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Elasticity-based polymer sorting in active fluids:
a Brownian dynamics studyf

Jaeoh Shin, (2 *2 Andrey G. Cherstvy,” Won Kyu Kim® and Vasily Zaburdaev®

While the dynamics of polymer chains in equilibrium media is well understood by now, the polymer
dynamics in active non-equilibrium environments can be very different. Here we study the dynamics of
polymers in a viscous medium containing self-propelled particles in two dimensions by using Brownian
dynamics simulations. We find that the polymer center of mass exhibits a superdiffusive motion at short
to intermediate times and the motion turns normal at long times, but with a greatly enhanced diffusivity.
Interestingly, the long time diffusivity shows a non-monotonic behavior as a function of chain length
and stiffness. We analyze how the polymer conformation and the accumulation of self-propelled
particles, and therefore the directed motion of the polymer, are correlated. At the point of maximal
polymer diffusivity, the polymer has preferentially bent conformations maintained by the balance
between the chain elasticity and the propelling force generated by the active particles. We also consider
the barrier crossing dynamics of actively-driven polymers in a double-well potential. The barrier crossing
times are demonstrated to have a peculiar non-monotonic dependence, related to that of the diffusivity.

rsc.li/pccp

1 Introduction

Active fluids composed of self-propelled particles such as
motile bacteria, crawling cells, sperm cells, and artificial
microswimmers'™° are inherently out-of-equilibrium systems.
An active particle continuously consumes energy generated via
internal mechanisms, external fields, or the reservoir energy, as
required for its persistent motion.">®2° Actively-driven systems
often exhibit peculiar features absent under equilibrium
conditions.>®®'9?1?> Ag an example, diffusive motion of the
tracer particles in a medium consisting of swimming bacteria can
be characterized by the mean squared displacement (MSD) which
on a certain time interval increases faster than linearly in time,****

MSD(¢) oc t* (1)

with & > 1.>° At long times, the scaling of diffusive motion

turns normal (« = 1), but the diffusivity is 2-3 orders of
magnitude larger than in a passive viscous medium.>® The
diffusivity of a spherical tracer in active media can vary non-
monotonically with the tracer size.>®

In general, the systems of self-propelled particles cease
to follow the equilibrium thermodynamics Boltzmann
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This effect can be potentially utilized for sorting polymers from solutions in in vitro experiments.

distribution.®'*?>?5273% The geometry-dependent pressure

created by the active particles®'”*? can, e.g., cause a spontaneous
rotation of micron-sized gears in bacterial medium.**"** For
deformable or responsive tracers, such as polymer chains®®™*°
or vesicles,*" the interplay between the elasticity and active forces
reveals interesting effects. The examples include facilitation of
polymer looping® and a non-monotonous diffusivity of polymers
as a function of the chain length.*® The dynamics of polymers in
active fluids is relevant to that of various biopolymers in the
cellular environments,*” where the molecular motors generate
non-equilibrium conditions.**>® Conversely, the fluctuating
dynamics of the polymers can be used to infer the nature of
active forces present in the system.*?

Here we study the dynamics of polymer chains in two
dimensions (2D) in the presence of active Brownian particles
(ABPs)® by using Brownian dynamics simulations. The recent
studies on swelling, collapse, and looping of actively-driven
polymers®**° served as a starting point for the current investigation,
with “active polymers” being a perspective research direction.® Such
a 2D system is more relevant to the in vitro experimental setups,
rather than to in vivo settings, as the former are frequently carried
out in quasi-2D setups.>

The polymer chain in the bath of ABPs is not in equilibrium
and unusual behaviors can take place.**° In this study we find
that due to propelling forces of ABPs, the polymer dynamics is
greatly facilitated. In particular, the polymer center of mass
(Com) diffusivity shows a non-monotonic behavior as a function
of both the chain length L and its bending stiffness x. The polymer
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at maximal diffusivity has preferentially bent conformations,
maintained by the balance of chain elasticity and propelling forces
of ABPs. We also consider the barrier crossing dynamics of
polymers in a double-well potential, finding that the crossing
times are non-monotonous with L and k, too. These results
can potentially be utilized for separating polymers based on
their length or stiffness® via using active fluids.

The paper is organized as follows. We introduce the Model
and simulation methods in Section 2. The main results on the
polymer diffusive behavior are presented in Section 3 and the Barrier
crossing dynamics of polymer chains is investigated in Section 4.
Finally, we summarize and discuss our results in Section 5.

2 Model and methods

We perform Brownian dynamics simulations of semiflexible
polymers in the presence of active particles® on the plane in 2D.
As a representation of active particles, we use a model of
self-propelled ABPs, which can be man-made and used in

experiments.*>" The position of the ith ABP at time ¢ is
described by the overdamped Langevin equation,®”"
dl','(l)
) R Um) ) - VIDED, @)

where u is the particle mobility, V = fc% + )78%}, and &,t) is the
two-dimensional Gaussian white noise with unit variance in
each dimension, (&;(¢) - &;(¢')) =20,70(t — t) where 0; is the
Kronecker symbol. Potential U denotes the interaction potential
between different ABPs, ABPs and polymer beads, and ABPs
with external potential. We refer the reader to Section VII of
ref. 6 for the discussion of underdamped dynamics of active
particles. Also, the recent examination of inertia effects in some
anomalous diffusion processes is instructive.’*

The particle moves with a constant speed v, along the
direction given by angle y

n; = {cosy, siny}. (3)

This angle is subjected to rotational diffusion, as described by
the rotational Langevin equation,

WO /b, Q

where D, is the rotational diffusivity and ¢, is the Gaussian
white noise with unit variance. The rotational diffusion leads
to the decorrelation of particle velocity on the time scale of
T = 2/D,. For the case of spherical particles of diameter ¢ the
value of D is related to its translational diffusivity D, as*

D, = 3Dy/c>. (5)

The strength of particle propulsion is measured in terms of the
Péclet number

Pe = v,0/D:.

The situation of v, = 0 corresponds to the passive Brownian
particle, studied previously in the context of macromolecular
crowding in ref. 56-58.
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The polymer is modeled as the bead-spring chain of n
monomers of diameter ¢ connected by harmonic springs with
the corresponding potential:

k n
Us = 5;(@- —ri1| — )% (6)

where £ is the spring constant and [, is the equilibrium bond
length. Hereafter, the chain monomers are of the same size as
the ABPs, see the Discussion section for the effects of ABP size.
We choose the Hook’s modulus as k = 10*kgT/¢”> and I, = ¢ to
prevent the crossing of ABPs by spring sections. The bending
energy of the chain is given by

K 2
Ub2520i7 (7)

where « is the bending stiffness and 0; is the bending angle of
the ith chain segment, see Fig. 1 (Top). For a given value of «,
the chain persistence length in two dimensions is then
I, ~ 2xly/(ksT). Note that the polymer behaves as a much softer
chain in the presence of ABPs due to the enhanced
fluctuations.*

The effects of self-avoidance between different chain mono-
mers and between ABPs and chain monomers are modeled by
the Weeks-Chandler-Andersen (WCA) potential,>

Uwealri ) = 4¢[(a/r; ))' — (o/ri )°] + & (8)

) 9%00? ooog o

Fig. 1 Schematic of the system. (top) Polymer chain of n = 8 beads
connected by springs. The equilibrium bond length is [y and the angle
between the ith and (i + 1)th monomer is 6,. (bottom) Configuration of a
polymer (blue chain) in a bath of ABPs (red spheres). Here n = 32, k = 360,
and the packing fraction of ABPs is ¢ = 0.05. The figure was rendered using
VMD.>? The video files illustrating the chain dynamics are provided in the
ESL+
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for r; ; < reye and Uweca(ry, ;) = 0 for r; ; > 7ey, where the cutoff
distance is rey = 2V°0. Here, r;,; = |r; — 1j| is the inter-monomer
distance and ¢ is the interaction strength. This potential
corresponds to a polymer chain in a good solvent. To study
the barrier crossing dynamics of the chain, we add an external
double-well potential along the x-axis,

A B
U (x) = ZX4 - EXZ' 9)
Here, the potential width, the distance from one potential
minimum to the barrier, is Ax = y/B/A and the barrier height

is AU = B*/(4A). Then, the dynamics of the jth chain monomer is
governed by the following overdamped Langevin equation:

dr; (1)
dr

=—uV|Us + Z Uwca (I’l’_‘/) + Up + U | + \/ﬁéj([)
i#
(10)

An important parameter of the medium is the density
of ABPs. To fix the density, we use the periodic boundary
conditions with the square box of area #>. We choose
& =60 which is larger than the typical size of the polymer, to
prevent any artifacts of boundary conditions. The packing
fraction of ABPs is defined as

¢ = NAAA/gzy

where N, is the number of particles and A, = 7(¢/2)* is the
surface area per ABP, see also ref. 60. We use hereafter ¢ = 0.05.
At low packing fractions ¢, the interaction between ABPs can be
negligible. At high ¢, in contrast, some clustering of ABPs and
phase separation phenomena can take place,”’ > which is
however beyond the scope of this paper.

To numerically integrate the equations of motion (2) and
(10), we implement the stochastic Runge-Kutta algorithm.®®
We measure the length, the time, and the energy in units of o,
t, = 6°/D,, and thermal energy kg7, respectively. We set below
the model parameters as ¢ = I, = 1, k = 10°, D, = 1, D, = 1/3, and
¢ = 1. The important length scales of the system are the chain
length L, the persistence length [,,, and the persistence length of
the ABP motion 2v,/D,. The main features of our results (shown
below) will remain the same if we fix the ratio of those lengths.
We use the integration time step At = 2 x 10~*, so that in our
plots, the simulation time of ¢ = 1 corresponds to 5000 iteration
steps of the evaluation scheme. Initially, the system is equilibrated
for ~10° steps and typically run up to ~10° iteration steps.

3 Polymer dynamics in active fluids
3.1 From superdiffusive to normal Brownian motion

We first consider the diffusive motion of a polymer chain in the
presence of ABPs and no external potential, U, = 0. From a long
trajectory of the chain generated in simulations, we calculate
the time-averaged MSD (tMSD) of the polymer COM,>*

: J%A[X(l’ +4) - X(")'dr,
0

(11)

18340 | Phys. Chem. Chem. Phys., 2017, 19, 18338-18347

View Article Online

Paper

where

is the x-coordinate of the polymer’s COM. Here, 4 is the
so-called lag time along the trajectory.>®> Moreover, the tMSD
is averaged over an ensemble of N independent traces recorded
in simulations,

N

e (A7) = > 5 (A7,

i=1

(12)

with N = 40 for most of the findings presented below. The tMSD
along the y-axis is naturally the same as along the x-axis in the
absence of an external potential. Note that the ensemble of
independent trajectories which is required for a satisfactorily
smooth behavior of the tMSD is substantially smaller than that
for the ensemble averaged MSD.>* tMSD is therefore frequently
used in single-particle tracking experiments, where often not so
many but rather long traces are generated/available, see e.g.
ref. 23-25. We find that for our system the tMSD is the same as
the ensemble averaged MSD (not shown), which means that the
system is ergodic.>® We thus use ¢ for the lag time 4 below, for
simplicity of the notation.

We recently demonstrated that the COM motion of a two-
dimensional polymer chain is greatly enhanced as the activity
of ABPs increases.*® In this study, we focus on how the polymer
COM motion depends on the chain length L = ns and its
bending stiffness . Active driving by ABPs renders the diffusion
of the polymer COM superdiffusive/non-Brownian on intermediate
time scales. In Fig. 2A and B, we show the tMSD of the polymer
COM for different chain lengths and bending stiffnesses,
respectively. We compute the time-local scaling exponent of
tMSD as®

_ d[log tMSD(#)]

i) = d[log1] (13)

We observe in Fig. 2C and D that the scaling exponent drops
from the values o ~ 1.6-1.8 at relatively short times, to less
superdiffusive « values at intermediate times, to finally the
normal diffusion behavior with o = 1 at very long times. Note
that here, contrary to our recent study,’® we consider over-
damped dynamics for both ABPs and polymer chains and thus
one does not expect to see a ballistic regime of the tMSD even in
the limit of short times. The noise in «(¢) data in the long time
limit is due to the worsening statistics as the lag time 4
becomes comparable to the total time 7 in eqn (11), see also
ref. 23.

To better characterize the diffusive behavior of the polymer
COM, in particular, the origin of the superdiffusive behavior at
short times, we consider the velocity auto-correlation function
(VACF) of the polymer COM,

(Veom()Veom(0)),

where Veom(?) is the COM velocity at time ¢ In Fig. 3, we
show the VACF(t) for the case of n = 32 and k = 360 at which
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Fig. 2 Time-averaged mean squared displacements of the polymer COM and its scaling exponents (13). (panel A) tMSD for different polymerization
degrees n with k = 200 and (B) tMSD for different bending stiffnesses x with n = 32. (C and D) Local tMSD scaling exponent for panels (A) and (B).
Parameters: the speed of ABPs is v, = 10, and the packing fraction of ABPs is ¢ = 0.05.
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Fig. 3 Velocity auto-correlation function VACF(t) of the polymer COM
(red symbols). Parameters: n = 32, k = 360, v, = 10, and ¢ = 0.05. In this
fitting plot we used # = 0.6 and tcom = 36.5.

the super-diffusive behavior is most pronounced. The decay of
VACEF(t) at short time is close to a power-law, ~¢*, with the
exponent i ~ 0.6. The power-law decay with f < 1 indicates
that the tMSD(¢) of the polymer COM, which can be calculated
by double integral of the VACF(¢), increases super-linearly,

tMSD(£) ~ >,

in the time interval, consistent with our simulation results, see
Fig. 2C and D. For the chains with a less pronounced super-
diffusive behavior, the power-law decay regime of the VACF(¢)
becomes shorter or disappears and the scaling exponent of
tMSD(¢) decreases continuously, see Fig. 2C and D. An inter-
esting question is how this power-law decay of VACF(t) of the

This journal is © the Owner Societies 2017

polymer COM emerges from the collision of individual ABPs
which have exponential decaying correlations.® This question
is, however, out of the scope of this study.

At long times, on the other hand, VACF(¢) decays exponentially
with the correlation time tcom, which is shown in Fig. 4
(triangles, the right axis). Physically t¢op is the time at which
the persistent chain motion starts to decorrelate. The correlation
time shows a non-monotonic behavior as a function of the chain
length n and «. The value of t¢oy is typically, except for the n = 8
case, much longer than the persistence time of the ABPs, 7 = 2/D, = 2.
In comparison, the VACF of the polymer COM in the absence of
ABPs is delta-correlated as is the thermal noise. For the case of
ring polymers in two dimensions filled by ABPs,*" the VACF is
determined by that of the ABPs, independent of the chain elastic
properties. The exponential decay of VACF at long times indicates
that the tMSD(¢) will increase linearly with time ¢ in this domain,
consistent with our simulation results, see Fig. 2.

We extract the diffusivity of the polymer COM by fitting the
long time limit, in the range ¢ = [10°, 10*] of the tMSD(¢) with a
linear function. We find that the diffusivity shown in Fig. 4
(circles, the left axis) also varies non-monotonically with the
chain length n and stiffness x. The optimal values of n* and x*,
which give rise to the maximum of the diffusivity, are coincident
with those of the correlation times. This indicates that the non-
monotonic behavior of the diffusivity is resulting from the non-
monotonicity of tcom. For the case of a fixed chain length
(Fig. 4B), the diffusivity is proportional to the correlation time.
This is related to the fact that the diffusivity of ABPs is proportional
to the correlation time. However, for the case of varying chain
length (Fig. 4A), the relation is more complicated. The reason is

Phys. Chem. Chem. Phys., 2017, 19, 18338-18347 | 18341
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Fig. 4 Diffusivity of the polymer COM and the correlation time tcom of
VACF: (A) as a function of the chain length n with k¥ = 200 and (B) as a
function of the bending stiffness k with n = 32. Other parameters are the
same as in Fig. 2.

that in this case, not only the correlation time, but also the
number of particles pushing the polymer chain, and hence the
velocity of the polymer, is changing with the chain length.
The non-monotonic dependencies we observe in Fig. 4 are fairly
robust with respect to varying ¢ and v,, but the optimal
chain length and bending stiffness depend on these model
parameters.

As can be seen from visualizing the results of simulations at
the optimal chain length n* or stiffness x*, at these parameters
the polymer captures the surrounding ABPs for longer time.
Therefore, the superdiffusive interval of the polymer COM
motion becomes more prolonged, see the «(f) dependencies
in Fig. 2C and D. To quantify these observations, we consider
various quantities such as end-to-end distance distribution,
gyration radii of the polymer, and the Fourier spectrum of
chain conformations. As we have shown in ref. 39, the end-to-
end distance distribution and the radii of gyration of the
polymer significantly change in the presence of ABPs. However,
we do not find any distinctive features that indicate the condition
of maximum diffusivity of the polymer in these two quantities.
Therefore, we present only the Fourier mode analysis of chain
conformations in the next section.

3.2 Chain conformations via the Fourier modes

We analyze the bending modes of the chain in terms of the
Fourier amplitudes of its bending harmonics. The polymer

18342 | Phys. Chem. Chem. Phys., 2017, 19, 18338-18347
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conformations are described in terms of the tangential angle
0(s), where s = [0, L] is the arc length. Following the method
proposed in ref. 67, the chain conformations are decomposed
into the cosine modes,

0(s) = f: O(s) = \@ f:o (4 COS (%) .

m=0

(14)

At equilibrium, each mode evolves independently and its
variance is given by®”

2
<amz> = lﬂ<i> x l/mz7

K mmn

(15)

in virtue of the equipartition theorem. The mode amplitudes
were enumerated from the simulation data via applying the
inverse Fourier transform to eqn (14), namely

L

am = 2/LJ dsO(s) cos(mms/L). (16)

0
In what follows we use the discrete approximation of this
formula, see ref. 67 for more details.

We first show the variance of the Fourier modes a,, in the
absence of ABPs, see empty symbols in Fig. 5A. The results
match well with the theoretical prediction of eqn (15), shown as
the solid lines, for not too stiff chains (I, < L). As the chain
becomes stiffer, the simulation results overestimate the theoretical

(A)
A 14
N
£
©
\%
g 0.1 N o
3 N
S 001} ©Ox=30 RO 0%
A 90
360
< 1200
0.001
Fourier modes, m 10
(B) T
100 5
A 540
Ne e £ 20 R
o 10 | e [ ]
Vo¢ ® 0 2 4 & 8
(0] o m
2 A0 |
© . A0,
= A®e
‘>‘5 ® «=30 . AL
01t & :
: 360
* 1200 MR R
1 10

Fourier modes, m

Fig. 5 Variance of the Fourier modes a,, for varying chain stiffness «.
(A) Variance in the absence of ABPs. Theoretical prediction of eqn (15) is
shown as the solid lines. (B) Variance in the presence of ABPs. (inset) The
ratio of the variance in the presence and the absence of ABPs. Other
parameters are the same as in Fig. 2B.
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values of (a,,”). The deviation is due to the additional “stretching
fluctuations” of the chain in our model so that, as the spring
constant k increases, the simulations results (not shown) become
closer to the theoretical prediction. However, for the reasons of
computational efficiency, we do not use larger spring constants
here. In Fig. 5B we show the variance of Fourier modes (filled
symbols) in the presence of the ABPs. The variances are 1-2 orders
of magnitude larger, depending on the mode m, compared to that
of the chain at equilibrium in the absence of active particles. The
enhancement, defined as the ratio of variance in the presence of
ABPs to that in the absence of ABPs, is more significant for a
smaller mode number m as shown in the inset of Fig. 5B. We also
find that the enhancement of the first two modes (m = 1 and 2),
which determine the large length scale of the polymer con-
formations, is the largest for the chain of optimal stiffness
(x = 360). This finding indicates that chain conformational
fluctuations are highly correlated with the enhanced diffusivity.

The enhancement of fluctuations in actively-driven systems
was measured experimentally, among others, for microtubules
in the presence of myosin motors.*> This effect can be inter-
preted as an increase of the effective temperature in the system,
known to facilitate the polymer looping kinetics.* In contrast
to equilibrium systems, here the fluctuations are mainly due to
collisions between ABPs and the polymer chain, but the energy
dissipation occurs via all length scales of the polymer. Thus, it
is not surprising that the variance of a,, does not follow the
equilibrium scaling relation of eqn (15). Note also that the
distribution of a,, amplitudes is always Gaussian in equilibrium
systems.®® Physically, this Gaussianity is due to the absence of
correlations in the thermal noise.

In the presence of ABPs, however, the distributions of the
Fourier amplitudes become strongly non-Gaussian, as we exem-
plify in Fig. 6 for the 1st and 2nd modes. We find that for small
stiffness parameters « the distribution p(a,) is roughly uniform
in a broad range and for very large « the distributions p(a;) and
pla,) reveal a single peak. For intermediate chain stiffness
values «, the distribution p(a;) becomes bimodal, which means
that the chain adopts preferentially bent conformations. The
first Fourier mode corresponds to the half-period of the cosine
function and each peak in p(a;) corresponds to the chains in
the bent shapes of “c” and “>”. Such polymer shapes are
maintained by the balance between the elastic chain energy
and the propelling force of ABPs (compared also to the con-
formations of actively driven fluid membranes®). This finding
is consistent with the mechanism proposed in ref. 40 and our
analysis provides quantitative evidence of the mechanism. For
the higher modes (with m > 2), we find that the distributions
are unimodal, but also exhibit non-Gaussian features (the m = 2
case is shown in Fig. 6B).

To summarize, in this section we find that the polymer
chains in the presence of ABPs reveal a non-monotonous
diffusivity as functions of the chain length n and bending
stiffness k. At the optimal chain length or stiffness, the polymer
has preferentially bent conformations maintained by its elasti-
city and propelling forces of ABPs. In the next section we show
how this effect can be utilized for polymer sorting.
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Fig. 6 Probability distribution functions (PDF) of the amplitude of the 1st
(A) and 2nd (B) Fourier mode. In the absence of ABPs the results are shown
as the gray empty circles, together with the theoretical values (15) depicted
by the dashed lines. The parameters are the same as in Fig. 5.

4 Barrier crossing of polymers in active
fluids

Here, we examine the barrier crossing problem for the actively-
driven polymers in a double-well potential. The barrier crossing
dynamics of polymers in equilibrium media were considered in
a number of recent studies.®®”? The crossing times were shown
to be strongly dependent on the properties of conformational
rearrangement of the polymer in an external potential. In the
absence of ABPs, the crossing times of the polymer chains can
be rather long, even if the potential barriers are rather low,
AU < 1kgT, because all chain monomers need to cross the barrier
at the same time. In the presence of ABPs with large v, values,
however, the chain can cross the barrier in much shorter time due
to the enhanced fluctuations, see Fig. 5.

Here we consider both the polymers and the ABPs to be
subjected to an external potential U,,(x) acting along the x-axis,
as expressed in eqn (9). Depending on the ratio of the potential
width and polymer gyration radius, different barrier crossing
scenarios can realize.®*””> We have chosen the potential width
AX = 300, which is larger than the typical polymer size, so that
the polymer COM is placed in either the left or the right well of
the potential. The barrier height also needs to be carefully
chosen; if it is too high, the crossing time can be enormously
long, but if it is too low, the polymer will move freely in the
potential. Here we use AU = 6kgT to make the barrier substantial
even in the presence of ABPs, but not too high so that a
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sufficient number of crossing events occur during our simulation
time. In comparison, with the same barrier height but with less
active ABPs (smaller v,) or in the absence of ABPs, the barrier
crossing events happened extremely rarely (not shown).

As mentioned before, the distribution of ABPs in the external
potential U, (x) can deviate strongly from the Boltzmann
distribution,

P(x) ~ exp[—Uex(x)/(ksT)],

and the general form of this distribution is not known for a
given system. Here, the external force acting on the ABPs is
much weaker than the active force, namely

(17)

so that the distribution of ABPs is barely affected by the
potential. On the other hand, the polymer chains are confined
in one of the potential minima.

We track the COM coordinate X(¢) of the polymer which
shows a hopping dynamics between the two minima of the
potential. We define the crossing time, 7., as the mean first
passage time of the polymer COM from one potential minimum
to the other. Fig. 7 shows the dependence of T, on the chain
length no and bending stiffness k. The crossing time shows a
minimum both at a certain polymerization degree and bending
stiffness of the polymer.

(A) 4000

3000

2000

Crossing time, T, /tg

1000

10 20 30 40 50 60
Chain length, n

3000

2000

~
Crossing time, T /t, Z

1000

0 300 600 900 1200

Bending stiffness, «/ kgT

Fig. 7 (A) Barrier crossing times T, as a function of the chain length n, for
the bending stiffness of x = 200. (B) T, as a function of k, for the chain
length of n = 32. The error bars representing the standard deviation
are calculated based on ~10? barrier crossing events. (insets) Effective
barrier heights dU, see the main text for details. Here, other parameters are
vy =10 and ¢ = 0.05.
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Previously, it was shown that the polymer barrier crossing
time in equilibrium can be a non-monotonic function of the
polymer length or bending stiffness.®>”*””* In those studies, the
polymer barrier crossing dynamics was mapped onto one-
dimensional barrier crossing processes by considering only
the COM coordinate and the remaining degrees of the freedom
were taken into account by the effective free energy (also known
as a potential of the mean force) of the polymer COM. The
barrier height of the free energy can be a non-monotonic
function of the chain length or stiffness,*””*”* due to the chain
conformational changes, which is the reason of non-monotonic
behaviors of the crossing time. Following the approach of
ref. 73, we obtain numerically the effective free energy by using
the Boltzmann inversion of the distribution function Pcom(X)
along the x-coordinate, namely

F(X) = —kgTIn(Pcom(X)). (18)

The effective free energy also exhibits a double-well potential
(not shown) and the barrier height of the potential dU is shown
in the insets of Fig. 7. The effective barrier height is much
smaller than the real barrier height AU and shows a non-
monotonic behavior as a function of n or x. Following the
Kramers’ barrier crossing theory,75 we assume that the crossing
time of the polymer COM scales as
1
T ~ Bexp[dU/(kB 7)) (19)

with the effective diffusivity D of the polymer COM and the
effective barrier height dU. The non-monotonous behavior of
both dU and D gives rise to a dramatic non-monotonous
behavior of the crossing time. In comparison, in equilibrium
only the effective barrier height dU can show a non-monotonous
behavior, see ref. 69 and 71-73.

5 Discussion and summary

Active fluids are inherently out of equilibrium, and are of
relevance for a number of living systems. The physical under-
standing of those systems is, however, far from being complete.**
Even some basic properties, for example, the distribution of the
active particles in external potentials Uy, are only known in some
simple setups.””*®

Here we numerically studied the dynamics of the actively-
driven semiflexible polymers in two dimensions. We found that
the ABPs are accumulated in the concave regions of the chain,
which results in superdiffusive motion of its COM at inter-
mediate times. At long times, the diffusive motion of the
polymer COM becomes normal, but with the diffusivity which
was much higher than that for the motion without active
driving. The diffusivity revealed a maximum versus the polymer
length and bending stiffness. The chain at the optimal length
or optimal stiffness had preferentially bent conformations, as
we have demonstrated examining the chain conformations in
the Fourier modes. This occurs when the polymer elastic force
and the propelling forces of the ABPs are balanced.
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As an application of the nontrivial behavior of the polymer
diffusion in active fluids, we also considered the polymer
dynamics with the ABPs in the presence of a double-well
potential. We found that as the activity of ABPs increases, the
crossing time is shown to be greatly decreased. The crossing
time also showed a non-monotonous dependence with the
chain length n and bending stiffness . This is because of a
non-monotonous behavior of the diffusivity and the effective
barrier height versus n and x. This suggests that the polymer
chains can be separated from mixtures based on their length or
bending stiffness,*® which are important for a number of practical
applications.”® This scenario might be possible experimentally, for
example for sorting of stiff biopolymers such as microtubules or
actin filaments immersed in a fluid of active colloidal particles or
bacteria® in combination with a microfabrication channel.' In
experiments, it will be important to choose proper system para-
meters; the activity of the fluids and the potential barrier should be
comparable. The former can be controlled, for example, by varying
the energy source in the fluids,>** and the latter, by designing the
geometty of the channel."!

Note that in our study we considered a single chain in a
simulation box, hence the polymer-polymer interactions were
absent. For a mixture of many chains, the polymer-polymer inter-
actions could change the crossing dynamics. However, if the
polymer density is not very high, the effects of interactions should
be minor, not affecting our main findings and trends. Our simple
setup with the close-contact potentials neglects also the long-ranged
hydrodynamics interactions.”*”* The latter can govern, among
others, some energy transfer reactions and tune collective effects
in actively-driven systems, such as those in a 2D diffusion of micron-
sized spheres driven by swimming bacteria.>> Nevertheless, we
expect the main features of our findings to stay valid in real systems,
particularly when the hydrodynamic effects can be accounted for via
a renormalized friction coefficient.

Finally, we have considered that the ABPs are of the same
size as the chain monomers. For the case of bigger ABPs, we found
that the “capturing” of ABPs by the polymer is not possible and the
non-monotonous behavior of the diffusivity of the polymer
COM disappears (results not shown). For smaller ABPs, since the
rotational diffusivity scales with the diameter of the particle as
D, ~ ¢ 2, the persistence length of the ABPs’ motion decreases
very rapidly as ~¢”. In this case, the distribution of ABPs can be
mapped onto the Boltzmann-like distribution, but with a higher
“effective” temperature,” and the non-monotonous diffusive
behavior of the polymer chain will disappear. The typical size of
self-propelling colloidal particles is in the range of 0.1-10 pm and
the length of the biopolymers such as microtubules can be up to
10 um long. Therefore, it would be possible to choose the proper
experimental parameters that could demonstrate the validity of
our main findings experimentally.
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