correlation functions, G+� = G�+, is
caused only by the electrostatic attraction between the oppo-
sitely charged ions: it is equal to zero at lb = 0. For this reason it
can be designated as G+� = Gcorr. The first set of correlation
functions, G++ = G��, should be divided into two parts:
G++ = Gself � Gcorr. The first nonvanishing at the lb = 0 part,
Gself = n0a3d(r) is known as a correlation function of the neutral
ideal gas while the second part, �Gcorr, should be ascribed to
the repulsion of like charges. Note that both Gcorr and Gself are
positive at any values of r.

The correction to the electrostatic energy caused by ion–ion
correlations (density fluctuations) can be calculated as follows:

dUel�st
kBT

¼ lb

2a6

ð
dnþðrÞ � dn�ðrÞð Þ dnþðr0Þ � dn�ðr0Þð Þ

jr� r0j d3rd3r0
� �

;

(11)

where the angle brackets denote the thermodynamic averaging.
Owing to the expression hdnk(r)dnl(r0)i = Gkl(|r� r0|) and denoting
R = |R| = |r � r0|, one can calculate

dUel�st
kBT

¼ 4pVlb
a6

ð1
0

GþþðRÞ � Gþ�ðRÞð ÞRdR

¼ 4pVlb
a6

ð1
0

GselfðRÞ � 2GcorrðRÞð ÞRdR
(12)

Thus, the self-energy of point-like ions and the energy of
interaction between the ions are given by

Uself

kBT
¼ 4pVlb

a6

ð1
0

GselfðRÞRdR (13)

Ucorr

kBT
¼ �8pVlb

a6

ð1
0

GcorrðRÞRdR (14)

It is well-known that the self-energy of point-like charge diverges:

Uself

kBT
¼ Vlbn0

a3

ð1
0

dðRÞ
R

dR!1 (15)

where the delta function in the spherical coordinates was sub-
stituted, d(R) = d(R)/(4pR2). On the other hand, the correlation
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internal energy is finite:

Ucorr

kBT
¼ �8pVlb

2n0
2rD

a6
¼ �V

8p
1

rD3
(16)

The energy is negative and decreases with the increase of the
concentration n0. It means that the electrostatic interactions
are attractive. To pass to the Helmholtz free energy correction,
one can apply the relation between thermodynamic potentials

U ¼ �T2 @

@T

F

T

� �
(17)

As a result, the free energy density correction reads

Fcorr

kBTV
¼ � 1

12prD3
þ A1 (18)

and constant A1 = 0 because the condition Fcorr = (Ftot� Fid) - 0
at T - N should be satisfied, Fid being the free energy of
neutral ideal gas equal to FMF.58

Another way to get the correlation free energy correction is
based on the calculation of Gaussian functional integrals

FRPA

kBT
¼� ln

ð
DdnþDdn� exp �

dFtot dnþ; dn�f g
kBT

� �

þ ln

ð
DdnþDdn� exp �

dFtot dnþ; dn�f g
kBT

����
lb¼0

 ! (19)

In order to calculate the integrals, quadratic form

Gkl
�1ðqÞ ¼ 1

n0a3

1þ 1

2rD2q2
� 1

2rD2q2

� 1

2rD2q2
1þ 1

2rD2q2

0
BBB@

1
CCCA (20)

should be diagonalized. After transformations, one gets the
following expression

FRPA

kBT
¼ 1

2

V

ð2pÞ3
ð
ln

det Gkl
�1ðqÞ

	 

det Gkl

�1ðqÞ½ �jlb¼0

 !
d3q

¼ 1

2

V

ð2pÞ3
ð
ln 1þ 1

rD2q2

� �
d3q

(21)

diverging at q - N, i.e. at r - 0. This divergence is a conse-
quence of infinite self-energy of point-like charges. FRPA includes
both the self- and the interaction energies, FRPA = Fself + Fcorr.
The self-energy is given by eqn (15) and can be rewritten using
Fourier transform:

Fself

kBT
¼ 1

2

V

ð2pÞ3
ð

1

rD2q2
d3q (22)

Finally, the converging result for the correlation free energy

Fcorr

kBTV
¼ 1

2

ð
ln 1þ 1

rD2q2

� �
� 1

rD2q2

� �
d3q

ð2pÞ3 ¼ �
1

12prD3
(23)

coincides with one deduced above. It is also worth noting that
considering ions of non-zero radius and finite charge density
function instead of point-like ions with d-function type charge
distribution, one can avoid all energy divergences.59

As we mentioned in Introduction, the above calculations of
the correlation (free) energy are valid when this correction is small
as compared to the energy of thermal motion, |Fcorr| { |Ftr|.
This condition is fulfilled at a low concentration of the ions,
n0 { (a/lb)3.

2.1 Debye–Hückel plasma with volume interactions

In order to take into account volume interactions of the plasma
ions, we can use the virial expansion and the following term
should be added to the total free energy

Fvol

kBT
¼ 1

a3

ð
B nþðrÞ þ n�ðrÞð Þ2þC nþðrÞ þ n�ðrÞð Þ3
h i

d3r (24)

Here B and C are the second and the third dimensionless virial
coefficients. After expansion of the total free energy functional
into the series in powers of the density fluctuations, the Fourier
transforms of the correlation functions take the form:

GklðqÞ

¼ n0a
3

1þ rD2q2ð Þ 1þ mð Þ

1

2
þ 1þ m

2

� �
rD

2q2
1

2
� m

2
rD

2q2

1

2
� m

2
rD

2q2 1þ m
2

� �
þ rD

2q2

0
BB@

1
CCA

(25)

were m = 4n0(B + 6Cn0). The value m = 0 corresponds to the case
without volume interactions, and the matrix coincides with the
matrix 8. The correlation functions read

GþþðrÞ ¼ G��ðrÞ

¼ 1� m
2ð1þ mÞ

� �
n0a

3dðrÞ � lbn0
2 e
�r=rD

r

(26)

Gþ�ðrÞ ¼ G�þðrÞ ¼ �
m

2ð1þ mÞn0a
3dðrÞ þ lbn0

2 e
�r=rD

r
(27)

Due to the RPA linearity, the correlation functions can be
represented as a sum of (i) the ideal gas self-correlation function,
Gself = n0a3d(r), (ii) the term caused by the volume interactions,
Gvol = �mn0a3d(r)/(2 + 2m), and (iii) the term Gcorr = lbn0

2e�r/rD/r
induced by the electrostatic interactions:

G++ = Gself + Gvol � Gcorr (28)

G+� = Gvol + Gcorr (29)

The terms Gself and Gcorr coincide with those defined above for
the DH plasma without volume interactions. Gvol term vanishes
when the triple repulsion compensates pairwise attraction,
B = �6Cn0. Following eqn (19), one can calculate the RPA correc-
tion to the free energy caused by the Coulomb interaction. Despite
the presence of the volume interactions, the result for FRPA

coincides with eqn (21). Thus, the self-energy given by eqn (13)
should be subtracted from FRPA to find the correlation energy, and
the latter coincides with correlation energy for the DH plasma
without volume interactions, Fcorr/kBTV = �1/(12prD

3). Indepen-
dence of FRPA and Fcorr of the volume interactions should be
attributed to the linearity of the RPA.
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Note that eqn (11)–(14) remain valid in the case of non-zero
volume interactions as well, so that definitions of the self-energy
and the correlation energy are the same. Indeed, relationship
G++ � G+� = Gself � 2Gcorr is satisfied despite Gvol a 0. In the
general case, the term caused purely by the electrostatic inter-
actions should be defined as

Gcorr = (G+�)|B=C=0 (30)

In the next section we apply the proposed approach to describe
complex formation between oppositely charged PE chains.

3 Interpolyelectrolyte complex

Let us consider a complex of two oppositely charged linear PEs
in a salt-free, Y-solvent. For the sake of simplicity, we study the
case of a symmetric complex, i.e. f+ = f� = f are the fractions of
charged groups in these polyions, and F+ and F� are their average
polymer volume fractions in complex, respectively. The complex
electric neutrality is provided by condition F+ = F� = Ftot/2, where
Ftot is the total polymer volume fraction within the complex. The
lengths of polycations and polyanions are also assumed to be
equal, N+ = N� = N (see ref. 60 for the asymmetric case). We study
the classical model proposed by Borue and Erukhimovich which
assumes that electric charge is continuously smeared throughout
the chains.24,25

The total free energy in kBT units takes the form:

Ftot{F+(r), F�(r)} = Ftr + Fconf + Fel-st + Fvol (31)

The first term is responsible for the translational entropy of
polymer chains:

Ftr

kBT
¼ 1

Na3

ð
FþðrÞ ln

FþðrÞ
e

� �
þ F�ðrÞ ln

F�ðrÞ
e

� �� �
d3r (32)

The second term is the conformational entropy of polyions61,62

Fconf

kBT
¼ 1

6a

ð
r

ffiffiffiffiffiffiffiffiffiffiffiffi
FþðrÞ

p� �2
þ r

ffiffiffiffiffiffiffiffiffiffiffiffi
F�ðrÞ

p� �2� �
d3r (33)

with a being the length of the statistical segment. Deduced
independently by Edwards and later by Lifshitz, it takes into
account the entropy cost of the polymer non-uniform distribu-
tion. The case of flexible polymer chains is under considera-
tion, so that a3 is of the order of the segment volume. The
Coulomb energy is given by

Fel�st
kBT

¼ lb f
2

2a6

ð
FþðrÞ � F�ðrÞð Þ Fþðr0Þ � F�ðr0Þð Þ

jr� r0j d3rd3r0 (34)

We restrict our consideration to the case of weakly charged PEs,
f { 1, and a rather polar solvent, u B 1, so that effects of cross-
chain ion pairing63–65 and attraction of resultant dipoles66–68

can be neglected. Finally, the volume interactions, namely
triple repulsive interactions between the segments in the
Y-solvent, are taken into account within the last term of the
total free energy

Fvol

kBT
¼ 1

a3

ð
C FþðrÞ þ F�ðrÞð Þ3d3r (35)

with C being the dimensionless third virial coefficient. The
mean-field value of the total free energy of the neutral complex
takes the form:

FMF
tot

kBT

a3

V
¼ CFtot

3 þ Ftot

N
ln

Ftot

2e

� �
(36)

where the second term is negligible at high N, i.e. the volume
interactions dominate over the chain translational entropy.
Thus, the repulsive interactions make the complex unstable.
The complex formation cannot be described at the mean-field
level because the latter neglects the electrostatic attractions
between charged chains. At the same time, the complex formed
by oppositely charged PEs is globular, and weak fluctuation
within the globule provides applicability of the RPA (see ref. 25
for detailed discussion).

Expansion of the free energy functional into the series in
powers of the polymer density fluctuations allows calculating
the inverse matrix of correlation functions

Gkl
�1ðqÞ ¼ q2

6aFtot

�
1þ 1

rc2q2
þ 1

lvol2q2
þ 1

2x4q4
1

lvol2q2
� 1

2x4q4

1

lvol2q2
� 1

2x4q4
1þ 1

rc2q2
þ 1

lvol2q2
þ 1

2x4q4

0
BBB@

1
CCCA

(37)

with rc ¼ a
ffiffiffiffi
N
p � ffiffiffiffiffi

12
p

being the correlation radius of the ideal

polymer chain (i.e. the Gaussian chain size), lvol ¼ a
�

6
ffiffiffiffi
C
p

Ftot

� �
being the correlation radius of infinite neutral chain caused
solely by the volume interactions and x = a/(48puf 2Ftot)

1/4 being
the screening radius of the electrostatic interactions in PE
complex; u = lb/a is the dimensionless Bjerrum length. The
RPA correction to the free energy of the PEC can be found in a
similar way to that for the DH plasma (see eqn (19) and (21)):

FRPA

kBT
¼ 1

2

V

ð2pÞ3
ð
ln 1þ 1

q2x4 q2 þ rc�2ð Þ

� �
d3q (38)

and this integral converges at any rc and any finite x (infinite x
corresponds to the case of neutral polymers, f = 0). Thus,
one gets

FRPA

kBTV
¼ 1

12prc3
þ 1

6
ffiffiffi
2
p

px3
1� x2

rc2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

2rc2

s
: (39)

FRPA is always positive as soon as the complex is formed (xo rc).
In order to get the correlation free energy of the PEC, the self-
energy of polyions should be subtracted from the RPA results.
Following an analogy between the PEC and the DH plasma, the
correlation functions should be divided into the parts related to
connectivity of monomer units into the chain, Gself, electrostatic,
Gcorr, and volume, Gvol, interactions:

G++ = Gself + Gvol � Gcorr (40)

G+� = Gvol + Gcorr (41)
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The term Gself appears only in the correlation functions of like
charges as a consequence of their connectivity into a chain.
Indeed, the charges of opposite signs belong to different chains
and are not linked with each other by the covalent bonds.

In order to find the correlation free energy and the self-
energy, one should explicitly calculate these components of the
correlation functions:

GselfðrÞ ¼
3aFtot

2pr
e�r=rc (42)

GvolðrÞ ¼
3aFtot

4pr
e�r=lcorr � e�r=rc
	 


(43)

GcorrðrÞ ¼
3aFtot

4pr
e�r=rc � xþx�

x2
cos

rffiffiffi
2
p

x�
þ d

� �
e�r=

ffiffi
2
p

xþ

� �
(44)

Here lcorr is known to be the correlation radius of neutral
polymer solution

lcorr
2 ¼ 1

rc�2 þ 2lvol�2
¼ a2

12 1=N þ 6CFtot
2ð Þ; (45)

with the radii x� ¼ x
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2=2rc2
p

and dimensionless

d = arctan(x+x�/2rc
2). Note that the electrostatic interactions

vanish at lb = 0, and Gcorr = 0. Similarly, Gvol = 0 in the absence
of volume interactions, i.e. at C = 0. Gself is known to be the
Ornstein–Zernike type correlation function of a single Gaussian
chain and is equal to the correlation function in the solution of
the ideal chains.69

Using relationship similar to eqn (13) and introducing
additional multiplier f 2 for the transition from the polymer–
polymer to charge–charge correlation function, one obtains

Uself

kBT
¼ 6f 2N

lbrc

a2
Nchains ¼

ffiffiffi
3
p

uf 2N3=2Nchains (46)

where Nchains = VFtot/(a
3N) is the total number of polymer

chains (both polycations and polyanions) in the system.
Since u B 1/T, the free and the internal electrostatic energies

coincide, Fself = Uself, and the density of the self-energy can be
represented as follows:

Fself

kBT

a3

V
¼

ffiffiffi
3
p

uf 2
ffiffiffiffi
N
p

Ftot (47)

It is necessary to emphasize that the self-energy term is not a
mean-field energy of the charged chains with Gaussian statistics
but the correction term caused by Gaussian correlations in the
location of charges (see Appendix A for a detailed discussion).
The value of the self-energy term is defined by the choice of the
reference polymer system: it is the system without volume and
electrostatic interactions, C = 0 and lb = 0. Therefore, the chains
in the reference system possess Gaussian statistics at any length
scales owing to the conformational entropy term Fconf in the total
free energy.

Thus, similar to the case of the DH plasma (eqn (23)), the
correlation energy can be written as follows:

Fcorr

kBT
¼ 1

2

V

ð2pÞ3

�
ð

ln 1þ 1

q2x4 q2 þ rc�2ð Þ

� �
� 1

q2x4 q2 þ rc�2ð Þ

� �
d3q

(48)

The correlation energy (48) is always negative owing to the
negative integrand, and this result fully coincides with common
comprehension of correlation energy as negative energy taking
into account the correlation attraction of opposite charges. In the
case of an infinitely long chain, N - N, the second term in
square brackets diverges at q - 0, i.e. at large distances. Indeed,
the Coulomb correlation energy of an infinitely long PE chain with
the Gaussian statistics at any length scales is infinite and grows

with increasing chain length proportional to
ffiffiffiffi
N
p

, see eqn (47).
For this reason the term accounting for the chain translational
entropy cannot be neglected in the total free energy.

Result similar to eqn (48) has been used earlier by Mahdi
and Olvera de la Cruz who calculated the phase diagram of
semidilute PE solution in the presence of salt.36 The authors
justified subtraction of the second term in square brackets by
mathematical convenience: this ‘‘. . . irrelevant subtracted term
only facilitates the algebra and gives an electrostatic contribu-
tion that reduces to the simple Debye–Hückel electrostatic free
energy in the correct limit.’’36 In fact, subtraction of the self-
energy does not influence results for PE solution since it is a
constant term and can be omitted: the self free energy density is
proportional to the polymer volume fraction F and does not
contribute to the osmotic pressure.70 However, if we would like
to calculate the correlation energy of the PEC or to compare two
states of the PE chains – aggregated into PEC and free – it is
necessary to properly calculate and comprehend calculation of
the free energy of the system. Subtraction of the self-energy of
the chains is very important for distinguishing the reference
state of the system and, hence, proper calculation of energy of
Coulomb interactions. Application of the renormalization pro-
cedure to the case of the PEC and the proof of the negative sign
of the correlation free energy are the novelties of the above part
of the present work.

The self-energy is proportional to the number of PE sub-
chains in the system Nchains, like the self-energy is proportional
to the number of charges in the DH plasma. The difference
between these two systems is the following: point-like charges
are structureless and their self-energy is unchanged under any
conditions, while the PE chain can adopt different conforma-
tions resulting in different mutual spatial locations of charges
and different self-energy.

The same identification of the PE chain self-energy as
the energy necessary to connect charges onto a single chain
has been recently used by Shen and Wang, and our choice of
the reference state coincides with theirs: ‘‘the zero energy of
the electrostatics is taken to be the state where charges are
dispersed into infinitesimal bits at infinity.’’57 The dependence
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of the chain self-energy on its conformation was discussed in
ref. 57 as well. The authors introduced chain self-energy in
order to find correlation free energy of PE solution, and we use
very similar renormalization with the same chain self-energy
definition. The only difference is that we apply it to the case of
the interpolyelectrolyte complexes rather than solution of simi-
larly charged chains.

The positive value of the PRA correction (39) means that the
number of like charges surrounding any selected charge on the
chain in the PEC is more than the number of opposite charges,
despite repulsion of like charges and attraction of opposite
charges. This fact is caused by the binding of like charges into
the chain. Since these bonds exist before complex formation,
their impact on the charge–charge correlations was separated
from the correlations induced by purely Coulomb attraction.
The Coulomb energies caused by these correlations were treated
as the self-energy and the correlation energy, respectively.

3.1 Equilibrium density of the PEC

In order to find the equilibrium polymer volume fraction within
the complex, the sum of the mean-field and the correlation free
energies should be minimized. The minimization is equivalent
to the equating of the osmotic pressure of the complex to zero:

F
@

@F
FMF þ Fcorr

kBTV

� �
� FMF þ Fcorr

kBTV
¼ 0 (49)

Here we neglect the translational entropy of polyions within the
complex and the nonzero concentration of free polyions in the
outer solution since their concentration is exponentially small (see
Section 4). The RPA correction FRPA can be used instead of Fcorr in
order to find the PEC density because the self-energy does not
contribute to the osmotic pressure. At that, FRPA represents the
total electrostatic energy of the system, i.e. the energy with respect
to the state when all infinitesimal (not elementary) charges are
moved away from each other at infinite distances. This choice of
the reference state assumes that polymer chains are broken, and
the energy required to gather them back into a single chain and
provide the chain with the Gaussian conformation UG,ch

el-st equals
mean-field electrostatic chain energy UG,ch

MF plus the self-energy
of a chain UG,ch

corr , see Appendix A.
In the case of infinitely long chains (N - N), we get

FRPA=kBTV ¼ 1
�

6
ffiffiffi
2
p

px3
� �

, so that the polymer volume fraction
within the complex reads

Ftot ¼
uf 2
� �1=3

22=3C4=9ð3pÞ1=9 � 0:49u1=3f 2=3C�4=9 (50)

and the free energy of the PEC per unit volume equals

FMF þ FRPA

kBTV
¼ 35=3uf 2

4p1=3C1=3
(51)

Thus, the free energy per chain within the macroscopic PEC
phase takes the form:

Fcoac¼
FMFþFRPA

kBTNchains
¼ 316=9

24=3p2=9
NC1=9u2=3f 4=3� 2:17NC1=9u2=3f 4=3:

(52)

Scaling analysis of the chain free energy within the PEC per-
formed in ref. 56 predicts Fcoac E �Nu2/3f 4/3. The sign minus in
the scaling result was justified by attraction of oppositely charged
blobs within the complex.56 However, the negative energy of
correlation attraction between oppositely charged blobs is of the
order of the blob self-energy. So the scaling consideration does
not allow us to define the sign (plus or minus) of the free energy
within the complex, Fcoac. It is necessary to mention here that
properly defined correlation energy of the PEC given by eqn (48) is
indeed negative, but the free energy of the complex being the sum
of the correlation free energy and the self-energy of the chains is
positive. Moreover, scaling treats polyions as a set of disrupted
blobs resulting in a linear dependence of the chain correlation
energy on its length N, while RPA accounts for correlations within
the chain on all length scales and yields asymptotically N3/2.

4 Equilibrium between non-
aggregated charged chains and their
complex

In order to calculate the critical concentration of PEC formation
properly, one should take into account correlation corrections to
the mean-field energy of both neutral stoichiometric complex
and single charged chains. Below we propose a way of calcula-
tion of the self-energy of free PE chains in the solution.

4.1 Self-energy of a single polyelectrolyte chain

It is well-known that the PE chain in dilute solution adopts
elongated (swollen) rather than Gaussian coil conformation,
Fig. 1. Owing to the small concentration of PE, all counterions
are assumed to abandon the chain and distribute homo-
geneously throughout the solution. On the length scales
r o xel-st B au�1/3f �2/3, where the electrostatic interactions
do not play a role, the chain is an unperturbed Gaussian coil,
while on larger scales, r 4 xel-st, it resembles a string of the
characteristic length L B Na2/xel-st B aNu1/3f 2/3, Fig. 1. Thus,
the intra-chain correlations are different on different length
scales. Calculations of the Coulomb energy of the swollen PE
chain based on the correlations predicted by scaling are per-
formed in Appendix B.

A more rigorous method to derive the similar result for
chain electrostatic energy is not to adopt a priori assumption
on the blob size, xblob = xel-st. Indeed, let xblob be the size of the
blob, and correlations inside it are Gaussian. The number of

Fig. 1 Schematic representation of polyelectrolyte chain as a sequence of
electrostatic blobs.
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monomer units in the blob g B (xblob/a)2 and the average

distance between i-th and j-th units 1
�
rij

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=pa2ji � jj

p
.

The electrostatic energy of a single blob is given by

U1

kBT
¼

XXg
iaj

ðef Þ2
2ekBTrij

* +
¼ uf 2g3=2

ffiffiffiffiffiffi
32

3p

r
’ uf 2g3=2 (53)

The number of the blobs in the chain Nblob = N/g = Na2/xblob
2.

Since the PE chain is stretched, the average distance between two
blobs, k-th and l-th, is given by hrkli = xblob|k � l|, 1 r k, l r Nblob.
The charge of each blob equals q = efg and the total electrostatic
energy of interactions between all blobs reads

U2

kBT
¼

XXNblob

kal

q2

2ekBTrkl

* +
’ uf 2g2

xblob=a
Nblob ln

Nblob

e

� �
(54)

Thus, the total electrostatic energy is given by

Usw;ch
el�st
kBT

¼ U1 þU2

kBT
’ uf 2g2

xblob=a
Nblob ln

Nblob

e

� �
þ uf 2g3=2Nblob

¼ uf 2g3=2Nblob lnNblob (55)

while the elastic energy of deformation reads

Fel

kBT
¼ 3L2

2Na2
(56)

and L = xblobNblob = Na2/xblob. The total free energy of the chain
can be expressed as a function of xblob which has to be minimized
with respect to xblob:

Fsw ¼ uf 2
xblob
a

N ln
Na2

xblob2

� �
þ 3Na2

2xblob2
(57)

The exact value of xblob is determined by the equation:

uf 2 ln
Na2

xblob2

� �
� 2

� �
¼ 3

a3

xblob3
(58)

Taking into account Na2
c xblob

2 and N c 1, one gets71

xblob
a
’ 3

uf 2 lnN

� �1=3

¼ 3

lnN

� �1=3

uf 2
� ��1=3

(59)

and the total free energy can be estimated as

Fsw ¼
34=3

2
uf 2
� �2=3

N lnNð Þ2=3� 2:16 uf 2
� �2=3

N lnNð Þ2=3 (60)

This final result, which takes into account not only the mean-
field free energy of a chain31,32 but also contribution due to the
correlation of charges (see Appendix B), should be used in
calculations of the critical concentration of PEC formation. The
scaling estimations for the single PE chain free energy coincide
with the above results up to the logarithmic and numerical
factors, which are usually omitted in scaling estimations.56

However, it will be shown below that account for these correc-
tions, 2.16(ln N)2/3, is crucial for equilibrium between the free
chains and the PEC.

A more common procedure for the self-energy calculation of
a swollen PE chain in both dilute and semidilute salt solutions

can be found in the recent work of Shen and Wang, where the
authors took into account coupling between the chain confor-
mation and the screening of Coulomb interactions in the
solution.57 Owing to the low polyion ionization degree, f { 1,
we have also neglected chain entanglements (knots), which are
known to be localized, adopt a tight configuration and relax
very slowly (or even remain frozen) in the case of highly charged
polyelectrolytes.72

4.2 Critical concentration of PEC formation

In this section, we discuss the state of oppositely charged
polyions in 1 : 1 solution. One can expect that in extremely dilute
solutions polyions exist as single chains, while their increasing
concentration should result in complexation and formation of
either single globules on the basis of one polycation and one
polyanion or a macroscopic condensed phase (coacervate). For
the sake of simplicity, the equilibrium between the three states
of the polyions, namely (i) single chains, (ii) neutral globules and
(iii) macroscopic liquid coacervates will be considered, though
formation of a solid precipitate is also possible in some cases,73

e.g. for oppositely charged chiral polypeptides extra capable of
hydrogen bonding.73,74 Here we neglect formation of globules
consisting of several couples of oppositely charged polyions
assuming that their fraction will be smaller in comparison with
the globules on the basis of one couple. In other words, we
assume that the size distribution function of the globules has a
narrow maximum for the one couple.

Let us assume that the chains are pretty long,
N(uf 2 ln N/3)2/3

c 1, i.e. the number of the electrostatic blobs
within the chain exceeds unity by far. Free energy of the chains
in each state can be divided into concentration-dependent
entropic and concentration-independent energy contributions.
The latter has the form:

Fsw = 2.16(uf 2)2/3N(ln N)2/3 (61)

Fcoac = 2.17(uf 2)2/3NC1/9 (62)

for the single swollen and complexed chains, respectively. Here we
assume that the single PE chains do not retain counterions since
energy gain provided by the trapping of one counterions is N times
lower than that as a consequence of PE complex formation. We
also neglect the DH-type correlation attraction of these chains at
an extremely small polymer concentration, which is negligible in
comparison with their translational entropy, cch { (a/lb)3( f N)�6.
This estimation follows from the treatment of the solution as the
DH plasma with ion charges equal to Q = efN. Since the critical
concentration of complex formation depends on the chain length
N exponentially (see below), this condition is fulfilled for long
enough chains. It is also assumed that inequality x{ rc is fulfilled
owing to the long enough PE chains.

The energy contribution for the case of the globule includes the
energy per chain of the complex coacervate and the excess surface
energy per chain, 2pRgl

2g. Here ga2/(kBT) = 0.11(uf 2)2/3C�7/18 is
the surface tension coefficient of the globule.32,75 This result
takes into consideration connectivity of PE charges32 and for
this reason differs from that found in ref. 76, where combination
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of Vroon–Overbeek and Cahn–Hilliard theories neglecting poly-
mer specificity of the system was used. Thus, free energy per
chain in globule reads

Fgl = 2.17(uf 2)2/3NC1/9 + 0.68(uf 2)4/9N2/3C�5/54. (63)

Denoted by Mtot the total number of polycations (poly-
anions) in the solution of volume V. Let the fraction (1 � s) of
polyions forms coacervate, and the total number of single
polycations and polycations in the globules (i.e. in supernatant)
equals M = sMtot. If all polyions in the supernatant are single
chains, their free energy reads

F0 ¼ 2M ln
M

eV

� �
þ 2MFsw (64)

Formation of the globules can be treated as a reversible process
of dimerization. Let us assume that fraction p of the super-
natant polyions are involved in the globules. The free energy of
the supernatant can be calculated via calculation of the parti-
tion function of the system, following the approach proposed in
ref. 77. The state when all chains in the supernatant are free is
the reference state with the corresponding partition function
Z0, F0 = �kBT ln Z0. The partition function of the supernatant Z
with pM globules reads

Zsn = Z0PcombWvole
2Mp(Fsw�Fgl). (65)

Wvol is the probability to find Mp polycations in the vicinity of
corresponding Mp polyanions, namely, the center of mass of
polyanions and polycations located within the volume of the
order of the globule volume vgl:

W ¼ vgl

V

� �Mp

(66)

with vglob = 2Na3/Ftot. The combinatorial factor Pcomb is the total
number of ways to select Mp cations, and assemble Mp globules:

Pcomb ¼
M
Mp

� �2

Mpð Þ! ¼ M!ð Þ2

ðM �MpÞ!ð Þ2ðMpÞ!
(67)

Thus, the free energy of the supernatant Fsn = �kBT ln Z reads

Fsn ¼ F0 þ sMtot p lnpþ 2ð1� pÞ lnð1� pÞ� p 2Fsw� 2Fgl� 1
� �	 


� sMtotp ln
vglsMtot

V

� �
(68)

Finally, free energy of chains in the coacervate can be written
as follows:

Fcoac ¼ 2Mtotð1� sÞ Fcoac þ ln
Ftot

2Na3e

� �� �
(69)

The equilibrium distribution of the polyions between three
states can be found via minimization of the total free energy
Ftot(s, p) = Fsn + Fcoac with respect to p and s. It has to be noted
that minimization with respect to p results in the law of mass
action connecting concentrations of single chains and globules:

p

ð1� pÞ2 ¼
vglsMtot

V
e2 Fsw�Fglð Þ (70)

The fractions of polyions in the coacervate, globules and
non-aggregated state are shown in Fig. 2. In Fig. 3 we plot
corresponding concentrations of polyions and globules in the
supernatant. It is seen that increasing the polyion concentration
first results in the formation of single globules. The single chains
do not aggregate only at extremely small polymer concentrations.
Their coexistence with the globules is observed also at extremely
small polymer concentrations. The single globules dominate in the
solution in a very wide concentration range, c = 10�20–10�6, above
which the macroscopic coacervate is formed. These numerical
results coincide well with analytical estimations of the critical
concentrations of the globules cgl and coacervate ccoac formation,
which can be found from eqn (68)–(70):

cgl 	
1

vgl
e�2Fswþ2Fgl (71)

ccoac 	
1

vgl
e�FswþFcoac (72)

Fig. 2 Fractions of the single polyions, s(1 � p), complexed polyions in the
globules, sp, and polyions in the coacervate, (1 � s), vs. total dimensionless
concentration of polycations (polyanions) in the solution c = Mtota

3/V
at N = 150, f = 0.1, u = 1, C = 1.

Fig. 3 Concentrations of the single polycations, s(1 � p)c, and single
globules, spc, in the supernatant vs. total concentration of polycations in
the solution c = Mtota

3/V at N = 150, f = 0.1, u = 1, C = 1.
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Indeed, for long enough chains cgl { ccoac as long as
2Fgl � Fcoac � Fsw o 0, and the formation of the globules
starts at much lower concentrations than their precipitation in
the solution. At chosen values of the numerical parameters, all
assumptions adopted above are valid. Namely, polyions are
long enough to contain a large number of the electrostatic
blobs and they exist in the non-aggregated state only at extre-
mely small concentrations. In the concentration range shown
in Fig. 2 and 3, the coacervate volume is much smaller than the
total volume of the system, so that disregard of the supernatant
volume diminution in the course of precipitation is justified.

Our principal result on the formation of single neutral inter-
polyelectrolyte globules prior to the macroscopic phase separation
at increasing concentration of polyions in solution coincides with
that recently reported by Delaney and Fredrickson.78 They proved
this fact by means of both scaling analysis and theoretical-field
methods. At that, analytical expressions for threshold concentra-
tions, cgl and ccoac, found in the present paper seem to be more
precise as compared to scaling estimations78 where both the ln N
correction as well as the surface effects were neglected, while strict
theoretical-field analysis performed in their work did not allow
finding analytical formulas.

5 Conclusion

Attraction of oppositely charged PEs within the complex is caused
by fluctuation of charges and local deviation from electric neu-
trality. This correlation-induced attraction is opposed by repulsive
volume interactions, and the equilibrium polymer volume fraction
within the complex is defined from their balance. It is natural to
expect that the correlation electrostatic free energy of the complex,
Fcorr, should be negative, similar to the case of the DH plasma.
However, direct calculations of the RPA contribution, FRPA, within
the framework of a continuous model of charge distribution lead
to the positive expression. This result is explained as follows.
The formal calculations of the RPA Gaussian integrals take into
account not only electrostatically induced correlations but also
correlations caused by initial connectivity of like charges into
the chain. The latter are caused by the structure of the polymer
chain and should be included not into the correlation energy
but into the self-energy of PE chains, Fself.

The self-energy of polyions depends on the conformation of
the chain, and different chain conformations can be used as
a reference state. However, in the framework of the Borue–
Erukhimovich model25 which was widely used in the past few
decades, the reference state is the Gaussian coil. This choice of
the reference state is caused not only by mathematical (the
structure of the free energy functional containing the conforma-
tional entropy term) but also by physical reasons. Indeed, a PEC
in a Y-solvent is known to be a polymer globule, so that polyions
within the globular complex/in coacervate adopt the conforma-
tion of a Gaussian coil on any length scales.

The self-energy of a PE chain within the complex equal toffiffiffi
3
p

uf 2N3=2 is the Coulomb energy due to the correlations of
charges along the polyion in ideal coil conformation. It is

important to stress that the mean-field free energy of charged
polyions with Gaussian coil statistics should not be included
into their self-energy because of the overall complex electric
neutrality (see Appendix A). The physical meaning of the chain
self-energy can be defined as follows. It is the work which
is necessary to simultaneously assemble an equal number of
polycations and polyanions in the same volume (volume of
PEC) providing them conformations of Gaussian coil. This
work is required not to get non-zero overall charge of this
volume (as in the case of single polyions, eqn (60)), since the
complex is electrically neutral, but to achieve connectivity of
charges into Gaussian coils. In turn, energy of fluctuation-
induced attraction between these already assembled polyions
is the true correlation energy, Fcorr.

For the first time within Borue–Erukhimovich polyelectro-
lyte complex model we split the RPA result for the energy
of Coulomb interactions within the complex, FRPA, into two
parts: self-energy of the chains, Fself, and correlation energy of the
complex, Fcorr. We demonstrate that the correlation free energy of
the complex within the framework of this model considering
continuous charge distribution, Fcorr = FRPA � Fself, is negative, in
accordance with general expectations. The proposed procedure
for the RPA result renormalization (subtraction of the chain self-
energy) is based on physical arguments and uniquely defined.
This procedure and PE chain self-energy definition are akin to
those used formerly by Mahdi and Olvera de la Cruz36 and later
by Shen and Wang in the case of PE solutions.57

Accounting for not only the mean-field term but also the
correlation electrostatic free energy of the swollen single chain
allows us to find the critical concentration cgl of the single-
globule PEC formation and concentration of precipitation of
these globules, ccoac. Analytical expressions for these concen-
trations are found for the case of pretty long chains providing a
large number of electrostatic blobs. It is shown that the single
globules of the PEC exist in a wide range of polyion concentra-
tions, cgl { ccoac, when complexation is already favourable
owing to a high energy gain in the course of polyion neutraliza-
tion, while precipitation is still unfavourable because of entro-
pic reasons.

Appendix A. Mean-field and correlation
energies of polyions with Gaussian
statistics

Consider a bare charged PE chain with Gaussian statistics on
any length scales assuming that all counterions leave the chain.
Electrostatic energy of the chain can be calculated as follows:

UG;ch
el-st

kBT
¼ e2f 2

2ekBTa6

ð
FðrÞFðr0Þ
jr� r0j d3rd3r0

� �
(73)

After substitution hF(r)F(r0)i = hF(r)ihF(r0)i + gchain(|r � r0|), the
chain electrostatic energy can be represented as a sum of
two terms:

UG,ch
el-st = UG,ch

MF + UG,ch
corr (74)
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Note that the correlation function of a single Gaussian chain
gG,ch(|r � r0|) = gG,ch(R), R = |r � r0| coincides with Gself(R)
obtained earlier in eqn (42). This fact is a consequence of
identical statistics of the single Gaussian chain and the chain
in the solution of ideal (i.e. non-interacting) chains. The mean-
field electrostatic energy written in the conventional form reads

UG;ch
MF

kBT
¼ uf 2

ðhFðrÞihFðr0Þi
2a5jr� r0j d3rd3r0 (75)

and omitting numerical factor one gets uQ2/rc with Q = Nf being
the chain charge in the elementary charge e units and rc ¼
a
ffiffiffiffi
N
p � ffiffiffiffiffi

12
p

being the characteristic Gaussian size of the chain.
On the other hand, UG,ch

el-st,MF = 0 within the complex since the
excess charge of the PE molecule is compensated by the
oppositely charged counterpart. The correlation term can be
easily calculated:

UG;ch
corr

kBT
¼ 2puf 2

a6

ð
GselfðRÞRdRd3r0 ¼

ffiffiffi
3
p

uf 2N3=2 (76)

This result coincides with the RPA self-energy calculations,
eqn (46), and supports the proposed interpretation for the
self-energy being excess Coulomb energy caused by Gaussian
correlations of linked chain charges. Account for the correla-
tions is of great importance since both the mean-field
self-energy of the Gaussian chain, UG,ch

MF , and the self-energy
correction caused by correlations, UG,ch

corr , depend on the para-
meters in similar ways, both Buf 2N3/2. They differ only by
numerical coefficients.

Appendix B. Mean-field and correlation
energies of the swollen polyion

Let F0 be the average polymer volume fraction within the
sphere of the diameter BL circumscribed around the swollen
PE chain (see Fig. 1), F0 = Na3/L3 = xel-st

3/(Na3) = u�1f �2N�2

where xel-st B au�1/3f �2/3 is the electrostatic blob. To calculate
the Coulomb energy of the swollen PE chain, we use the
method similar to that presented in Appendix A in the case of
the Gaussian charged chain. The electrostatic energy of the
chain is given by

Usw;ch
el�st
kBT

¼ e2f 2

2ekBTa6

ð
FðrÞFðr0Þ
jr� r0j d3rd3r0

� �
(77)

and F(r) = F0 + dF(r). Owing to hF(r)F(r0)i = hF(r)ihF(r0)i +
hdF(r)dF(r0)i = F0

2 + Gsw,ch(r, r0), one can find

Usw;ch
el�st
kBT

¼ Usw;ch
MF

kBT
þ e2f 2

2ekBTa6

ð
Gsw;chðr; r0Þ
jr� r0j d3rd3r0

� �

¼ Usw;ch
MF

kBT
þUsw;ch

corr

kBT

(78)

Here mean-field electrostatic energy of the chain Usw,ch
MF is

defined as

Usw;ch
MF

kBT
¼ e2f 2

2ekBTa6

ðhFðrÞihFðr0Þi
jr� r0j d3rd3r0 ’ Q2

L
’ u2=3f 4=3N (79)

since hF(r)i = F0 within the sphere circumscribed around the
chain. The correlation electrostatic energy of the chain, Usw,ch

corr ,
can be found owing to its known (within the scaling considera-
tion) correlation function, Gsw,ch(R). The intra-chain correlation
function is given by

Gsw;chðRÞ ¼

3af
pR

; Ro xel-st

3afxel-st
pR2

; xel-st oRoL=2

8>><
>>: (80)

since the chain is Gaussian at R o xel-st and linear at R 4 xel-st,
and f B u1/3f 2/3 is the polymer volume fraction inside the
blob. Then

Usw;ch
corr

kBT
¼ e2f 2

2ekBTa6
V

ð
Gsw;chðRÞ4pRdR

¼ 2pe2f 2

ekBTa6
V

3afxel-st
p

þ 3afxel-st
p

ln
L

2xel-st

� �� �

¼ 6uf 2
xel-st
a

N ln
e

2

L

xel-st

� �
� 6u2=3f 4=3N ln Nu2=3f 4=3

� �
(81)

and e is the Euler’s number. Thus, correlation electrostatic
energy Usw,ch

corr exceeds the mean-field term Usw,ch
MF by a factor

of ln N. For this reason account for the correlation term is
requisite when charge of the chain is considered to be smeared
throughout the sphere of diameter L.
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