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On the critical Casimir interaction between
anisotropic inclusions on a membrane

Jorge Benet,a Fabien Paillusson *b and Halim Kusumaatmaja *a

Using a lattice model and a versatile thermodynamic integration scheme, we study the critical Casimir

interactions between inclusions embedded in a two-dimensional critical binary mixtures. For single-domain

inclusions we demonstrate that the interactions are very long range, and their magnitudes strongly depend

on the affinity of the inclusions with the species in the binary mixtures, ranging from repulsive when two

inclusions have opposing affinities to attractive when they have the same affinities. When one of the

inclusions has no preference for either of the species, we find negligible critical Casimir interactions. For

multiple-domain inclusions, mimicking the observations that membrane proteins often have several

domains with varying affinities to the surrounding lipid species, the presence of domains with opposing

affinities does not cancel the interactions altogether. Instead we can observe both attractive and repulsive

interactions depending on their relative orientations. With increasing number of domains per inclusion, the

range and magnitude of the effective interactions decrease in a similar fashion to those of electrostatic

multipoles. Finally, clusters formed by multiple-domain inclusions can result in an effective affinity

patterning due to the anisotropic character of the Casimir interactions between the building blocks.

1 Introduction

Originally, the cell membrane was considered just as a physical
barrier that kept cell components together. However, in the last
decades, advances in experimental techniques, including atomic
force and fluorescence microscopies, have enabled the probing of
membranes’ inner structure and composition to such extents
that it has been necessary to rethink our understanding of its
physics, chemistry and its role in biology.1 Far from being a
simple barrier, cell membranes are in fact very complex mixtures
in which lipids and proteins meet, interact and self-assemble. A
number of studies have shown that lipids are organized in the
lateral dimension2 and that most membrane proteins organize in
clusters.3–6 Further, there is now a growing consensus that such
lateral organization and compartmentalisation play important
roles in biological processes, such as in cell signalling and
membrane trafficking;7–9 and it has also been suggested to be
involved in a number of diseases from HIV10 to liver11 and
prion diseases like Alzheimer.12

Biologically-motivated scenarios, such as the fence and
pickets model13 or the lipid raft hypothesis,14 have been put
forward to explain lateral membrane organizations. However, to
date it remains unclear whether such scenarios are feasible

from a chemical physics standpoint and, if possible, to what
extent they are harnessed by biological processes in vivo. In this
context, our aim here is to contribute towards understanding
how inclusions (e.g. membrane proteins) may assemble into
clusters within a cell membrane. Assuming the aggregation
process occurs in thermodynamic equilibrium conditions, two
possibilities come to mind. Firstly, it may occur by the free
diffusion, collision and irreversible chemical bonding of the
inclusions in a process reminiscent of a Diffusion Limited
Aggregation.15–17 Secondly, the inclusions may instead self-organise
into metastable clusters, with a given equilibrium size distribution,
in order to minimise the overall free energy. In this work we will
concentrate on the latter.

There are various candidate mechanisms for interactions
between somewhat large protein-like inclusions surrounded by
smaller lipid species. They range from direct, specific interactions
between the inclusions, such as via van der Waals or electro-
static forces,18,19 to indirect interactions mediated by the lipid
membranes. For the latter, one possible mechanism arises from
minimising membrane deformations. Both theory and experi-
ments have demonstrated that, by inducing curvature, proteins
and colloidal particles can self-assemble into complex structures
such as lines, rings and lattices.20–23 More recently, ideas for a
new class of indirect mechanisms have emerged, namely
Casimir-like forces,24–32 which could arise both from shape and
composition fluctuations of the membrane. Here we will focus on
composition fluctuations. Initially envisioned for bulk critical
mixtures in three dimensions,33 Casimir-like forces are expected
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to arise between any inclusions embedded in a fluctuating fluid
when separated by a distance shorter than the correlation length
of the fluid; and for fluid mixtures near a critical point, this
correlation length diverges as we approach the critical temperature.
Interestingly, close to room temperature, lipid membranes with
critical composition pass through a miscibility critical point whose
nature closely follows that of the two-dimensional Ising universality
class.34 This behaviour has been observed in giant plasma
membrane vesicles isolated directly from living cells,35 as well as
in synthetic lipid mixtures.36 It thus becomes plausible that Critical
Casimir (CC) interactions between membrane proteins embedded
in critical lipid mixtures could pave ways for their aggregation.

Machta et al.24 recently demonstrated that two ‘‘like’’ inclusions
immersed in a 2-dimensional critical binary lipid mixture have an
attractive interaction, while ‘‘unlike’’ ones have a repulsive inter-
action. In their model each protein inclusion has a set uniform
affinity with one of the lipid components. These findings are in
line with those previously reported both theoretically and experi-
mentally for CC interactions in 3 dimensions.37–41 Recent extensive
simulations of colloids immersed in a critical solvent further
suggest strong similarities between the 2 and 3-dimensional cases
whereby the observed variations in the phase behaviour appear to
be accountable to differences in critical exponent and dimension
of the solvent-inclusion interface.42,43

Besides uniform inclusions, inhomogeneities and anisotropies
at the fluid-inclusion interface have been theoretically shown to
affect substantially CC interactions in 3 dimensions40,44–46 to the
extent that patterning can now be tuned and exploited for targeted
colloidal self-assembly.46,47 This observation is particularly inter-
esting and relevant for CC forces between membrane proteins as
proteins often have multiple domains with varying affinities with
respect to the lipid species.48–50 Thus, if CC interactions are to play
a role in membrane protein aggregations, it is key to understand
how their sign and magnitude can be tailored by heterogeneities
in the protein domains and different affinities between the
inclusions and the lipid species.

To address this issue, in this work we employ Monte Carlo
(MC) simulations in a square lattice to simulate a binary
mixture of lipids with two inclusions embedded in it. The free
energy corresponding to the CC interactions between these
inclusions is explicitly computed by using a thermodynamic
integration scheme. The flexibility of our scheme allows us to (i)
explore the effect of gradually modifying the inclusion boundary
conditions, and (ii) study how the presence of different domains
(anisotropy) can affect the interactions.

2 Methods

The Critical Casimir (CC) interaction is characterised by the
free energy FCC(d) of a critical fluid mixture within which lie two
inclusions separated by a fixed distance d.33 There are two
common approaches to compute this CC free energy. Firstly,
the free energy can be defined as minus the work done by the
ensemble average of the mechanical force exerted by the fluid on the
inclusions when brought from infinity to a finite separation d.24,51

The equilibrium fluctuations of this mechanical force also
inform experiments relying on mechanical probes to evidence
CC interactions; however, some care must be taken when inter-
preting these fluctuations, depending on how the inclusions
interact with the fluid mixtures.26,52

Secondly, from an equilibrium statistical thermodynamics
viewpoint, the statistics of configurations will be governed by a
Boltzmann weight that depends on FCC(d). Thus, a fruitful
strategy is to compute the probability weights for inclusions at
varying distances, which are readily available from simulations, and
invert them to recover the CC free energy as a function of distance.42

However, both the force and relative probability approaches
usually need to be supplemented by a theoretical estimate at a
reference distance because 2D CC interactions are very long
range and it can be impractical to extend the calculations to get
an effectively zero interaction at large distances.24,42 In this
work, we devise a non-distance-based thermodynamic integration
scheme precisely to avoid the need for a reference point, which
can be difficult to obtain for complex inclusion geometries. We
will detail our approach in the following subsections.

2.1 The model

Our system consists of a critical lipid binary mixture in which two
proteins are embedded. We use a lattice gas model of this system
with a square lattice of N = 150 � 150 cells. Each cell is occupied
either by a species of the binary mixture or part of a protein. This
lattice size is chosen as it gives a good trade-off between reducing
computational costs and finite size effects. By this we mean that up
to N = 500 � 500, larger lattice sizes yield results whose difference
with our N = 150 � 150 lattice size are not statistically significant.

We simulate the lipid mixture by making use of a two-
dimensional Ising model, notorious for its critical behaviour,
in which the spin variables can take values s =�1 corresponding
to lipid species A and B. The protein inclusions are modelled as
two blocky patches occupying np = 12 cells each, whose size is
determined by their effective radius, r, as shown in Fig. 1. For
the inclusions, the average value of their spin variable is set to a
target value st which can be different for the two proteins. To
avoid a large standard deviation from this mean, spins belonging to
a protein region are modelled with Potts-like spin variables s = k/2,
with k an integer such that k A [�2,2].

To get the free energy of the system with two protein
inclusions we make use of the 4 states represented in Fig. 1.
The distance between proteins, d, is measured as the distance
between their centers. These states are the following:
� State a comprising only the binary mixture at criticality

(top left of Fig. 1) with hamiltonian:

Ha ¼ J
XN
i¼1

X
hii

si � sj
�� ��: (1)

� State b comprising the critical mixture and protein 1 (top
right of Fig. 1) with hamiltonian:

Hb ¼ J
XN
i¼1

X
hii

si � sj
�� ��þ h

Xnp1
i¼1

si � st1ð Þ2: (2)
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� State g comprising the critical mixture and protein 2
(bottom left of Fig. 1) with hamiltonian:

Hg ¼ J
XN
i¼1

X
hii

si � sj
�� ��þ h

Xnp2
i¼1

si � st2ð Þ2: (3)

� State d comprising the two proteins 1 and 2 separated by a
distance d/r within the critical mixture (bottom right of Fig. 1)
and with hamiltonian:

Hdðd=rÞ ¼ J
XN
i¼1

X
hii

si � sj
�� ��þ h

Xnp1
i¼1

si � st1ð Þ2

þ h
Xnp2
i¼1

si � st2ð Þ2: (4)

The first term in eqn (1)–(4) is equivalent to a 2D Ising
model, while the second and third terms are quadratic terms
whose role is to impose the average spin values inside the
regions where the proteins are. Here J 4 0 is the coupling
parameter which characterises the energy cost for having two
different species next to each other,

P
hii

stands for a sum over

the 4 closest neighbours of cell i, h is a parameter setting the
strength of the external potential imposing the average spin
values inside the proteins, and st1 and st2 are the spin target
values for proteins 1 and 2, respectively.

2.2 Thermodynamic Integration

Thermodynamic integration is a versatile method to compute
free energy differences between two thermodynamic states. Let
us consider an initial state with hamiltonian Hini, a final state
with hamiltonian Hfin, and a parameter-dependent hamiltonian
H(l) such that H(l = 0) = Hini and H(l = 1) = Hfin. It can be shown
that the free energy difference between the final and initial
states can be computed by:51

DFfin=ini � Ffin � Fini ¼
ð1
0

@HðlÞ
@l

� �
l
dl: (5)

The equilibrium averages
@HðlÞ
@l

� �
l

can readily be obtained

from standard MC methods. It is important to note that, as a
thermodynamic quantity, the free energy difference is only a
function of the final and initial states, but not the path we have
taken between them. Thus, for simplicity, we have taken a linear
interpolation with crossover Hamiltonian

H(l) = Hini + l(Hfin � Hini). (6)

This then yields

DFfin=ini ¼
ð1
0

Hfin �Hinih ildl: (7)

Specific to the problem at hand, here we have four thermo-
dynamic states a, b, g and d (see Fig. 1), and we denote their free
energies as Fa, Fb, Fg and Fd(d/r). We finally denote FCC(d/r) as
the CC free energy and define it as the work done to bring the
two proteins to within a distance d/r from infinity. It follows
from this definition that:

FCC(d/r) = Fd(d/r) � (Fb + Fg) + Fa, (8)

where (Fb + Fg) � Fa represents the free energy of the system
with the two proteins being infinitely far apart in the critical
mixture. From eqn (7), FCC(d/r) can then be expressed as a
function of thermodynamic integrals only:

FCCðd=rÞ ¼ DFg=d � DFa=b ¼
ð1
0

Hd �Hg
� �

ldl�
ð1
0

Hb �Ha
� �

ldl

(9)

which can be readily estimated from our MC simulations. We
note that, for a given set of protein inclusions, the second
thermodynamic integral only needs to be computed once, while
the first integral has to be repeated for various values of d/r. The
advantage of eqn (9), which resemble to some extent the
parameter variation method used in ref. 44, is that it avoids
the problem of having to supply a theoretical estimate of the
reference free energy, which tends to be very much system-
dependent and difficult to compute analytically.

2.3 Simulation details

We perform standard Metropolis Monte Carlo simulations at
the critical temperature of the Ising model with non-conserved
order parameter. In our simulations, it corresponds to J/kBT =
2.27, in agreement with analytical predictions by Onsager
and previous simulation results.53,54 For each system we
employ three random different initial configurations, which
are equilibrated for 5 � 105 cycles, and sampled for 5 � 106

cycles. Each cycle consists of N random single spin flips, which
ensures that all particles in the system can be selected in each
cycle, and configurations are saved every 1000 cycles. In order
to determine the error in our calculations we use block
analysis55 to determine the number of independent measurements
of the free energy. The error is obtained from the standard
deviation with a confidence interval of 95%.

Fig. 1 Representation of the various stages of the model. Top-left figure:
state a is a binary mixture at the critical point Tc. Top-right figure: state b
with protein 1, alone, embedded within a critical mixture. Bottom-left
figure: state g with protein 2, alone, embedded within a critical mixture.
Bottom-right: state d with proteins 1 and 2 embedded in a critical mixture.
The proteins’ effective radius, r, is determined by the distance from the
center of the patch to the furthest vertex.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

ug
us

t 2
01

7.
 D

ow
nl

oa
de

d 
on

 1
/1

4/
20

26
 2

:3
3:

57
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cp03874g


This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 24188--24196 | 24191

When performing the thermodynamic integration, there are
two technical aspects worth commenting. The first aspect is the
choice for the parameter h in eqn (1)–(4). On the one hand, its
value must be large enough to effectively pin the spin values
inside an inclusion such that the associated energy variation
hHfin � Hiniil - 0 as l - 1. On the other hand, the accuracy
of our estimate of the CC free energy, FCC, is better when we
have more points substantially contributing to the numerical
integration in eqn (7). As a consequence, h must be in a window
of values guaranteeing both fidelity to the model we want to
implement and reliability of the integration method.

We further illustrate this issue in Fig. 2, where we show a
typical result of our thermodynamic integration method for
three values of h = 50kBT, 250kBT and 500kBT. In this example,
we compute the CC free energy difference between states g and
d. For the largest value of h, the contribution to the integral
in eqn (7) primarily comes from a small window of l close to
l - 0 and only involves a couple of integration points, leading
to a poor estimate of the integral. From this perspective,
smaller values of h are better. However, for small values of h,
we notice that the integrand in eqn (7) does not converge to
zero as l - 1 (see the inset of Fig. 2). Physically this means the
spin value of protein inclusions is not correctly set to the target
value st. In this work, we find that we obtain equivalent results
for the Critical Casimir free energy if we use h = 100–250kBT.
For the rest of this paper, we use h = 250kBT.

The second aspect concerns the difference in degrees of
freedom when a given lattice point represents a lipid species or
part of a protein inclusion. For instance, when computing
DFa/b, the protein sites in state b have five possible spin values
(Potts model with s = k/2, k A [�2,2]), whereas the equivalent
sites in state a only have two possible spin values (Ising model

with s = �1), because in state a they represent lipid species.
Since we are computing the CC free energy at varying distances
between the protein inclusions, in principle we must account
for corrections due to variations in degrees of freedom explicitly
in the computations for FCC(d/r). To do this, we carry out two
sets of thermodynamic integration calculations. In the first set,
see sketch in Fig. 3(b), the initial state corresponds to the case
where there is no interaction neither between the cells where
the inclusions are located nor with their surrounding cells. The
final state is where all cells are interacting and they all have two
possible spin values (Ising model). We denote this free energy
difference as DFIsing(d/r), where d once again is the separation
between the two inclusions and r is the radius of the inclusions.
For the second set of calculations, see sketch in Fig. 3(b), the
initial state is the same as before. However, for the final state,
the cells where the inclusions are located can now have five
possible spin values (Potts model). The surrounding sites still
have s = �1. The free energy difference for this case is denoted
as DFPotts(d/r). The difference DFIsing(d/r) � DFPotts(d/r) is there-
fore the correction in the CC free energy due to changes in the
spin degrees of freedom as a function of the normalised
separation d/r, and the typical results are shown in Fig. 3(a)
for a 150 � 150 square lattice. In practise, these corrections are
small and, in fact, within the uncertainty of our typical thermo-
dynamic integration results.

3 Results and discussion

We study the effective interaction between two protein inclusions
embedded in a lipid membrane depending on the binding
affinity that the proteins have for the lipid species A and B
present in the membrane. For instance, a protein (or domain
in a protein) labelled as �1 strongly prefers being surrounded by
lipid species A, while a protein (or domain in a protein) labelled
as 1 strongly prefers lipid species B. A value of 0 means that it has
no preference for either of the species.

3.1 Single-domain proteins

We first illustrate the approach to the critical temperature Tc by
plotting two-dimensional maps of the ensemble average spin
value denoted j for various temperatures in the neighbourhood
of Tc. The presence of uniform inclusions with set spin value
st = �1 introduces inhomogeneities into the spin system which
persist over a distance of the order of the correlation length.
Plotting the j-maps enables us to have a direct visualisation of
the correlation length. Indeed, the divergence of the correlation
length at Tc gives rise to long-range CC forces to exist.

As shown in Fig. 4, approaching Tc from above, the distance
over which the inclusions influence the rest of the spins in the
system is initially rather short (panel (a)), but increases more
and more (panels (b) and (c)) until the correlation length covers
the whole box at Tc.

We next test our thermodynamic integration scheme by
computing the CC free energy for proteins that consist of one
single domain. We explore the variations of the protein–protein

Fig. 2 Average values of the integrand in eqn (7) as a function of l for
different values of the external field: h = 50kBT (red circles), h = 250kBT
(green squares) and h = 500kBT (blue diamonds). The initial state corresponds
to state g with st =�1, and the final state corresponds to state d with st =�1 for
the first inclusion and st = 0 for the second inclusion. The distance between
the two inclusions is d/r = 2.24. Inset: Magnification in the region of high
values of l. The lines for h = 250kBT (green squares) and h = 500kBT (blue
diamonds) are indistinguishable.
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interactions as a function of their separation for different
protein binding affinities to the lipid species. In our approach,
we gradually change the binding affinity of one of the proteins
to the lipid species, while keeping the other one constant. More
specifically, we consider systems in which protein 1 has a spin
target value of �1, while protein 2 can get spin target values of
1, 0.5, 0, �0.5 or �1 (see Fig. 5 for a description). The results for
these systems are summarised in Fig. 5.

We start by looking at the limit in which both proteins have
opposite binding affinities for the two lipid species, system
(�1,1). Here, protein 1 has strong preference for lipid A and
protein 2 has strong preference for lipid B, which we call the
‘‘unlike’’ limit. In this limit the effective interaction is clearly
repulsive (orange diamonds in Fig. 5) and can be quite strong
with a free energy barrier rising up to 3.5kBT. Then, as
the binding affinity of protein 2 is gradually varied, and its
preference becomes weaker for lipid species B and stronger for
A, the strength of the repulsive interaction decreases (blue
triangles in Fig. 5). At the point in which protein 2 has no
preference for either of the lipid species, system (�1,0), we find
a crossover between the two regimes, and CC interactions
become negligible with respect to kBT (green stars in Fig. 5).

Finally, as protein 2 keeps on increasing its affinity for lipid A
we get into the attractive regime (red squares in Fig. 5). In the
‘‘like’’ limit in which both proteins have the same strong
affinity to one of the lipid species, system (�1,�1), we find
that the magnitude of attraction is the strongest with a well
depth of about 1kBT (black circles in Fig. 5). However, this
attraction is much weaker than the magnitude of the repulsion
in the ‘‘unlike’’ limit, by more than a 3 fold difference. That like

Fig. 3 (a) DFIsing(d/r) � DFPotts(d/r) is the correction in the CC free energy due to variations in the spin degrees of freedom between lattice points
representing lipid species and the protein inclusions, as a function of the normalised separation d/r. The corrections are negligible. (b) Sketch of the
systems simulated. In the middle, the inclusion cells (inside the circles) do not interact with their surrounding cells or with each other. On the top right, all
lattice points, including the inclusion cells, interact via standard Ising model. On the bottom right, the inclusion cells are modelled with Potts-like spin
variables, while the other lattice sites have Ising spin variables.

Fig. 4 Visualising the approach to Tc. 2D maps of the average spin value
j in the vicinity of 2 inclusions (disks) with target spin value set at �1
(corresponding to a dark colour in the map). (a) T = 1.33Tc, (b) T = 1.06Tc

and (c) T = Tc.

Fig. 5 CC interactions for single-domain inclusions. (a) From top to
bottom: 2D maps of the average spin value j for cases (�1,1), (�1,0.5),
(�1,0), (�1,�0.5) and (�1,�1). (b) Effective interactions as a function of
distance for varying affinities of the 2nd inclusion: system (�1,1) (orange
diamonds), system (�1,0.5) (blue triangles), system (�1,0) (green stars),
system (�1,�0.5) (red squares) and system (�1,�1) (black circles). (c) Fitting
parameters to FCC(d/r)/kBT = z(d/r)�n for the systems shown in (b).
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proteins attract supports the idea that proteins of the same
kind tend to coalesce in critical lipid mixtures in order to
minimise the total free energy of the system.

We note that the free energy curves in Fig. 5 appear to have
an offset with respect to the zero free energy baseline. However,
this apparent offset is just a consequence of the very slow decay
of these curves to zero as d/r - N and thus of the very long
range nature of CC interactions in two dimensions. We further
find that the free energy dependence with distance can be well
fitted to a power law FCC(d/r)/kBT = z(d/r)�n, shown as plain lines
in Fig. 5. The values for z and n are tabulated in panel (c) in
Fig. 5. Smaller values of n signify longer-range of interactions.

Our results for the like (black circles) and unlike (orange
diamonds) limits in Fig. 5 corroborate the findings of Machta
et al.24 where we find excellent agreement without any fitting
parameter. In their simulation work using Bennett algorithm,56,57

they take advantage of asymptotic results from conformal field
theory for the reference free energy at large distances. Our
thermodynamic integration approach here circumvents the need
for supplying the reference free energy at large distances, and
thus it allows more complex scenarios to be computed readily, as
we shall show in the next section for inclusions with multiple
domains. Our results are also in good qualitative agreement with
the experimental findings of ref. 41, where the CC forces between
colloids and a wall were tuned by varying the preferential
absorption properties of the wall for the critical mixture’s
components.

Focusing on the attractive regime which is the strongest for
like inclusions, we next look at the magnitude of the CC
interactions between like proteins, as we vary their binding
affinity with the surrounding matrix from strong preference for
lipid A (system (�1,�1)) to no preference for either lipid
(system (0,0)). Note that we do not investigate explicitly the
case where the two proteins prefer lipid B since it is equivalent
to the system (�1,�1). Our results are summarised in Fig. 6. It
is found that the greater the affinity of the two proteins for one
of the lipid species, the greater the magnitude of the resulting
CC interactions. In fact, for system (0,0) where the inclusions
have no preference for either of the lipid species, we cannot
measure any net interaction within the limits of our computa-
tional accuracy. For system (�0.5,�0.5) we clearly observe an
attractive interaction (negative free energy). However, the CC
force (the slope of the free energy with distance) is very small. It
is akin to the case where the system sits in an effective negative
square well potential.

3.2 Multiple-domain proteins

In the previous section we noted the absence of CC interaction
at any distance when one or both of the proteins do not have
any preference for either of the lipid species. In this section we
investigate whether this still remains the case for identical
proteins with multiple domains each of which being given a
target affinity of either �1 or 1—i.e. with strong binding affinity
for either lipids A or B—but such that the overall net affinity
of each protein is zero. To some extent, this approach with
multiple-domain proteins represents a more realistic model of

proteins which usually comprise several domains with different
binding affinities to the surrounding lipids,48–50 thus making
the present study more relevant to biological systems.

We start by studying interactions between two proteins with
two different domains each. These proteins can have different
relative orientations depending on which domains of the
proteins are facing each other (see Fig. 7(a) for a description).
Our aim is to study how orientation can affect these interactions
and if there are preferential orientations that could lead to
patterning in protein clusters. Given that these proteins do not
have a net preference for any lipid type, one could naively expect
no interaction between them as in the cases of the (0,0) and the
(�1,0) pairs of single-domain proteins. However, our results as
shown in Fig. 7(b) show again the presence of two different
regimes and a crossover between them. We find that systems 1
and 2 appear in the repulsive regime while systems 4 and 5 fall
in the attractive one. System 3, corresponding to a 901 relative
orientation, is slightly attractive, though its magnitude is very
small compared to the other systems.

A closer look at systems 1 and 2 shows that, in both cases,
proteins are facing each other with domains that have opposite
preferences for the lipid species, giving rise to predominantly
‘‘unlike’’ interactions. Therefore, this situation is qualitatively
analogous to the system (�1,1) for single-domain proteins. On
the other hand, systems 4 and 5 are confronting domains of the
same kind, leading to predominantly ‘‘like’’ interactions as in
system (�1,�1) for single-domain proteins. Lastly, in system 3,
proteins are orientated in such a way that half of protein 1
has ‘‘like’’ interactions with protein 2, while the other half has
‘‘unlike’’ interactions. This case is a good example of the
non-additive nature of CC interactions. If they were simply
additive, taking advantage of the results in Fig. 5, we would have
expected the net interaction to be repulsive. The magnitude of
repulsive interactions between unlike uniform inclusions is
stronger than attractions between like ones. However, as shown

Fig. 6 CC interactions for single-domain inclusions. (a) From top to
bottom systems: (0,0), (�0.5,�0.5) and (�1,�1). (b) Effective interactions
as a function of distance for the different systems in (a): system (0,0) (green
diamonds), system (�0.5,�0.5) (red squares) and system (�1,�1) (black
circles).
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in Fig. 7, for system 3, we observe a very weak attractive
interaction instead.

When compared with single-domain proteins, the range of
the emerging CC interaction is clearly shorter in all cases,
getting close to zero at distances of about ten times the radius
of the protein; we interpret this as being a partial screening
effect analogous to electrostatic screening in dielectric systems
and owing to proteins comprising domains with opposing
affinities. Panel (c) in Fig. 7 tabulates the power law fit of the
CC free energy with distance, FCC(d/r)/kBT = z(d/r)�n. Here, the
exponents n are clearly larger for the values for single-domain
inclusions in Fig. 5.

In order to further investigate the effect of the domains we
next turn to proteins with four distinct domains. In this case
only two possible orientations are of interest, see Fig. 8(a). We
present our results in Fig. 8(b). Again, in spite of having no net
preference for either of the species, proteins show either
attractive or repulsive interactions. A similar analysis to that
done with two-domain proteins show that system 6 confronts
domains with opposite preferences for the lipid species, falling,
therefore, in the repulsive regime. On the other hand system 7
has domains with the same preference facing each other,
leading to attractive interactions. It is worth pointing out that,
in these cases, both the range and the magnitude of the
interactions are smaller than those observed for single- or
two-domain inclusions. Fig. 8(c) tabulates the power law fit
for the CC free energy with distance between two four-domain
inclusions. Eventually in the limit of the domain size going to

zero, we expect to recover the uniform case of st = 0. Comparing
the results in Fig. 5, 7 and 8, we also observe that the magnitude
of the repulsive interactions falls faster than attraction interactions
with increasing number of domains.

The observed behaviours for multiple-domain inclusions are
in good qualitative agreement with the findings of Toldin et al.
for CC forces between chemically striped surfaces immersed in
critical liquid mixtures.44 In their study, they confront a surface
with a strong preference for one component of the binary liquid
mixtures with a striped surface in which the preference of the
stripes for the liquid components is alternating. They observe a
crossover between a regime with noticeable CC interaction and
one with no noticeable CC interaction (similar to our (0,0) and
(�1,0) cases for single-domain proteins) as the strip width is
decreased from large values to zero.

Finally, we note that the range and strength of the CC
interactions depend only on the lattice points which are at
the boundary of the inclusions, and not the inner ones. This is as
expected because we only have nearest neighbour interactions,
and thus the inner sites do not interact directly with the
surrounding cells representing the lipid mixtures.

4 Conclusions and future work

In this work, we have numerically computed the CC free energy
between inclusions in two-dimensional critical binary mixtures.
To this end, we have introduced a versatile thermodynamic
integration scheme whose calculations for single-domain inclusions

Fig. 7 CC interactions for two-domain inclusions. (a) 2D maps of the
average spin field j for different relative orientations of the affinity dipoles.
From top to bottom: system 1, system 2, system 3, system 4 and system 5.
The black domains are set with st = �1, while the white domains have
st = 1. (b) Effective interactions as a function of distance for the different
systems in (a): system 1 (black circles), system 2 (orange diamonds), system
3 (green stars), system 4 (red squares), and system 5 (blue triangles). (c) Fitting
parameters to FCC(d/r)/kBT = z(d/r)�n for the systems shown in (b).

Fig. 8 CC interactions between four-domain inclusions. (a) 2D maps of
the average spin value j for two different orientations of the affinity
quadrupoles. From top to bottom: system 6, system 7. The black domains
are set with st = �1, while the white domains have st = 1. (b) Effective
interactions as a function of distance for the different systems in (a):
system 6 (black circles), system 7 (red squares). (c) Fitting parameters to
FCC(d/r)/kBT = z(d/r)�n for the systems shown in (b).
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compare very favourably with the existing literature on the subject.24

This has enabled us to identify repulsive and attractive CC regimes
respectively for unlike inclusions—with opposing affinities for the
surrounding species comprising the binary mixture—or like
inclusions—with the same affinity for the surrounding species.
We noted that the CC interactions for single-domain inclusions
are very long range and their magnitude is increasing with the
strength of the affinity of the domain with either of the
surrounding species.

A key advantage of our thermodynamic integration approach
is that we do not need to supply a reference free energy at large
distances, which can be notoriously difficult to compute analytically
for complex scenarios. In turn this allows us to study inclusions
comprising multiple domains such that, overall, they do not
have any net preference for either of the surrounding species in
the mixture.

The presence of domains with opposing affinities does not
cancel the CC interactions altogether but instead leads to a
decrease in the range and magnitude of the effective interactions in
a manner reminiscent of electrostatic multipoles. For such multiple-
domain inclusions, both repulsive and attractive CC interactions
were observed depending on their relative orientations.

If biologically relevant lipid membranes are close to criti-
cality as suggested by some studies,34,35 then these findings
may prove useful to better understand lateral spatial organisation
within cellular membranes. As a matter of fact, attractive CC
interactions between the single-domain inclusions of the
same kind provide both sufficient magnitude and range for
protein clustering to occur in equilibrium conditions.42,47

Utilising multiple-domain inclusions as more realistic models
of membrane proteins lead us to the conclusion that the
emerging CC interactions between them also suffice for them
to aggregate, even where there is no overall net affinity to the
surrounding species in the mixture.

There are several avenues for future work. Firstly, it would be
interesting to study the clustering, and more generally the phase
diagram, of the multiple-domain inclusions. For instance, in
Fig. 9(a) we show the relative stability of the different orientations
for two-domain proteins. Since some orientations are energetically
favourable, we would expect proteins to rotate in order to minimise
the overall free energy of the system. Our preliminary results
suggest that, as these inclusions start to cluster, they will form
an alternating patterning in affinities with respect to the

surrounding species (Fig. 9(b)). In this context, it would be exciting
to explore how CC interactions could be tailored to allow compo-
nents in biological membranes achieve specificity as suggested in
ref. 58. Such strategies could also be exploited for the self-assembly
of anisotropic (e.g. Janus) colloidal particles.46,59 Secondly, Casimir
interaction due to shape fluctuations of the membrane has also
been proposed as a non-specific mechanism for membrane
proteins to interact.28–32 Here it will be instructive to compare
the strengths of the two possible Casimir interactions, and map
regions in parameter space (temperature, composition and
bending rigidity) where one mechanism dominates over the
other, and where they interfere either constructively or destructively.
For instance, Dean et al.60 suggests that taking into account
membrane shape fluctuations can result in a shift in the critical
temperature at which phase separation occurs for the lipid mixtures.
Stress tensor-based methods following ref. 61 could help inform on
these competing effects.
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