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Properties of kinetic transition networks for
atomic clusters and glassy solids

John W. R. Morgan, a Dhagash Mehtab and David J. Wales *c

A database of minima and transition states corresponds to a network where the minima represent nodes

and the transition states correspond to edges between the pairs of minima they connect via steepest-

descent paths. Here we construct networks for small clusters bound by the Morse potential for a

selection of physically relevant parameters, in two and three dimensions. The properties of these

unweighted and undirected networks are analysed to examine two features: whether they are small-

world, where the shortest path between nodes involves only a small number or edges; and whether

they are scale-free, having a degree distribution that follows a power law. Small-world character is

present, but statistical tests show that a power law is not a good fit, so the networks are not scale-free.

These results for clusters are compared with the corresponding properties for the molecular and atomic

structural glass formers ortho-terphenyl and binary Lennard-Jones. These glassy systems do not show

small-world properties, suggesting that such behaviour is linked to the structure-seeking landscapes of

the Morse clusters.

1 Introduction

The potential energy surface (PES)1 of an atomic cluster corre-
sponds to the energy as a function of the coordinates specifying
the configuration. The most interesting points on the surface
are usually the local minima and transition states, which are
stationary points where the gradient of the potential is zero. For
local minima, the potential energy rises for any infinitesimal
displacement of internal coordinates, while for transition states
there is a unique negative Hessian (second derivative matrix)
eigenvalue.2 Treating the PES as a network can provide insight
into the overall structure of the energy landscape. Here the
network in question is formed by considering minima as the
nodes and transition states as edges between the minima they
connect via steepest-descent paths.3,4 Two key questions are
then whether the network is small-world and scale-free.

The degree of a node is the number of edges connected to it.
The degree distribution is then defined as the number of nodes
with given degrees.5 A path is a sequence of nodes connected by
edges, with the length of the path being the number of edges it
contains. The shortest path length gives the minimum number
of edges between a pair of nodes, and the average shortest path

length is the shortest path length averaged over all pairs of
nodes. The clustering coefficient is the ratio of the number
of connections between neighbours of a node to the number of
such connections that could exist.6

Two useful references are provided by models based on a
lattice graph and a random graph. Random graphs have a small
clustering coefficient and a slowly growing average shortest
path length.5,7 In contrast, lattice graphs, which are composed
of a regular array of nodes with edges only between nearest-
neighbours in space, have a comparatively large average shortest
path length and a larger clustering coefficient.6 Small-world
networks were introduced by Watts and Strogatz6 and defined
as networks that show a high degree of local clustering
behaviour, similar to a lattice graph, but also a short path length,
even between distant nodes, as exhibited by random graphs.
The name comes from experiments performed by Milgram with
letter passing, which demonstrated that most citizens of the
USA are separated from each other by a surprisingly small
number of social contacts.8 This result is now known in terms
of ‘‘six degrees of separation’’ from the estimated average path
length.9 Watts and Strogatz showed that networks from a wide
variety of areas show small-world behaviour, including the
neural network of C. elegans, the power grid of the Western
USA, and the collaborations of film actors (linked to the concept
of the Bacon number).10

A scale-free network has a degree distribution with a power
law tail, as defined by Barabási and Albert.11,12 This distribu-
tion implies there are a small number of nodes with a very high
degree, called hubs, and more nodes with a smaller degree,
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acting as local hubs, down to nodes with only a few connec-
tions, in a hierarchical fashion. Power laws were fitted for a
variety of available networks, including the World Wide Web
and the film actor collaboration graph, and a preferential
attachment model was suggested to explain how the behaviour
arises. Following this work, power laws were fitted to many
other networks, such as the interactions between solar magnetic
loops leading to a solar flare,13 and aftershocks of earthquakes.14

However, few of these studies used robust statistical methods to
determine whether or not a power law was a good fit to the data,
and many of the results have been called into question by
Clauset et al.15

Doye and Massen16,17 studied Lennard-Jones (LJ) clusters
and concluded that the networks were both small-world and
scale-free. Small-world behaviour is believed to have implica-
tions for self-assembly, as it suggests that the global minimum
can be reached from anywhere on the PES by a relatively short
transition pathway. One would therefore expect that systems
with a funnel-like PES, characteristic of structure-seekers, may
display small-world behaviour.18 Scale-free behaviour was more
surprising, as there is no obvious analogy to the addition of
new nodes in the preferential attachment model, the most
straightforward route to a power law distribution. However,
noticing a correlation between minima with a high degree and
a low potential energy, it was suggested that due to the larger
basins of attraction for low energy minima, any other minimum
was more likely to be connected to a low energy minimum than
a high energy one, thus establishing an analogy to preferential
attachment. This possibility was further investigated using
Apollonian packings,19 concluding that the contacts between
discs in the 2D Apollonian packing form a scale-free network
with a spatial distribution that may resemble the catchment
basins of a PES.

Other energy landscapes have been studied with a view to
analysing the same properties. Protein folding networks have
been considered by Rao and Caflisch.20 They used molecular
dynamics to generate snapshots of the structure and then
derived a conformation based on the secondary structure each
residue belonged to. These snapshots do not precisely corre-
spond to minima on the PES, so the formation of the network is
not equivalent to the LJ results considered above, but the idea is
similar. A power law was fitted to the degree distribution with
the conclusion was that the network was scale-free, drawing
attention to the hubs present in the network.

Bowman and Pande studied a Markov state model for
another protein folding landscape.21 They noted that native
states were hubs and suggested that this was characteristic of a
scale-free network, but without consideration of the degree
distribution. Similarly, Chakraborty et al. considered an RNA
folding network, noting that it may be scale-free due to the presence
of hubs, but without providing the degree distribution.22 It is,
however, possible to construct networks with hubs that are
not scale-free, the simplest example being the star network,5 in
which there is one central node to which all others are attached
and there no other edges. Therefore, although scale-free net-
works do contain hubs, the presence of hubs is not in itself

enough evidence to conclude that a network is scale-free.
Recently, Mehta et al.23 constructed stationary point databases
for the Thomson problem24 up to 150 particles. They demon-
strated that the networks show small-world behaviour, and that
the presence of hubs suggested the possibility of the networks
being scale-free, but acknowledged that further statistical test-
ing was required. Recently, an analysis of networks of minima
for machine learning problems has also been initiated.25

Potential energy surfaces for glassy systems have a large
number of competing low-lying amorphous minima with simi-
lar energies, separated by high barriers.1 Here we consider two
examples: bulk ortho-terphenyl (OTP), which is often repre-
sented by a course-grained model consisting of a LJ site at
the centre of each benzene ring;26 and bulk binary Lennard-
Jones (BLJ), in which there are two different types of particles,
interacting via LJ potentials with different parameters.27,28

If the small-world behaviour observed for atomic clusters is
the result of a funnelled landscape, then we anticipate that
glassy systems will be different.

The Morse potential29 is a widely used pairwise representa-
tion for modelling atomic clusters.30–37 The functional form is

VM(R) = eer(1�R/Re)(er(1�R/Re) � 2), (1)

where the potential between two particles, in terms of the
distance between them, R, is parameterised by the pair equili-
brium distance, Re, by e, the pair well depth at R = Re, and by the
range parameter r. Taking e = 1 and Re = 1 sets the energy and
length units. The range relative to the particle diameter can be
adjusted to represent different systems: r = 3 is a long range,
appropriate for sodium atoms,38 while r = 14 is a short range,
suitable for C60;34 r = 30 is a very short range, which has been
used for modelling colloids.39–43

The Morse potential is pairwise additive so the total energy
of the system is a sum over the interaction between all pairs of
particles. This approximation neglects many-body interactions,
which can be important in some systems, especially when the
particle interaction range is large.44 The pair approximation
has been successfully used to predict experimental properties,
in colloids for example, when the range is small.39

In the present work we explore the PES for small atomic
clusters bound by the Morse potential with a range of values for
r, namely 3, 6, 10, 14 and 30. Our databases are almost complete,
meaning that they were expanded until no new minima were
found, but the search methods used do not rigorously guarantee
that all the minima have been located. Disconnectivity graphs
are used to visualise the potential energy landscape.45,46 Pre-
viously, global minima and some low-lying minima have been
described,31–37,42,47 but attempts to generate relatively complete
databases have been made only for a few specific cases.30,43

2 Methods
2.1 Generating databases

Clusters in two and three dimensions bound by the Morse
potential were analysed. For each number of particles N and
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range r a database of potential energy minima and the transition
states connecting them was generated. First, the global minimum
and other low-lying minima were located by basin-hopping global
optimisation1,48–52 as implemented in GMIN.53 104 basin-hopping
steps were run from each of three random starting configurations.
The twenty lowest minima from each run, or all minima if there
were fewer than twenty, were then connected via transition states
located using the doubly-nudged54–56 elastic band57–61 and
eigenvector-following62 algorithms in OPTIM.63 These minima
and transition states were imported into PATHSAMPLE,64 at
which point duplicate minima and transition states were
removed. Additional single-ended transition state searches62,65,66

and searches using the UNTRAP67 procedure were performed to
expand the database. After no more transition states were located,
a further 50 single-ended searches were performed for each
minimum. At this point we can be reasonably confident that
practically all the minima and transition states have been found.

For each database, a network was constructed by considering
the minima as nodes with edges between any two minima
directly connected by a transition state. The barrier height
for the transition state was ignored and the path through the
transition state can be followed in either direction, so the net-
work was treated as undirected and unweighted. The network
was analysed using the Python NetworkX package.68 A further
check on the completeness of the database was to ensure that all
minima were connected to each other by one or more transition
states, i.e. that the network was connected. Finally, transition
states connecting the same pair of minima as an earlier pathway
were removed, to leave at most one transition state connecting
any pair. Transition states that connected permutation-inversion
isomers of the same minimum, which correspond to degenerate
rearrangements,69 were also removed.

We chose to study clusters with r = 3, 6, 10, 14 and 30, in
both two and three dimensions. These range parameters corre-
spond to previous values used for the Morse potential and give
a good spread of physically relevant pair potentials. The number
of particles was chosen to produce databases with between several
hundred and a few thousand minima. Selecting these sizes meant
we could be confident of generating essentially complete data-
bases in a reasonable time, improving the reliability of statistical
tests. The symbol MxD

N is used to refer to a Morse cluster in x
dimensions with N particles.

2.2 Degree distribution

A node s has degree ks, defined as the number of edges connected
to s. The degree distribution pk is the number of nodes with
degree k, or after normalisation the fraction of nodes with degree
k, or the probability of a selected node having degree k.5

We are interested in whether the degree distribution follows
a power law,11 such that

pk = Ck�a,

ln pk = ln C � a ln k, (2)

where C is a constant that is set by the normalisation, and a is
to be determined by the best fit to the data. Clauset et al.15 have

suggested a statistical test based on the method of maximum
likelihood for determining the best fit. The maximum like-
lihood estimator (MLE) is:70

a ¼ 1þ nk
X

ki�kmin

ln
ki

kmin �
1

2

2
64

3
75
�1

; (3)

where nk here is the number of nodes with degree at least kmin

and the sum runs over only those nodes. This formula gives
an estimate of the best value of a, but gives no indication of the
quality of the fit.

Typically, a power law is only obeyed in the tail of the
distribution, so a cutoff kmin above which the power law applies
needs to be determined. Clauset et al. also have a method for
determining the best value of kmin.71 A fit is calculated for all
possible values of kmin and the value which gives the smallest
Kolmogorov–Smirnov (KS) statistic72 is chosen.

A goodness-of-fit test is used to check whether the proposed
power law is a plausible fit for the measured data.15 Data sets
are generated from the power law and compared to the measured
data. The p value is the fraction of generated data sets that are a
worse fit than the measured data. The fit is rejected if the p value
is less than 0.05. If p 4 0.05, it does not necessarily indicate that
the power law is a good fit, merely that we do not have sufficient
evidence to reject it.

Other distributions must be considered that could be
a better fit to the data, such as the log-normal distribution.
If we cannot say that a power law is a better fit than the log-
normal, we should not conclude that the data follows a power
law.15 A likelihood ratio test is used to compare the fit of two
distributions, indicating which distribution is more likely, and
a p value is used to judge whether the result is significant.73

A small p value (o0.05) means there is sufficient evidence to
accept the result of the tests.

2.3 Clustering

Clustering in a network is the degree to which the neighbours
of a node are also neighbours of each other. A local clustering
coefficient can be defined for an individual node s as:6

cs ¼
number of pairs of neighbours of s that are connected

number of pairs of neighbours of s
: (4)

To evaluate the numerator, for each of the nodes present in the
adjacency list of s, we count how many of the adjacency lists of
the other neighbours contain the same node. The denominator
is easy to evaluate, as 1

2ks(ks � 1). The local clustering coefficient
is an indicator of how important a node is in allowing flow
through the network in its local neighbourhood.

The local clustering coefficient can be extended to a global
clustering coefficient for the network in two ways. The average
clustering coefficient is the mean of the local clustering
coefficients:6

Cav ¼
1

n

X
s

cs: (5)
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The transitivity74 depends on the number of triads and triangles
in the network. A triad exists if nodes r and s are neighbours and
nodes s and t are neighbours. A triad is a triangle if r and t are
also neighbours. The transitivity is given by:

CT ¼ 3� number of triangles

number of triads
; (6)

where the factor of three accounts for the triple counting of
triads that are also triangles. The transitivity can be calculated
by extending the calculation of the local clustering coefficient to
look at the neighbours of every node. The numerator is the
number of pairs of neighbours of all nodes that are also

connected. The denominator is
P
s

1

2
ks ks � 1ð Þ. The algorithmic

complexity depends on the degree distribution, but in the worst
case is O(n2).

These two measures differ in the weighting they give to
nodes of small degree. Such nodes have a small number of
possible neighbour pairs, so they have a small denominator in
their local clustering coefficient. They therefore dominate the
sum in eqn (5). In networks with a large number of small
degree nodes, the average clustering coefficient does not
depend much on the larger degree nodes. In PES networks,
the large degree nodes tend to be those with a low potential
energy, which are considered more important for the properties
of the network. We therefore prefer the transitivity to the
average clustering coefficient.

To determine whether or not the transitivity should be
considered large or small, it is useful to compare it to the value
for an Erdös-Rényi random network75 with the same number of
nodes and edges. In this model, every edge has an equal
probability of being present, independent of the existence of
any other edge. Therefore the probability of a given triad being
a triangle, which is the probability of the final edge being
present, is the probability of any edge existing. The maximum
number of edges is the number of possible pairs of nodes,
n(n � 1)/2, so given the number of edges (m) and nodes (n), the
transitivity is:

CRandom ¼
2m

nðn� 1Þ: (7)

2.4 Average shortest path length

A path in a network is a sequence of steps between nodes along
edges. For any pair of nodes the shortest path (or geodesic path)
is defined as the one connecting the two nodes containing the
least number of edges.5 The shortest path need not be unique,
but here we are concerned only with its length, which is the
number of edges it contains. If no path exists between a pair of
nodes, then the network is unconnected. The complete network
for a PES must be connected, as it is impossible to have minima
on the surface that cannot be reached from any other minima
through transition states for models with continuous degrees
of freedom. The length of the shortest path between one node s
and all others can be calculated using a breadth-first search.76

2.5 Assortativity

The assortativity77 of a network is a measure of the tendency of
nodes to have connections with other similar nodes. Specifi-
cally, the degree assortativity refers to whether nodes connect to
other nodes of a similar degree. The assortativity coefficient
takes values between 1 and �1, where 1 indicates connections
between nodes of similar degree, 0 indicates no preference and
�1 means that high degree nodes have a preference to connect
to low degree nodes. The definition is,

rD ¼

P
jk

jk ejk � qjqk
� �

sq2
; (8)

where j and k are the remaining degrees of two nodes (the
degree of the node excluding the edge connecting the pair), qj is
the remaining degree distribution of j, ejk is the joint prob-
ability distribution of qj and qk, and sq is the standard deviation
of q. The sum runs over the possible values of j and k. This is
equivalent to the Pearson correlation coefficient78 between
degrees of nodes at the ends of each edge.

3 Results

Table 1 shows the number of minima and transition states
found for the largest network considered at each range in two
and three dimensions, after the removal of transition states
corresponding to alternative connections of the same minima
and degenerate rearrangements. Fig. 1 illustrates the number
of minima and transition states for all the clusters considered.

Some general patterns are clear: 3D clusters have more
minima for the same range and number of particles than 2D
clusters, except at very long-range with r = 3. The well-known
approximate exponential growth of the number of minima and
transition states with system size is present.4,79 A shorter-range
potential produces an energy landscape that is locally rough,
having more minima, but globally smooth with a less overall
funnelled structure.42 To avoid the databases growing too large
to be confident of finding the complete network, it was necessary
to restrict the number of particles in the cluster as the range
decreased. The difference in the database size is more apparent
in three dimensions than two dimensions. This effect is evident
in the disconnectivity graphs in Fig. 2, where the funnel for a r = 6
landscape is apparent, suggesting structure-seeking behaviour, but

Table 1 The sizes of the largest networks considered for Morse clusters
of N atoms in 2 and 3 dimensions

Dimensions r N Minima Transition states

2 3 27 1135 17 006
2 6 14 805 13 098
2 10 14 840 19 965
2 14 14 843 20 552
2 30 13 358 6966
3 3 30 663 6678
3 6 13 1478 25 173
3 10 12 2258 41 441
3 14 12 2980 60 615
3 30 11 1127 13 752
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there is no such structure for r = 30, where the landscape is more
frustrated in the region of the global minimum.

3.1 Small-world behaviour

To test whether or not the networks show small-world behaviour, the
average shortest path length and the transitivity were considered.

The average shortest path lengths for all the clusters are given in
Fig. 3, and they show the expected logarithmic dependence on
the number of nodes. The path lengths become slightly smaller
as the range decreases. The number of transition states increases
more rapidly with decreasing range than the number of minima,
so a small decrease in the path length with decreasing range is
not surprising.

The transitivity for a small-world network is expected to be
larger than for the equivalent random graph with the same
number of minima and edges.6 The transitivity scaled by the
value for a random graph with the same number of nodes
and edges is plotted for all the clusters in Fig. 4. The expected
small-world behaviour is again apparent, with the transitivity
larger than for a random graph in all the clusters, except for
three-dimensional systems with very few minima, where finite
size effects dominate. There is no significant difference
between the values for different ranges, except for r = 3, which
appears to have a slightly higher transitivity. The long range of
the potential produces a smoother landscape, which makes it
more likely that minima in distant parts of configuration space
are directly connected. Short-range clusters do not display the
structure-seeking properties of long-range clusters, since their
landscapes are not funnelled, and there are relatively large barriers
separating some minima with similar energies. Since the present

Fig. 1 The number or minima (black) and transition states (red) for all the
two-dimensional (top) and three-dimensional (bottom) clusters considered.

Fig. 2 Disconnectivity graphs for M3D
13 with r = 6 (left) and M3D

11 with r = 30
(right). The difference in the global structure of the landscape is clear.

Fig. 3 Plots of the average shortest path length against the number of
minima for all the 2D clusters (top) and all the 3D clusters (bottom). Note
the logarithmic scale on the horizontal axis.
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analysis accounts only for the existence of connections, regardless
of barrier heights, we find that the small-world properties of the
network are similar for short- and long-range clusters.

Insight into the structure of the landscape and network can
be obtained by inspecting a plot of the degree of the nodes
against their potential energy, shown in Fig. 5 for M3D

13 with
r = 6 and the M3D

11 with r = 30. The funnelled landscape for the
r = 6 cluster has one node with a significantly lower potential
energy, as seen in the disconnectivity graph (Fig. 2), which is
also the node with the highest degree. Over a third of the
minima in the network are directly connected to the global
minimum. At higher energies, although there are many minima
with different degrees at similar energies, the maximum degree
for a given energy decreases as the energy increases. These
observations can be related to funnels on the landscape: the
global minimum has a large basin of attraction, which occupies
a significant volume in configuration space, giving a large
boundary surface containing many transition states. High
energy minima have small basins of attraction with a small
boundary surface and fewer transition states. In comparison,
the global minimum for M3D

11 with r = 30 is not the minimum with
the highest degree, and the most highly connected minimum
has transition states linking it to less than a quarter of the

other minima. The general trend for higher energy minima to
have a lower degree is still present. The prominent vertical
stripes are a result of the short-ranged potential. Since the
potential energy is primarily determined by the number of
nearest-neighbour contacts, an integer, it is approximately
discretised.80–84

3.2 Scale-free behaviour

To test whether a network is scale-free, we must determine
whether the degree distribution (or cumulative degree distribu-
tion) follows a power law, at least in the high degree range. The
fitted a and kmin parameters [see eqn (2)] and p values from the
goodness-of-fit tests for the largest cluster for each dimension
and range parameter are shown in Table 2. We also show ntail,
the number of minima remaining after those with degree less
than kmin have been removed. If p o 0.05, there is good
evidence to reject the hypothesis that a power law is a good
fit to the data; otherwise the power law may be a good fit.
A large value of kmin and a small value of ntail indicates the fit is
only applicable for a small range of the data and is unreliable.

The cumulative degree distribution is plotted in Fig. 6 for
M3D

13 clusters with r = 6 (top) and M3D
11 with r = 30 (bottom),

along with the best power law fit calculated by the MLE
method. The low degree end does not follow a power law,

Fig. 4 Plots of the ratio of the transitivity of each network to the
transitivity of a random graph with the same number of nodes and edges,
against the number of minima for all the 2D clusters (top) and all the 3D
clusters (bottom).

Fig. 5 Degree of each minimum as a function of potential energy for
M3D

13 with r = 6 (top) and M3D
11 with r = 30 (bottom).
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because the number of minima for a cluster is finite. Above
kmin, the distribution appears to be approximately linear. How-
ever, the goodness-of-fit test for the r = 6 cluster gives p o 0.05,
indicating the power law is not a good fit for the data.

In fact, according to the suggested criteria, only two clusters
have a p value compatible of a power law fit: M3D

30 with r = 3 and
M3D

11 with r = 30. Both of these clusters have a large value of kmin

compared to the number of minima in the cluster, giving a
small value of ntail. Therefore the fit should be considered
unreliable, especially as it is clearly the case that these clusters
do not generally display scale-free behaviour.

3.3 Lennard-Jones clusters

Doye and Massen17 studied Lennard-Jones (LJ) clusters and
concluded that the degree distribution follows a power law and
that the networks show scale-free behaviour. However, they did
not give a statistical analysis, as the appropriate tools had not
been identified at that time, simply stating that ‘as the size of
the clusters increase a clear power law tail develops.’ Using
their data for the cluster with 14 particles,85 which includes
4196 minima and 61 085 transition states, we have now applied
the goodness-of-fit tests, as for the Morse clusters. These data
are shown in Table 2 and the cumulative degree distribution
and fit are shown in Fig. 7. Since p 4 0.05, this distribution is a
candidate for a power law fit. However, we tested the power law
fit against a log-normal fit. The log-likelihood ratio R = 0.80, but
p = 0.41, so the test is inconclusive. Clauset et al. comment that
deciding between a power law fit and a log-normal fit can
be problematic.15 We conclude that the distribution approxi-
mately follows a power law.

3.4 Bulk ortho-terphenyl

A database of minima and transition states for a bulk repre-
sentation of the molecular glass-former ortho-terphenyl (OTP)
was provided by Niblett and coworkers.26 The details of the
model are described in their paper. The database was relatively
large, containing 313 651 minima and 334 272 transition states.
After removing alternative transition states linking the same pairs
of minima and self-connections (degenerate rearrangements),
332 774 transition states remained. In contrast to the Morse and
Lennard-Jones clusters considered above, the database is certainly

Table 2 Fitted values of a, kmin and p values from the goodness-of-fit
tests for the largest Morse cluster considered at each range and dimen-
sion, as well as LJ14. If p o 0.05, the fit should be considered poor

Dimensions r N a kmin ntail p

2 3 27 2.32 � 0.32 23 � 12 255 0.00
2 6 14 3.50 � 0.16 26 � 4 302 0.00
2 10 14 2.55 � 0.14 18 � 7 765 0.00
2 14 14 2.03 � 0.21 10 � 5 840 0.00
2 30 13 2.90 � 0.15 17 � 4 332 0.00
3 3 30 2.79 � 0.17 10 � 2 219 0.18
3 6 13 2.66 � 0.16 19 � 8 698 0.02
3 10 12 2.56 � 0.09 28 � 3 498 0.03
3 14 12 2.37 � 0.12 65 � 11 174 0.02
3 30 11 3.30 � 0.25 48 � 8 47 0.16

3 LJ 14 2.82 � 0.10 37 � 8 513 0.07

Fig. 6 Plots of the normalised cumulative degree distribution for M3D
13 with

r = 6 (top) and M3D
11 with r = 30 (bottom). The calculated best fit is

indicated by the black dashed line.

Fig. 7 Plot of the normalised cumulative degree distribution for LJ14.
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very far from complete, since finding all the minima and transi-
tion states for such a glassy landscape is unfeasible.

Testing whether the incomplete OTP database is likely to be
representative of the full network was assessed by taking
increasingly large subsets of the database and looking at the
convergence of the network properties. Here the appropriate
network properties are the ones that are global, but do not
directly depend on the size of the network. The average shortest
path length is therefore unsuitable, as it is expected to increase
with the network size. Three properties were chosen: the
transitivity, the average clustering coefficient (the mean of the
local clustering coefficients) and the assortativity.

All three properties are only defined for a connected net-
work, but an arbitrary subset of the database will not generally
be connected because of the way it was constructed. Hence
transition states were added to the network one by one,
in the order located by the original search, and the largest
connected component selected. Whenever the largest con-
nected component increased in size, the network properties
were calculated. Graphs of the three properties against the
number of transition states in the connected component
are shown in Fig. 8. There are fluctuations in the values,
but all three seem to be approaching a limit. However, caution
is needed in interpreting these results. Sampling biases in
generating the database could potentially lead to limiting
values of these properties without truly being a representative
sample of the network.

To test for small-world properties, the values of the average
shortest path length and transitivity can be compared to those
of a random graph. These ratios are plotted in Fig. 9 for
increasingly large connected subgraphs of the network. The
transitivity and average shortest path length increase more
quickly than the values for the equivalent random graph
suggesting that the network (or at least this subset of the full
PES) exhibits lattice graph properties, rather than small-world
behaviour. The network is mildly assortative, although the
value is close to zero, indicating a slight preference for minima
to connect to other minima with similar degree. Assortative
networks tend to have cores of highly connected nodes with a
periphery of low degree nodes.5 This pattern could arise in a
glassy landscape, with well connected groups of structurally
closely related minima, and higher energy minima forming the
periphery between the numerous groups.

Scale-free networks are small-world, so this network is
also not scale-free. We found p = 0.0 for the power law
goodness-of-fit test.

3.5 Bulk binary Lennard-Jones

A database for a bulk BLJ system was provided by de Souza and
Wales.27,28 The system contained 60 atoms, 48 of type A and 12
of type B, with interaction parameters sAA = 1.0, sAB = 0.8,
sBB = 0.88, eAA = 1.0, eAB = 1.5 and eBB = 0.5. These parameters are
known to give rise to a glassy landscape.86,87 Periodic boundary
conditions were used with a cubic box of length 3.587. The
database was connected and contained 11 538 minima and
13 088 transition states, dropping to 12 957 transition states after
removing alternative transition states linking the same pairs of
minima and degenerate rearrangements.

The database was expanded until it contained 703 827
minima and 360 836 transition states. However, the largest
connected component consisted of only 12 905 minima and
14 363 transition states.

Our analysis followed the steps described above for OTP.
The convergence of the average clustering coefficient, transitivity
and assortativity are shown in Fig. 10, and the ratios of the
average shortest path length and transitivity to those for the

Fig. 8 Top: The variation of the average clustering coefficient (black) and
transitivity (red) as the largest connected component of the OTP database
grows. Bottom: The corresponding plot for the assortativity.

Fig. 9 The ratio of average shortest path length for the largest connected
component of the OTP database to that of the equivalent random graph
(black) and the corresponding ratio for the transitivity (red).
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equivalent random graph are shown in Fig. 11. The results are
qualitatively similar to OTP, although the convergence of the
average clustering coefficient and transitivity is less clear due to
the smaller sample size. The value of the assortativity is negative,
indicating slight disassortativity compared to the slight assorta-
tivity of the OTP system. Park and Newman suggest that disas-
sortativity can arise due to the exclusion of alternative and self-
connections,88 so this result is unsurprising, although it is
unclear why the opposite behaviour to OTP is observed. The
growing ratios of average shortest path length and transitivity to

the equivalent random graph suggest the same conclusion: that
the system is showing lattice graph behaviour rather than small-
world behaviour.

4 Conclusions

Networks of minima and transition states for Morse clusters
with different ranges in the interatomic potential were analysed.
The networks exhibited small-world properties, but statistical
testing using recent methods demonstrated that they are prob-
ably not scale-free. The LJ14 cluster was re-evaluated using these
new statistical methods and the tests were inconclusive: we
cannot firmly conclude the network is scale-free, but it remains
a possibility.

The Morse networks were compared with glassy systems,
which have very different energy landscapes characterised by
numerous low energy amorphous structures separated by rela-
tively high barriers. The two glassy networks did not show
small-world behaviour, which suggests that the small-world
properties of the LJ and Morse networks are a feature of their
single-funnel potential energy landscapes. However, further
investigation is required. Larger clusters with more minima
and transition states will make statistical tests for scale-free
behaviour more reliable.

Using the convergence of network properties to test
whether a sample is representative opens the possibility of
studying systems where it is impractical to find the complete
network. While it remains computationally intractable to find
the complete network for glassy systems, as the number of
minima and transition states is far too large, we believe the
approach here will allow further insight for such systems. It is
certainly possible to generate and analyse larger samples,
and if databases generated by different schemes converge on
the same properties we can have greater confidence about
whether the samples are truly representative. Analysing the
network properties of a representative sample will provide
deeper understanding of the behaviour of bulk glasses. The
LJ38 cluster, which has a double-funnel landscape,89 could
produce interesting results if the two funnels are considered
separately and together. Studying a fast-folding protein network
would also be insightful. On the basis of the results here, we
anticipate that the folding network is not really scale-free, but
due to its known structure-seeking nature, small-world character
is likely.
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