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Efficient simulation of ultrafast magnetic
resonance experiments

Ludmilla Guduff, a Ahmed J. Allami, b Carine van Heijenoort, a

Jean-Nicolas Dumez *a and Ilya Kuprov *b

Magnetic resonance spectroscopy and imaging experiments in which spatial dynamics (diffusion and flow)

closely coexists with chemical and quantum dynamics (spin–spin couplings, exchange, cross-relaxation, etc.)

have historically been very hard to simulate – Bloch–Torrey equations do not support complicated spin

Hamiltonians, and the Liouville–von Neumann formalism does not support explicit spatial dynamics. In this

paper, we formulate and implement a more advanced simulation framework based on the Fokker–Planck

equation. The proposed methods can simulate, without significant approximations, any spatio-temporal

magnetic resonance experiment, even in situations when spatial motion co-exists intimately with quantum

spin dynamics, relaxation and chemical kinetics.

1. Introduction

Spatial coordinates are more convenient in magnetic resonance
than temporal ones – unlike the indelible past, any voxel in the
R3 can be accessed repeatedly. The use of spatial coordinates as
replacements for temporal ones was the key idea behind the
‘‘ultrafast’’ NMR methods proposed in 2002 by the Frydman
group.1 Those methods enabled the study of chemical2 and
biological3,4 processes on a time scale that was not previously
accessible to multi-dimensional NMR.5 Applied to MRI, the same
approach enabled fast localised acquisition of 2D spectra.6

Another useful application of the same idea is the family
of ‘‘pure-shift’’ NMR experiments,7 fine-tuned at Manchester
University around 20108 – they finally achieved the dream of
eliminating homonuclear J-couplings.

Spatial dimensions do have their problems though – the
biggest one is the presence of uncontrolled dynamics (e.g.
diffusion and convection) that is coupled to quantum mechanical
evolution.9,10 Pulse sequence design must therefore rely on detailed
modelling of simultaneous spatial, chemical and quantum
dynamics, which would be wonderful if only the required
theory and software existed: the usual Liouville–von Neumann
equation is not good enough because there is no easy way to
combine diffusion and hydrodynamics11 with quantum mechanical
spin evolution. The primary nuisance is the J-coupling12,13 – it

dephases transverse magnetisation and generates undesirable
modulations in echo trains.13,14

Very complicated systems of precisely this kind are emerging
in all areas of magnetic resonance: hyperpolarised pyruvate
imaging15 requires simultaneous modelling of quantum spin
dynamics, diffusion, hydrodynamics, chemical kinetics and spin
relaxation theory; the same applies to hyperpolarised singlet
state imaging.16 Pure-shift NMR,8 ultrafast NMR,17 metabolite-
selective imaging,18 PARASHIFT contrast agents19 and other
similar recent developments are all united by their theory and
simulation infrastructure requirements that are a level above
anything that is currently available.

The methods currently used in MRI (Bloch–Torrey
equations,20,21 distributed Bloch equations,22,23 k-space Bloch
equations,24 etc.) are very well developed,25 but insufficient for
ultrafast NMR or singlet state MRI because all of those methods
are built around Bloch equations for the spin degrees of
freedom; this makes accurate treatment of coupled multi-spin
systems impossible. Some methods (split propagation,26

random-walk averaging,27 etc.) do treat spin dynamics at the
density matrix level, but introduce diffusion externally in an
approximate way.28

To our knowledge, the only formalism that simultaneously
supports diffusion, hydrodynamics, chemical kinetics and
Liouville-space spin dynamics in a general and computationally
affordable way is the Fokker–Planck equation.29–31 In this
paper, we present the corresponding algebraic and numerical
framework, and illustrate its performance by simulating (on the
MRI side) a singlet state diffusion and flow imaging experi-
ment, and (on the ultrafast NMR side) single-scan diffusion-
ordered spectroscopy (DOSY) experiments that rely on spatial
encoding of the diffusion dimension.
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2. Simulation formalism

The key feature of ultrafast magnetic resonance experiments is
the delicate interplay of spin and spatial dynamics. In designing
the simulation methods for spatially encoded pulse sequences
we will therefore be using the Fokker–Planck formalism29,30

discussed in detail by Kuprov32,33 and recently implemented in
Spinach.34 Its fundamental equation of motion is:

@qðr; tÞ
@t

¼ � iLðr; tÞqðr; tÞ þMðr; tÞqðr; tÞ

Lðr; tÞqðr; tÞ ¼ ½Hðr; tÞ; qðr; tÞ� þ iRrðr; tÞ þ iKrðr; tÞ
(1)

where q(r,t) is the spin density matrix at the spatial point r at
time t, H(r,t) is the spin Hamiltonian, square brackets denote a
commutator, R is the relaxation superoperator, K is the chemical
kinetics superoperator, and M(r,t) is the spatial dynamics
generator dealing with diffusion and flow.33

2.1 Fokker–Planck formalism for MRI and spatially encoded
NMR

In liquid state spatially encoded NMR spectroscopy and imaging
simulations, the laboratory frame spin Hamiltonian in eqn (1)
contains the terms describing chemical shifts, pulsed field
gradients, radiofrequency pulses and J-couplings:35

Hðr; tÞ ¼ � B0 þ gTðtÞ � r
� �X

n
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ðnÞ
Z

� B1X

X
n
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ðnÞ
Z S

ðkÞ
Z

h i

(2)

where B0 is the primary magnetic field (assumed to be directed
along the Z axis), g is the primary magnetic field gradient vector,
dn are nuclear chemical shifts, gn are nuclear magnetogyric
ratios, {S(n)

X , S(n)
Y , S(n)

Z } are nuclear spin operators, Jnk are inter-
nuclear scalar couplings (traditionally published in Hz, hence
the 2p in front) and B1{X,Y} are the Cartesian components of the
radiofrequency magnetic field, which is assumed to have no
Z component.

The spatial dynamics generator in eqn (1) has contributions
from diffusion and flow:33

M(r,t) = rT�v(r,t) + vT(r,t)�r + rT�D(r,t)�r (3)

where r = [q/qx q/qy q/qz]T is the gradient (in the mathematical
sense) operator, v(r,t) is the flow velocity and D(r,t) is the
translational diffusion tensor. The latter rarely depends on
time; the flow is also often stationary, meaning that the spatial
dynamics generator in eqn (3) is time-independent and may be
consigned to the background evolution operator – this is the
primary advantage of the Fokker–Planck formalism over other
simulation methods for the problem in question.33

The use of the flow velocity in eqn (3) eliminates the thorny
question of how to combine magnetic resonance simulations
(where the equation of motion is linear) with hydrodynamics
simulations (where it is not). Because spin degrees of freedom
may be very accurately assumed to have no influence on the
spatial motion, any hydrodynamics solver may simply be used
first to obtain v(r,t) and put into eqn (3). In that way, the
equation of motion that we actually need to solve at the spin
dynamics simulation stage – eqn (1) – stays linear with respect
to the state vector q(r,t).

Another advantage of the FP method in the context of
spatially encoded NMR and MRI is that RF pulses at any
frequency have time-independent generators. The matter is
discussed in detail in Kuprov’s recent review of the subject;33

here we will only note that the Fokker–Planck RF pulse generator
is the derivative with respect to the RF phase, which is simply
added to the spatial dynamics operator in eqn (3):

M ¼ � � � þ oRF

@

@j
(4)

where oRF is the angular frequency of the RF field and the phase
j occurs in the transverse magnetic field terms of eqn (2):

B1X = B1 cosj, B1Y = B1 sinj (5)

The derivative term in eqn (4) has a simple physical meaning –
its exponential moves the radiofrequency phase forward at
the rate oRF:

exp oRFt
@

@j

� �
f ðjÞ ¼ f jþ oRFtð Þ (6)

and so the RF term looks like a static ‘‘interaction’’ within the
Fokker–Planck dynamics generator.

Spin relaxation may be introduced in two different ways. The
more general and computationally expensive method is to
include the molecular rotation and the internal motion into
the spatial dynamics generator M(r,t), and to treat the corres-
ponding spatial coordinates explicitly – this is known as the
Stochastic Liouville Equation (SLE) formalism.36,37 A somewhat
less general, but also less computationally demanding formu-
lation is to treat the molecular dynamics that drives the
relaxation perturbatively, as an external stochastic process
that rattles operator coefficients in the spin Hamiltonian –
this is called the Bloch–Redfield–Wangsness (BRW) theory.38–40

BRW relaxation superoperator is added algebraically to the
spin Hamiltonian commutation superoperator. The use of
SLE becomes necessary in EPR systems where the BRW
approach breaks down.41 That is not the case here, and we
are therefore using BRW relaxation theory in this work – its
complete derivation and the technical details of its numerical
implementation are published elsewhere.42,43

With all of these in place, eqn (1) has a simple general
solution:

q(r,t + dt) = exp{[�iL(r,t) + M(r,t)]dt}q(r,t) (7)

for which a great variety of numerical evaluation methods
exist.44 We use Krylov propagation45 for short events and shaped
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pulses, and scaling and squaring matrix exponential propagation46

for extended evolution periods. The primary technical problem
is the generation of sufficiently small and accurate matrix
representations for all operators involved,33,47 which is the
subject of the next section.

2.2 Numerical implementation

The choice of the procedure for the generation of spin operators for
eqn (2) depends on the size of the spin system. With fewer than ten
spins, the standard Pauli matrix product method35 is appropriate

S(k)
{X,Y,Z} = 1#1#� � �#r{X,Y,Z}#� � �#1 (8)

where 1 is a unit matrix of the dimension equal to the
multiplicity of the corresponding spin and r{X,Y,Z} are Pauli
matrices48 that occur in the k-th position in the direct product.
Larger spin systems are best handled with the restricted state
space approximation;49 technical details of the spin operator
generation process in restricted state spaces are given in our
recent paper.47

The most straightforward practical way of generating matrix
representations for spatial derivative operators occurring in
eqn (3) and (4) is to discretise the spatial coordinates on finite
grids. For periodic boundary conditions, Fourier differentiation
matrices on uniform grids50 are convenient:

@

@x

� �
nk

¼
�1ð Þnþk

2
cot
ðn� kÞp

N

� �
nak

0 n ¼ k

8><
>: (9)

Their disadvantage is high memory requirements – Fourier
differentiation matrices have very few zeros. A less memory-
hungry alternative that is also compatible with non-periodic
boundaries and non-uniform grids is finite-difference matrices,
for which general formulas to arbitrary accuracy order and
arbitrary point spacing have been derived by Fornberg.51 For
complicated diffusion and flow domain topologies, more
sophisticated differential operator representations exist52,53 –
they are not discussed here, but the salient point is that all of
these approaches are well developed, highly automated and
simply produce a matrix in the end. Here and below, we will
assume rectangular domains with periodic boundaries.

Standard accuracy considerations apply to discrete representa-
tions of spatial dynamics operators: the Fourier differentiation
method must have a minimum of two points per period of the
fastest oscillation (this means gradient spirals in spatial dimen-
sions), and the finite difference method must satisfy the accuracy
conditions formulated by Fornberg.51 In practical calculations the
number of points is increased from the minimum specified by the
Larmor condition until convergence is achieved in the output.

Assuming N, M and K discretisation points in X, Y and Z
respectively, the differentiation matrices are multiplied up into
the three-dimensional space in the standard way, for example:

DX = [q/qx]N#1M#1K (10)

where [q/qx]N is a matrix representation of the derivative
operator on an N-point grid, and 1 are unit matrices of the

indicated dimension. Similar expressions apply for derivatives
along other dimensions.

The density matrix and the spin Hamiltonian are mapped
into the Liouville space in the standard way:35

H!1�H�HT � 1

q!vecðqÞ
(11)

where 1 is the unit matrix of the same dimension as the
Hamiltonian, vec denotes the vectorisation operation – the
columns of the matrix are placed sequentially one under
the other to make a vector.

After the spin operators and the space operators are
obtained individually, they are projected into the Fokker–
Planck space by the final round of direct products, in which
it is convenient to place spatial coordinates first. Therefore, the
general form of a pure space operator is A#1, the general form
of a pure spin operator is 1#B, and for operators that connect
spin and space degrees of freedom (such as pulsed field gradients)
we have A#B.

The numerical solution process for eqn (7) involves either a
sparse matrix exponential (the exponentiation method35) or

Fig. 1 SPEN DOSY pulse sequence for (A) the real experiment executed
on the NMR instrument. Gradients a to c are used for coherence selection
around the chirp pulses, f is a spoiler gradient, g1, g2 and g3 are balancing
pulses for lock signal retention, and g4 is the prephasing gradient. Te, Tp

and Ta are the duration of the encoding gradient, the post-chirp gradient
and the acquisition gradient respectively. Ga is the amplitude of the
acquisition gradient, Ge is the amplitude of the encoding gradient. Chirp
pulses combined with pulsed gradients frame the diffusion delay of the
stimulated echo so that the signal attenuation due to spin displacement
during the diffusion delay D is position-dependent. (B) Simulated experi-
ment, in which straightforward coherence selection steps had been
replaced by analytical coherence selection commands (indicated by red
dots) to improve the numerical performance. (C) Coherence selection
diagram.
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repeated multiplication of a full vector by a sparse matrix
(the Krylov propagation method45). Both operations map well
on GPU cards manufactured by Intel and NVidia using standard
functionality implemented in Matlab R2017a and later. It bears
notice that the complexity of the software implementation
process is formidable and falls far beyond the scope of this
paper; we would advise the reader to make use of the extensively
annotated and documented open-source Matlab code that is
available in versions 1.10 and later of Spinach.34

3. Spatially encoded diffusion
spectroscopy applications
3.1 Ultrafast DOSY pulse sequence simulation

A good example of classical spatial dynamics coexisting with
quantum spin dynamics in the same equation of motion is
given by the ultrafast DOSY54 pulse sequence (Fig. 1). The
sequence is derived from the conventional stimulated-echo
DOSY, in which diffusion-encoding gradients (separated by a
delay D so that spatial motion can have an effect on the spin
precession phase) are replaced by frequency-swept chirp pulses
applied under a gradient. Such chirp-and-gradient pairs are the
defining feature of ultrafast NMR in general.17 The other key
ingredient in UF NMR is the use of a spectroscopic imaging
acquisition block to acquire, in a single scan, both the direct

dimension and the spatially encoded information.
The principal advantage of the Fokker–Planck formalism

here is that the diffusion operator is a part of the static back-
ground Hamiltonian. Another convenient feature is that gradient
operators are presented to the user in the same algebraic style as
spin operators – in Fokker–Planck space, they are matrices33 that
may either be added to the background Hamiltonian, or used
with shaped pulse functions in the same way as spin operators.
At the pulse sequence level, this makes the simulation code neat
and easy to write. Multi-spin systems with internal interactions
are also straightforward – Spinach modifies the Hamiltonian and
changes all matrix dimensions as appropriate;34 the pulse program
code remains the same.

Fig. 2a shows the simulated free induction decay obtained
for the SPEN DOSY pulse sequence. It is an echo train
created by the train of gradient pulses during acquisition.
In order to extract the diffusion information, the data are
rearranged in the k–t space (Fig. 2b) and Fourier transformed
along both dimensions (Fig. 2c). The diffusion decay curve
is then obtained as a slice of the 2D matrix. When the
diffusion constant is set to zero, the spatial profile (grey curve
in Fig. 2d) reflects the smoothed chirp excitation profile.
Otherwise (blue curve in Fig. 2d), the decay induced by the
diffusion is observable in the spatial profile. The plateau of
the chirp pulse can then be used for diffusion coefficient
determination.

Fig. 2 SPEN DOSY simulation using the Fokker–Planck formalism. The free induction decay (A) is a series of echoes induced by the bipolar gradients. At
the processing stage, it is rearranged into a matrix (B) with horizontal dimension corresponding to the t2 evolution period, and vertical dimension to the
k-space. (B). The spectrum (C) is obtained after Fourier transforms in both dimensions. The extracted diffusion profile (blue curve) and the reference
signal recorded in the absence of diffusion (grey curve) are shown in (D). Physical dimensions of the sample are shown in the figure. Encoding gradients of
0.2535 T m�1 were applied with a chirp pulse of 110 kHz bandwidth and a duration of 1.5 ms. The post-chirp gradient had a duration of 1.6 ms. The
acquisition was performed using a train of 256 bipolar gradients, where each gradient had an amplitude of 0.52 T m�1, and a duration of 192 ms and 256
points. Diffusion constant was set to 8 � 10�10 m2 s�1 (blue curve) or 0 (grey curve).
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3.2 Numerical accuracy and convergence

The formalism outlined in Section 2 is exact with respect to
spin dynamics: the only accuracy parameter is the time step
in eqn (7), which must be sufficiently small. In the spatial
dynamics part, the essential factors that influence simulation
accuracy are the spatial Nyquist condition (all gradient spirals
must be adequately digitised) and the accuracy of the finite
difference approximation to the spatial dynamics operators, in
this case diffusion. The Nyquist condition55 is that the spatial
discretisation grid must have at least two points per period of
the fastest gradient spiral.

As illustrated in the left panel of Fig. 3 and in Table 1,
once the Nyquist condition is satisfied, distortions disappear
abruptly and excellent convergence is achieved shortly there-
after. The accuracy of the finite difference approximation
is controlled by the grid point spacing and the formal accuracy
order of the finite difference stencil.51 The effect of the
accuracy order is illustrated, and compared to the formally
exact (when the Nyquist condition is satisfied) Fourier differ-
entiation operator in the right panel of Fig. 3. Fourier differentiation

operators are very accurate, but computationally expensive because
they are not sparse.

Practical experience indicates that periodic boundary condi-
tions (PBC) on spatial degrees of freedom are easier to implement
and simulate than absorptive or reflective boundaries. Technically,
the formalism above is not restricted to periodic boundaries (finite
difference operators may be built to account for other boundary
types), but the implementation process is time-consuming. The
use of PBC adds another accuracy consideration: for non-periodic

Fig. 3 Left panel: the effect of the spatial Nyquist condition on the numerical accuracy of a SPEN DOSY simulation with the same physical parameters as
in Fig. 2: the grids with 500 and 1000 points are sub-Nyquist and result in catastrophic loss of accuracy. Grids with 2000 points and more satisfy the
Nyquist condition and produce accurate results. Right panel: the effect of the accuracy order of the finite difference approximation51 to the diffusion
superoperator. The Fourier differentiation matrix (marked ‘‘exact’’) is formally exact on a given grid, but has a significantly longer run time (36 minutes)
compared to the much sparser finite difference matrix (less than 2 minutes).

Table 1 Convergence of the diffusion coefficient retro-fitted (using
Stejskal–Tanner equation) to the simulated SPEN DOSY profile in the left
panel of Fig. 3 as a function of the number of points in the spatial grid.
500-point and 1000-point grids are below the Nyquist condition for the
gradient spirals. Note the linear scaling of the simulation time

Grid points
Fitted value of the diffusion
coefficient, �10�10 m2 s�1

Wall clock simulation
time, seconds

500 �0.07 11.6
1000 1.10 17.6
2000 7.83 33.2
3000 7.97 52.2
4000 7.98 70.0
5000 7.98 90.3

Fig. 4 Diffusion-weighted DOSY lineshape obtained under a linear gradient
with (red line) and without (blue line) reference profile (grey line) correction.
A significant increase in the usable signal area is evident in the background-
corrected signal.
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systems, sufficient white space should be allowed on all sides of
the simulation box to avoid self-interaction across the periodic
boundary.

It is impossible to give a general analytical formula for the
minimum number of points in the spatial grid – each pulse
sequence would have its own minimal grid size. However, a
convenient practical diagnostic criterion may still be formulated:
the spatial Fourier transform of the Fokker–Planck state vector
should not have any probability density at the high-frequency
edge points at any time in the simulation.

3.3 Experimental parameter optimisation

High-fidelity numerical simulations of the SPEN DOSY pulse
sequence provide useful insight into the effects of pulse
sequence parameters and instrumental imperfections. An
example is shown in Fig. 4 – the exact shape of the chirp pulses
in Fig. 1 determines the spatial profile of the excitation region.
Normalisation by the spatial profile obtained in the absence of
diffusion makes it possible to retrieve a larger range of attenua-
tions for the diffusion decay, as illustrated in Fig. 4. This also
accounts for deviations from an ideal plateau due to factors like
the B1 field inhomogeneity, which is easy to model by assigning
different amplitudes and directions of the control operators in
eqn (2) to different voxels.

Fig. 5 shows the effect of the amplitude of the acquisition
gradient Ga. It is clear that a sub-optimal choice of Ga can
generate a bias (in this case, an over-estimation is produced) in
the calculated diffusion constant because it yields an oscillating
lineshape when decreased too much. The cause of the oscilla-
tion is signal truncation in k-space. This effect can be corrected
when the reference profile is taken into account (Table 2) by
dividing the diffusion profile by the reference profile computed
with the diffusion coefficient set to zero. In our real experi-
ments, a Ga of 0.20 T m�1 is used; this confirms that it is
necessary to correct the diffusion weighted image by a reference
image with no diffusion present. Since it is impossible to switch

the diffusion off in an actual experiment, the reference profile
is obtained by cutting the corresponding pulses and evolution
periods out of the pulse sequence in Fig. 1.

In order to extract diffusion coefficients from the experi-
mental SPEN DOSY data, the gradient-induced attenuation in
the signal S(z) is usually fitted by the modified Stejskal–Tanner
equation:54

SðzÞ ¼ S0 exp �DKðzÞ2 D� Te þ Tp

2

� �� �
(12)

where D is the diffusion coefficient, D is the diffusion delay,
Te is the duration of the encoding gradient, Tp is the duration of
the post-chirp gradient, and K(z) is the effective gradient area at
position z:

KðzÞ ¼ djðzÞ
dz
þ gGeTp (13)

where Ge is the encoding gradient amplitude, g is the magnetogyric
ratio for the nuclei in question, and the phase j(z) imparted by the
chirp pulse is:

jðzÞ ¼
ðTe

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O0 � gGez� ORFðtÞ½ �2 þ oRFðtÞ2

q
dt (14)

where O0 is the frequency offset of the NMR signal, ORF(t) is the
time-dependent frequency of the RF sweep, oRF(t) is the time-
dependent amplitude of the RF field.

Fig. 5 The effect of gradient amplitude on the shape of the sample image in the absence of spatial diffusion (left) and with a typical diffusion constant of
8 � 10�10 m2 s�1 (right). The oscillatory distortions, called Gibbs ringing, are due to the truncation of the k-space signal.

Table 2 The effect of the acquisition gradient amplitude on the extracted
diffusion coefficient (true value of 8.0 � 10�10 m2 s�1) with and without
k-space truncation artefact correction

Acquisition gradient
(T m�1)

D (raw) �
10�10 m2 s�1

D (corrected) �
10�10 m2 s�1

0.52 7.97 7.98
0.26 7.97 7.98
0.20 8.06 7.98
0.13 8.18 7.97
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Numerical simulations are also useful in assessing the effect
of chemical shift offsets on the errors in the fitting of eqn (12)
to the experimental SPEN DOSY data. Chemical shifts cause
two types of signal displacements. The displacement upon

encoding is accounted for in eqn (14), but the chemical shift
displacement during acquisition also has to be taken into
account, as it may otherwise result in significant errors. Fig. 6
shows the spatial diffusion profiles obtained for several values
of the chemical shift offset, and Table 3 gives the corres-
ponding fitted values of the diffusion coefficients, for corrected
and uncorrected z values in eqn (12), with

zcorr ¼ z� O0

gGa
(15)

For typical proton chemical shifts and gradient amplitudes
of the same order as in Table 2, the chemical shift offset error
in the diffusion coefficient is of the order of 5%; the decision on
whether this is significant rests with the user, but eqn (15) is in
any case straightforward to apply.

5. Quantum mechanical processes

An emerging class of MRI experiments that essentially requires
quantum mechanical treatment of spin processes is singlet
state imaging.27,56,57 One reason is the delicate interplay of
symmetry, chemical shift anisotropy and dipolar coupling in the
relaxation superoperator that makes the two-spin singlet state
long-lived.58 The other is the M2S and S2M pulse sequences that
rely on the J-coupling to get the spin system in and out of the
singlet state.59 Accurate Liouville space description of the spin
dynamics60 is therefore essential. At the same time, recent
proposals for using singlet states as a delivery vehicle for
hyperpolarisation in MRI27,56,61 make it necessary to include
chemical kinetics, diffusion, and flow.

In this situation, the Fokker–Planck equation is clearly superior
to the more traditional Liouville–von Neumann equation formalism
because all spatial dynamics processes (diffusion, hydrodynamics,
magic angle spinning, spatially selective pulses, etc.) are represented

Fig. 6 Simulated diffusion profile displacement for three different
chemical shift offsets of the working signal from the resonance frequency.
All other parameters are as in Fig. 3–5.

Table 3 Diffusion coefficients extracted from raw and corrected DOSY
profiles for different values of NMR signal offset from the resonance

Chemical shift
(ppm)

D (raw) �
10�10 m2 s�1

D (corrected) �
10�10 m2 s�1

0 7.97 7.97
5 7.73 7.97
10 7.52 7.97

Fig. 7 Fokker–Planck theory simulation of a singlet state NMR imaging experiment in the presence of diffusion and flow. The simulation includes soft
radiofrequency pulses with simultaneous explicit simulation of flow, diffusion, magnetic field gradients and spin–spin coupling dynamics as prescribed by
the Liouville–von Neumann equation, as well as full Redfield relaxation superoperator treatment. The flow rate is set to 5 cm s�1 and the diffusion
coefficient to 3.6 � 10�6 m2 s�1. The singlet imaging sequence used is described in a recent paper from the Pileio group.27 It is clear that the very slowly
relaxing singlet state flow (left panels) can be tracked at longer distances than magnetisation flow (right panels).
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by constant matrices that are more convenient from the
programming and numerical efficiency point of view than the
time-dependent Hamiltonians in the Liouville–von Neumann
formalism.33

A simulation of the singlet state diffusion and flow experi-
ment from Fig. 2 of the recent paper by Pileio et al.27 shown
in Fig. 7 is a particularly good example, because all of the
complexities – shaped pulses, gradients, diffusion, flow, quantum
mechanical spin evolution and complicated relaxation theory –
are present simultaneously. An average over 100 000 Monte-Carlo
instances had to be performed by the authors of the original
paper, with only statistical guarantees of convergence;27 here we
demonstrate that the Fokker–Planck formalism performs the
same simulation deterministically in a single run.

Fig. 8 illustrates the same point – within the Fokker–Planck
formalism, diffusion and imaging simulations for systems with
multiple coupled spins can be carried out in exactly the same
way as for uncoupled spins – eqn (1) supports arbitrary spin
Hamiltonian commutation superoperators, arbitrary relaxation
theories and a host of other processes, such as chemical kinetics.

6. Conclusions and outlook

It is demonstrated above that NMR and MRI experiments with
elaborate spatial encoding and complicated spatial dynamics
are no longer hard to simulate, even in the presence of spin–
spin couplings and exotic relaxation effects, such as singlet
state symmetry lockout. Versions 1.10 and later of Spinach
library34 support arbitrary stationary flows and arbitrary
distributions of anisotropic diffusion tensors in three dimen-
sions simultaneously with Liouville-space description of spin
dynamics, chemical kinetics and relaxation processes. The key
simulation design decision that has made this possible is
the abandonment of the Bloch–Torrey20,21 and Liouville–von
Neumann13,35 formalisms in favour of the Fokker–Planck
equation.33 The primary factors that have facilitated this

transition are the dramatic recent improvement in the speed
and capacity of digital computers, the emergence of transparent
and convenient sparse matrix manipulation methods in numerical
linear algebra,62 and the recent progress in matrix dimension
reduction in magnetic resonance simulations.34,47

In the more distant perspective, high-fidelity simulations
that are free of significant approximations are expected to play
an increasing role in magnetic resonance experiment design and
in subsequent data processing. As optimal control theory63,64

illustrates, the understanding of the detailed dynamics taking
place in a particular experiment is increasingly hard to achieve; it
is slowly being replaced by the understanding of the factors
generating the dynamics. Mathematically, this corresponds to
the well-known relationship between a Lie group – usually an
exceedingly complicated object – and the Lie algebra of its
generators, which is fundamentally easier to understand and
interpret. For complicated systems and processes, numerical
simulation is the only practical way of connecting the two.
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