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Combining random walk and regression models
to understand solvation in multi-component
solvent systems†

Ella M. Gale, ‡§*a Marcus A. Johns, §bc Remigius H. Wirawan ac and
Janet L. Scott a

Polysaccharides, such as cellulose, are often processed by dissolution in solvent mixtures, e.g. an ionic

liquid (IL) combined with a dipolar aprotic co-solvent (CS) that the polymer does not dissolve in.

A multi-walker, discrete-time, discrete-space 1-dimensional random walk can be applied to model

solvation of a polymer in a multi-component solvent mixture. The number of IL pairs in a solvent

mixture and the number of solvent shells formable, x, is associated with n, the model time-step, and N,

the number of random walkers. The mean number of distinct sites visited is proportional to the amount

of polymer soluble in a solution. By also fitting a polynomial regression model to the data, we can

associate the random walk terms with chemical interactions between components and probe where the

system deviates from a 1-D random walk. The ‘frustration’ between solvents shells is given as ln x in the

random walk model and as a negative IL:IL interaction term in the regression model. This frustration

appears in regime II of the random walk model (high volume fractions of IL) where walkers interfere with

each other, and the system tends to its limiting behaviour. In the low concentration regime, (regime I)

the solvent shells do not interact, and the system depends only on IL and CS terms. In both models (and

both regimes), the system is almost entirely controlled by the volume available to solvation shells, and

thus is a counting/space-filling problem, where the molar volume of the CS is important. Small

deviations are observed when there is an IL–CS interaction. The use of two models, built on separate

approaches, confirm these findings, demonstrating that this is a real effect and offering a route to identifying

such systems. Specifically, the majority of CSs – such as dimethylformide – follow the random walk model,

whilst 1-methylimidazole, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone and tetramethylurea offer a

CS-mediated improvement and propylene carbonate results in a CS-mediated hindrance. It is shown here

that systems, which are very complex at a molecular level, may, nonetheless, be effectively modelled as a

simple random walk in phase-space. The 1-D random walk model allows prediction of the ability of solvent

mixtures to dissolve cellulose based on only two dissolution measurements (one in neat IL) and molar volume.

1 Introduction

Random walks are models of a walker, be it a drunkard, a
molecule, or a stock price, exploring space (real space for
the drunkard and molecule, phase space for the stock price)

randomly. There has been a wealth of research into random
walks in many fields.1,2 Within chemistry and materials science,
random walks have been applied to polymer absorption,3 copolymer
structure,4 electron traps in semiconductors,5,6 quantum mechan-
ical paths,2,7 phonons in liquids,8 phospholid motion in cell
membranes,9 diffusion in zeolites,10 motion of insulin granules
in cells,11 intramolecular migration of chemical species along
oligomers,12 rotaxanes diffusing along polymers,13 and model-
ling of polymer motion.14 The most extensive use has been the
that of a self-avoiding random walk to generate polymer
conformations.2,7,15,16

There are several types of random walks. Brownian motion17

and bacterial motion18 are examples of continuous-time,
continuous-step random walks, where the walker takes a step
at random points in time in a random direction. Time and
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space can also be discretized, giving the discrete-time, discrete-
space random walk model, which is useful for modelling
lattices19–21 and is uniquely accessible by cellular automata
modelling techniques.22 Most random walks are Markovian
(and can be modelled as Markovian chains) because they are
memoryless, i.e. the direction (and timing) does not depend
on the system’s previous history. For Markovian chains, each
step depends on the step before. Self-avoiding random walks,
contrastingly, must have a complete memory of the system, as
the walker must not go where it has been before (it is this rule
that allows this type of walk to be used to model polymers: two
bonds cannot be in the same place; or quantum mechanics: two
electrons cannot occupy the same state).2 Random walks can
also take place in a number of dimensions: 1-D walks are walks
along a line, 2-D over a plane, and 3-D over a volume (and there
are higher dimensional random walks).

Most mathematical results are concerned with many walker
systems. Studying the motion of a single walker selected from a
set can, as the walkers are identical and the walk is selected
randomly, be a study of the average properties.23 Conversely,
order statistics, which is the study of the first walkers to arrive
at a point, can model single molecule experiments.24,25 Another
useful property is the size of a random walk, which relates to
the radius of gyration for a polymer, for example.26,27 In 1951
Dvoretzky and Erdös suggested that the number of distinct sites
visited by any random walker, when there are N interacting
random walkers, was an interesting problem.28 The first
solution was published in 1992 by Weiss et al.,29–31 and was
solved by describing the system with generating functions for
probability distributions, and then approximating the beha-
viour of a coordinate (Laplace) transform approximation of the
generating function at a singular point: this gave solutions that
were valid only for the large number of walkers limit and
extended time.30

Universality is the concept that the microscopic details of a
system do not alter the asymptotic properties of that system,2

which is why many systems seem to have similar behaviour.
The most well-known result is the central limit theorem, which
states that, for many statistically independent random variables,
the output distribution will be a Gaussian (normal) distribution
regardless of the underlying distribution – and any system that
exhibits this behaviour is a member of the Gaussian universality
class. (Interestingly, the memoryless random walk belongs to
the Gaussian universality class, while the self-avoiding random
walk used to model polymer structure belongs to a different
universal class.2) Thus, it is possible to model seemingly
unrelated systems with a random walk, if that system is a
member of the same universality class. In this paper it is
posited that the amount of a solute dissolvable in a mixture
across phase space can be modelled as a 1-D random walk
because once a ‘site’ in a mixture is filled, it does not sponta-
neously ‘unfill’ (i.e. the polymer come out of solution) and can
frustrate the solution of further solute in a manner, similar to
queuing effects seen in 1-D random walks. In this paper, a 1-D
random walk model is applied to the problem of cellulose
solvation in an IL:CS solution.

An alternative model for the system is a multi-polynomial
regression model. Polynomial regression models are a particular
form of a linear regression model that include higher order
terms following the general equation:

y = b0 + b1x + b2x2 +� � �+ bhxh + e (1)

where y is the response variable, x is the predictor variable,
h is the degree of the polynomial, b0 � bh are coefficients, and
e is the error variable. Multiple predictor variables can also be
included within a linear regression model, giving rise to
interaction terms:

y = b0 + b1x + b2z + b3xz + b4x2z + b5xz2 + b6x2z2 +� � �+ bhxz
xhxzhz + e

(2)

where z is a second predictor variable and xz is the interaction
term between x and z. These two models can be combined,
resulting in polynomial interaction terms with higher order
terms for either predictor variable, e.g. x2z. This skews the
interaction term such that the variance of one predictor variable
has a greater impact than that of another, i.e. the weighting is
not equal. Models including polynomial interaction terms have
previously been used to describe the variation of aerosol optical
depth,32 flow-induced fibre orientation,33 and cardiorespiratory
interaction.34

In order to process materials, it often necessary to dissolve
them. Tuning solvent mixtures to get useful properties and
balancing requirements such as chemistry, cost, toxicity, physical
properties, environmental-friendliness, and so on, have recently
gained traction in industry. The dissolution of polymers is an
important problem for the semi-conductor industry (polymeric
resists), membrane science, plastics recycling and drug delivery.35

An example is that of cellulose dissolution. Cellulose, the main
constituent of plant cell walls, is a naturally occurring biopolymer
with an estimated 28.2 billion tonnes produced via biomass
each year.36 It is already well established as a raw material for
biocompatible and environmentally-friendly products, including
synthetic fibres, coatings and additives for foods and cosmetics.36

However, due to strong intra- and intermolecular hydrogen bonding,
cellulose does not readily dissolve in typical solvent systems, with the
majority of commercial cellulose dissolution processes relying on
chemical modification of the cellulose to enable dissolution.36–38

The recent development of the dissolution of cellulose using
ionic liquids (ILs) has enabled the facile dissolution of cellulose
without the need for chemical modification.39 Whilst a number
of different ILs have been used, the majority are based on an
imidazolium cation; hence the focus on 1-ethyl-3-methyl-
imidazolium acetate, perhaps the most studied IL for ligno-
cellulosic dissolution, in this paper.38,40 Whilst ILs have negli-
gible vapour pressure and are often miscible with water, the
high viscosity and economic cost limit their current use.41 The
observation that mixtures of dipolar aprotic solvents, such as
dimethyl sulfoxide (DMSO), with some ILs facilitates instanta-
neous dissolution of cellulose42,43 has broadened the range of
solvent systems available. Mixtures of ILs and CSs have been
termed ‘‘organic electrolyte solutions’’ (OESs).42 Recently, we have
described a predictive methodology for selection of the CS.44
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There is now a body of literature reporting investigations
into why ILs dissolve cellulose efficiently, from attempts to
develop a theoretical understanding to those seeking to opti-
mise the choice of IL.45–48 Likewise, since their development,
there have been a number of publications describing attempts
to determine whether the CS components of the OES interact
with the cellulose, or are purely viscosity modifiers.49–52 Whilst
computational models have been developed for specific systems
at set IL molar fractions (wIL),44,52 there have been, to the best of
our knowledge, no studies aimed at developing an operational
understanding of the cellulose dissolution curves generated as wIL

changes.
In this paper, we build a 1-D random walk model for the

quantity of cellulose that dissolves in an OES with variable CSs,
and compare this to a multi-polynomial regression model of
the same system. We demonstrate that the 1-D random walk
model can be used to vastly reduce (to two) the number of
dissolution experiments required to characterise the cellulose
dissolution profile in new OESs, such that the model is of great
utility to experimentalists.

2 Model development
2.1 Random walk model

In the 1-dimensional (1-D), discrete-time, discrete-space random
walk for many walkers, space is represented as a 1-D lattice. Sites
on the lattice can be occupied by a walker, or are empty. Time is
discretised into time-steps; walkers can move left or right with
equal probability; two walkers cannot occupy the same site; and
walkers cannot ‘hop over’ each other (i.e. walkers can get ‘stuck’
behind each other). One of the commonly calculated properties of
a random walk is the number of distinct sites visited by N walkers
in n steps, often given as an expectation value on a distribution,
hSN(n)i, which is given by:

SNðnÞh i ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n lnðNÞ

p
(3)

for a large number of N, where s is the variance.29 For a single
walker, S1ðnÞh i ¼

ffiffiffi
n
p

, so the effect of extra walkers frustrating

each other’s random walks is
ffiffiffiffiffiffiffiffiffi
lnN
p

. If N is fixed and n - N,
then SNðnÞh i � s

ffiffiffi
n
p

in the case where the walkers have taken
enough steps to get out of each other’s way and the system is best
described as N versions of a single random walker. This is not
possible for the 1-D random walk, and walkers always frustrate
each other’s exploration.

When the number of steps is low, the system is in regime I,
where n { N early on in the random walk, then hSN(n)i E n.
In regime II, n E N, and the walkers start to interact.

This model is here applied to a system where a solute, Z,
dissolves in a mixture of two components, X and Y, where Z is
soluble in pure X, insoluble in pure Y, and soluble in some
mixtures of X and Y, dependent on the amount of X. The
solution comprises solvation shells (SSs), which are the part
of the solvent that is interacting with the solute, perturbed by
its presence and providing energetic support to keep the solute
in solution. These are embedded in a bulk background solvent,

which is the part of the solvent that is not perturbed by the
solute. This model could apply to colloids, or phase-separated
mixtures, as well as true solutions, and the mixture need not be
restricted to only two components. For our example system, X is
the IL, Y is a CS and Z is cellulose. The solvent shell is expected
to be mostly made up of IL embedded in bulk mixture of IL and
CS: see Fig. 1. For this particular model, it is assumed there is
no interaction between CS and IL.

The number of SSs dissolved in the mixture is modelled as
the amount that will fit into the physical volume of solvent. The
structure of the solvent shells is ignored and modelled only as
occupied volumes of space, reflecting the assumption that
these do not change size, or shape, for different SS concentra-
tions. Rate of dissolution, or any time-based measure, is not
included, so it is assumed that the amount of solute dissolved
is the maximum soluble in that solvent mixture, i.e. that it is at
equilibrium. As such, this is a counting/space-filling problem:
the number of solvent shell volumes that are filled out of the
possible maximum number achieved if the volume were maxi-
mally occupied by solvent shells is counted. As the number of
‘sites’ filled are being counted, this is a 1-D problem: see Fig. 1.
A macroscopic physical model for this would be placing hard
spheres into a tube.

There is a measure of spatial frustration here. A volume of
mixture can contain only so much of Z and each molecule of Z
has a SS of a certain size. The maximum amount of Z that can
fit into a volume is cmax,¶ where it is understood that this is the

Fig. 1 Model schematic. The dissolved cellulose is surrounded by an ionic
liquid (IL) containing solvent shells (SS) embedded in bulk solvent mixture
of IL and CS (bulk OES); the SSs are modelled as filled or empty sites
available in the solution. In 1-D model space, only the number of these
volumes is included in the model; their spatial arrangement, temporal
dynamics or kinetics are ignored. (a) At a low concentration (in this case,
wIL = 1

4) there is plenty of ‘space’ in the solution and little interaction
between SSs. (b) At a high concentration (for example, wIL = 3

4) the SSs
compete for space, which is modelled as random walkers frustrating each
other’s exploration of model space. wIL is the molar fraction of IL, and
the maximum number of SS that could be fit into the volume, cmax, is 4 in
this schematic.

¶ Note that, the maximum volume is not 100% of the available volume as the
solvent shells cannot fill all available space. Instead, they occupy between 68%53

and 77.8%54,55 of the total volume, dependent on whether the shells are spherical,
or elliptical, and maximally packed or randomly packed.
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maximum value over all possible combinations of X and Y
(i.e. all molar fractions), and is generally expected to be the
value measured when wX = 1 if Y is a CS that does not dissolve Z.
The maximum amount of Z that can dissolve in a mixture at any
given wX is c(wX). This is a measure of how many sites there are
in the liquid mixture. Thus, c is a measure of the holding
capacity of a solvent mixture (and the fact that we can describe
the process in terms of c/cmax explains why the process is
1-dimensional). If a mixture is close to its value of c, then for
another molecule of Z to dissolve, the SSs of all molecules of Z
must rearrange to admit another molecule of Z. Thus, solvation
is modelled as site filling, and the number of sites are propor-
tional to wX.

Instead of N random walkers, there are x ‘sites’ in the liquid
mixture capable of ‘holding’ a unit of c, i.e. a volume that would
be occupied by the solute and its SS. These sites interact with
each other because two SSs cannot occupy the same position.
Instead of n time-steps, there are n IL ion pairs available, and
the process is not considered over time, but over phase-space:
it is modeled across chemical phase space on the continuum wX

from 0 (pure Y) to 1 (pure X).
The theoretical model for the expectation value of the mean

number of distinct sites visited by N random walkers is used.
Once visited by a walker for the first time, a site cannot be
visited again for the first time. In this system, once a site is
visited for the first time, a SS is formed around a ‘piece’ of
cellulose and the site is occupied.8 The model uses discretized
space in the discrete sites available for dissolving Z, bearing in
mind that these sites do not exist until Z is added to the mixture
and the solvent forms a ‘dissolution site’ around it (this is
identified with SSs, as we shall see later). The existence of these
sites is predicated on the number of IL ion pairs available (n),
thus compositions with greater n can form more SSs. The mean
number of distinct sites visited hSNi is then proportional to the
amount of Z that can dissolve in a mixture.

2.2 Applying the random walk model to cellulose dissolution
in ionic liquid mixtures

The system under study is a multi-component liquid consisting
of an IL, 1-ethyl-3-methylimidazolium acetate, [EMIM][OAc],
(X = [EMIM][OAc]), and a dipolar aprotic CS (Y), one of:
dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF),
N,N-dimethylacetamide (DMAc) or N-methylpyrrolidinone
(NMP). These had previously been identified as good OES
CSs.44 In addition, key solvent parameters were identified from
amongst Catalan SP, SdP, SA, SB parameters and Lawrence DI,
ES, a1 and b1 parameters. Ranges were identified for these
parameters that would describe a ‘good’ CS for the formation of
OESs for the dissolution of cellulose. Specifically, the Lawrence
a1 and Catalan SA measures were found to be the most
important measures of these sets for identifying good CSs.44

Random walk model results for the full set of solvents pre-
viously tested,44 which additionally includes g-valerolactone
(g-val), g-butyrolactone (g-but), 1-methylimidazole (1-MI), 1,3-
dimethyl-2-imidazolidinone (DMI), sulfolane, and propylene
carbonate (PC), is given in Fig. S1 in the ESI.†

2.3 Multi-polynomial regression model for cellulose
dissolution in an OES

In order to investigate the effect of different CSs on the maxi-
mum dissolution of cellulose in an OES, a multi-polynomial
regression model was independently developed based on the
molar ratio of IL (wIL) and the molar ratio of CS (wCS = 1 � wIL):

wcell = AwIL + B(1 � wIL) + C(wIL)D(1 � wIL)E � F(wIL)2 (4)

where wcell is the molar fraction of cellulose dissolved, normalised
to the value obtained in the pure IL (wIL = 1), and A–F are
constants. The first term describes the linear effect due to the
IL; the second is the linear effect due to the CS; the third term
describes the CS:IL cross-term interaction; and the final term
describes the IL interaction with itself. In all cases, A = 2 and F = 1
to ensure that wcell = 1 at wIL = 1 (thus the maximum number of
fitting parameters used is four).

Given that the pure CS cannot dissolve cellulose, B o 0 and
determines the point at which the curve crosses the abscissa,
i.e. the point at which dissolution of cellulose is possible. The
term C(wIL)D(1 � wIL)E determines whether the dissolution of
cellulose is modulated due to interaction between the IL and
CS. C can either be positive or negative (for example, CSs that
inhibit the dissolution of cellulose in this system have negative
C values) and is equal to 0 when there is no interaction between
the CS and IL. The coefficients D and E weight the interaction
term in favour of the IL or the CS.

Constants B, C, D and E were calculated using the ‘Solver’
function in Microsoft Excel applying the GRG non-linear solving
method.56 Both the sum of the differences between the modelled
and real values, and the sum of the squared differences were
minimised.

The minimum IL, wIL|min for each solvent, taken as the
abscissa crossing point, was fitted against the molar volume
of CS and OES, VCS

M . This was fitted in Mathematica using the
equation:

wILjmin¼
vILV

CS
M

vIL f V
CS
M þ 1� vILð ÞV IL

M

; (5)

where vIL is the volume of IL in the solution and (1 � vIL)
replaces the volume of CS in the solution vCS, leaving f as a free
fitting parameter. A linear fit with m and g as fitting para-
meters, was also performed on the transformed data:

wILjmin¼ m
VCS

M

VIL
M � VCS

M

þ g: (6)

These fits were executed in Mathematica 11 using the
‘NonlinearModelFit’ and ‘LinearModelFit’ functions, respectively.57

8 There are results for the trapping problem, where a walker can be trapped. This
theory is not used here because the usual measure is the survival probability of
the walker in the presence of traps – it has been assumed that molecule Z will
always dissolve if there is an empty site available.
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3 Results
3.1 The random walk model

The identification of the relation between the site model of a
solution and a random walk over space and time leads to the
question of how the regimes mentioned above correspond to
the solution model. Regime I is identifiable as a low concen-
tration regime, wIL { 1, where the number of occupied sites is
much less than the maximum available (cmax), and is limited by
the amount of IL in the mixture. Thus, there is little interaction
between pairs of IL ion pairs and the SSs do not interact or
encounter each other. At this point, c B x, where x is the
number of solvent shells; all ions of IL are associated with a SS,
and c scales linearly with wIL.

Regime II occurs when the concentration of IL is high
enough that the SSs start to interfere with each other; at this
point c is non-linear with wIL.

If the amount of cellulose, c, is proportional to the expected
number of distinct sites visited by N random walkers, we would
expect that:

c / SNðnÞh i /
ffiffiffiffiffiffiffiffiffiffiffi
n lnx
p

(7)

As the random walk model is valid for the large x case, we
calculated the number of dissolved cellobiose units in a mole of
OES, ncell, and plotted it against the number of IL pairs in a
mole of OES, nIL, (which was taken from the molar fraction
data), Fig. 2. The data fits the theory with the equation:

ncell ¼ d þ ffiffiffiffiffiffiffiffiffiffi
mnIL
p

which, by comparison with eqn (3), directly relates the number
of dissolved cellobiose residues to the expected number of sites
visited by N random walkers. In the random walk model the
walk starts at ‘1’ because there are many walkers present at the
first time step and it is possible to have an expectation value of
zero. As we need a certain number of IL molecules present
(which is more than 1) in order for the first ‘site’ to be ‘occupied’

(i.e. to form a SS), the random walk is offset from the origin by d,
the point where the curve crosses the abscissa.

Fitting parameters are given in Table 1. The curvature of the

curves in Fig. 2 is m in the fit, which is identified as
ffiffiffiffiffiffiffiffi
ln x
p

in our
model, and so should be related to the extent of interaction (i.e.
frustration) between the solvent shells. This value is different

for different CSs. The quantity
ffiffiffiffiffiffiffiffi
ln x
p

is a measure of the volume
the CS occupies. Bulky CSs take up a larger volume for a given
solvent composition compared with smaller, less bulky CSs – with
the proviso that some of the CS ‘bulk’ is a measure of electrostatic
interactions, see Fig. 3. The molar volumes of the CS investigated
here ranged from 71–107 cm3 mol�1 (see Table S2 in the ESI†), or
43–65% of IL molar volume (which is 166 cm3 mol�1).

In Fig. 4 the volume fraction that is available to the IL to
form SSs is plotted against the amount of cellulose dissolved:
this has removed the effect of the CS in the mixture entirely.
There is a linear dependence (R2 is over 0.95 for each good CS,
see Table 2), and there is no appreciable difference between
solvents; in fact, a straight-line fit to the all the good CSs has an
R2-value of 0.976. Including all CSs only perturbs this fit slightly
(the gradient is unchanged and R2 value is 0.930). There is little
difference between OESs and certainly any difference is within
the spread of the experimental data, thus, the only important
quantity is the volume available to the IL. This is precisely what
our succinct space-filling model, that has ‘abstracted out’ a
large amount of the chemical detail, would predict.

Fig. 5 shows the number of IL pairs per cellobiose residue.
The system is linear when it is in regime II (between ca. 0.2 o
wIL r 1), and there is little difference between the different
CS-based OESs in this regime. The minimum number of IL
pairs required per cellobiose residue is ca. 2.4, and the straight

lines are drawn at
nIL

ncell
¼ 2:4þ 5wIL and

nIL

ncell
¼ 3:7þ 5wIL, which

gives an estimate (from the ordinate crossing point) of the
minimum number of IL pairs that would be required, were the

system permanently in regime II, of 2:4omin
nIL

ncell

� �
o 3:7. This

range fits with the values of 2 r IL o 3 found for cellulose in a
DMSO-based OES.58 Similarly, the number of IL ion pairs per
cellobiose in pure IL is between 7.4 and 8.7 (Fig. 5), with NMR
experiments suggesting that there are 6–8 IL ion pairs to
cellobiose in the primary SS.** 58 The gradient is 1/5, so an
extra 5 IL pairs are needed to allow each extra cellobiose to be
dissolved. This number reflects that determined from NMR

Fig. 2 Number of cellobiose units of cellulose, ncell (taken from molar
fraction data) in a mole of solution against the number of IL pairs for ‘good’
CSs. The fit is ncell ¼ d þm

ffiffiffiffiffiffiffi
nIL
p

. These good CSs demonstrate curves that
resemble 1-D random walk curves. (Data for all solvents tested are given
in Fig. S2 of the ESI.†) Points are experimental data measured in pairs of
over- and under-estimates of the maximum cellulose dissolvable, the lines
are the 1-D random walk fits.

Table 1 Coefficients for the ncell versus nIL fits in Fig. 2. The equation used
was: ncell ¼ d þm

ffiffiffiffiffiffiffi
nIL
p

. The norm of the residuals is given by R2. Full data
are given in Table S1 of the ESI

Dataset d m R2

DMSO �1.402 � 1022 1.184 � 1011 0.998
DMF �2.011 � 1022 1.277 � 1011 0.998
DMAc �2.651 � 1022 1.371 � 1011 0.999
NMP �1.886 � 1022 1.274 � 1011 0.996

** Although, the methodology used to calculate these numbers has been
questioned.59
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studies,58,60 as there are 5 hydroxyl groups for the IL to interact
with, and it has been found that the volume fraction of cellulose
in IL is 0.2,60 which relates to the gradient (1/5) observed when the
system is in regime II. Therefore, the spatial frustration from SSs
accounts for a loss of around 2.6 IL pairs from SSs.

3.2 The multi-polynomial regression model

The fitted constants for the multi-polynomial regression model,
eqn (4), are given in Table 3. For the majority of the dipolar

aprotic CSs tested (NMP, DMF, DMAc, sulfolane, g-but and
g-val) there is no interaction between the CS and the IL: the
constants C, D and E equal 0 (Table 3). An example of the
resulting curve is given in Fig. 6a. This gives rise to three
regimes (0, I, and II). In regime 0 cellulose dissolution is not
possible; the IL is prevented from forming SSs around the
cellulose. From a packing perspective, the free-space available
to the IL is not large enough to fit a complete SS, thus, cellulose
cannot be dissolved. It follows that the larger the CS molar

Fig. 3 Different CSs with different molar volumes (VM) can correspond to the same wIL. The CS with the smaller molar volume (left) has less available
volume for SS, and thus a higher frustration interaction than the CS with a larger molar volume (right), which has larger OES volume for the same molar
fraction. This effect is the basis for most of the differences between OES formulations.

Fig. 4 Molar fraction of cellobiose, wcell, versus volume fraction of ionic
liquid, nIL, (as calculated from molar volumes and molar fractions). The
amount of cellulose dissolvable in a solution mixture is only related to the
volume of IL available, suggesting that a space-filling model of dissolution
is appropriate. Blue circles: DMSO; orange squares: DMF; yellow dia-
monds: DMAc; pink triangles: NMP. The fit parameters are given in
Table 2. Note, the excess volume of mixing is ignored as it was found to
be very small in experiments.44

Table 2 Coefficients for the wcell versus nIL fits. The equation used was:
wcell = a + bnIL. The norm of the residuals is given by R2

Dataset a b R2

DMSO �0.00117 0.126 0.990
DMF �0.00768 0.135 0.965
DMAc �0.00655 0.137 0.986
NMP 0.00717 0.123 0.953
DMSO, DMF, DMAc and NMP �0.00245 0.130 0.976
All CSs with a positive interactiona �0.00109 0.130 0.930

a All CSs with a positive interaction are: 1-MI, DMSO, DMF, DMI, DMAc,
sulfolane, g-but, g-val, TMU and NMP (data are plotted in Fig. S3 of the ESI).

Fig. 5 The number of IL pairs per cellobiose residue. Upper and lower

boundaries (blue lines) are drawn at
nIL

ncell
¼ 2:4þ 5wIL and

nIL

ncell
¼ 3:7þ 5wIL.

The full set of data is given in Fig. S4 in the ESI.†

Table 3 Upper and lower values for polynomial regression model
constants A–F, eqn (4), for tested CSs. PC is propylene carbonate

Co-solvent

Polynomial regression model parameters

A B C D E F

DMSO 2 0.09–0.10 1.55–1.59 1 4.36–3.60 1
1-MI 2 0.27–0.23 4.28–3.85 1 4.05–3.74 1
DMI 2 0.68–0.50 3.21–2.37 1 1.76–1.59 1
TMU 2 2.19–2.18 2.57–2.58 1 0.99 1
NMP 2 0.09–0.08 0 0 0 1
g-but 2 0.10–0.09 0 0 0 1
DMF 2 0.11–0.10 0 0 0 1
Sulfolane 2 0.14–0.07 0 0 0 1
DMAc 2 0.15–0.14 0 0 0 1
g-val 2 0.30–0.31 0 0 0 1
PC 2 0.22–0.21 �2.05–2.08 2.2 1 1
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volume, the greater the wIL required to initiate dissolution,
implying that the wIL at which cellulose dissolves should be
proportional to CS molar volume, as is shown in Fig. 7. Regime I,
where AwIL c FwIL

2, is equivalent to c B x; the increase in the
number of SSs results in a corresponding linear increase in the
amount of cellulose that can be dissolved, as described by
the random walk model. At a higher proportion of IL, AwIL c

FwIL
2 - AwIL = FwIL

2, regime II occurs; a greater number of SSs

are required to dissolve a cellulose unit due to their interaction
with one another, limiting cellulose dissolution. This increase
in relative weight of the wIL

2 term is a measure of SS frustration,

equivalent to
ffiffiffiffiffiffiffiffi
ln x
p

in the random walk model.
A positive interaction between the CS and IL is predicted for

1-MI, DMSO, DMI and TMU. For 1-MI, DMSO and DMI, E 4 1,
resulting in experimental curves that initially follow the modelled
curve with an equal weighting between the CS and IL, before
falling into line with the curve reflecting no interaction at higher
IL fractions (Fig. 6b). However, for TMU, E E 1, giving little
deviation from the curve with equal weighting (Fig. 6c). It is
theorised that these four CSs (1-MI, DMSO, DMI and TMU) are
able to participate in the formation of the SS between the IL and
cellulose, resulting in a reduction in the number of IL ion pairs
required in the SS and enhancing dissolution over that of the pure
IL. This is in agreement with RISM calculations conducted on a
glucan chain–[EMIM][OAc]–DMSO system with a low concentration
of IL (wIL = 0.019), where it was observed that DMSO appeared to
solvate the glucan chain in a similar manner to the acetate anion.44

The transitional nature of the enhancement is also in agreement
with a previous molecular dynamics study in which it was reported
that DMSO does not interact with cellulose at wIL = 0.5;52 at this
concentration the CS:IL interaction term is negligible.

In this scenario, regime I is described by AwIL + CwIL(1� wIL)E
c

FwIL
2, and whilst c B x, x is no longer directly proportional

to the number of IL molecules in the system, but rather

Fig. 6 Lower-limit (underestimate) experimental (red dots) and theoretical solubility curves for (a) g-butyrolactone, (b) TMU, (c) DMSO and (d) propylene
carbonate. Curves with no (wIL)(1 � wIL) interaction term denoted in blue; red includes the interaction term (wIL)(1 � wIL) (equal weighting); orange curves
include (wIL)D(1 � wIL) and curves with (wIL)(1 � wIL)E are in purple. Regime 0 is white, regime I is highlighted in blue, the transition regime IIa in yellow, and
regime II in red. ‘Normal’ CSs OES have no CS:IL interaction and follow the random walk model (a), deviations can come from a positive interaction (b and c), or
a negative interaction (d), which slightly modify the curve.

Fig. 7 Correlation between co-solvent molar volume, VCS
M , and minimum

wIL at which the dissolution of cellulose occurs based on upper and lower
limits for each CS. The bulkier the CS, the greater the wIL required to initiate
dissolution, as less free-space is available for SS formation at low wIL. The fit
is given in eqn (5).
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dependent on the number of IL and CS molecules (as x is a
measure of SSs, this fits with the supposition that these CSs are
participating in the SS). For DMSO, 1-MI and DMI, regime II
still tends to the AwIL = FwIL

2 limit because the CwIL(1 � wIL)E

term becomes insignificant. For the TMU-based OES, regime II
tends to the AwIL + CwIL(1 � wIL)E = FwIL

2 limit instead. For
DMSO, 1-MI and DMI it is apparent that the number of CS
molecules interacting with the SS decreases between regimes I
and II, resulting in a transition region, regime IIa, (Fig. 6c),
whereas, the number of TMU molecules in the SS remains
constant over the entire phase-space resulting in a direct
transition from regime I to II (Fig. 6b).

Finally, PC has a negative interaction with the IL, resulting
in suppression of the dissolution of cellulose. Its transition
from having no interaction, to interacting at higher wIL is
unexpected. In regime I it conforms to AwIL c FwIL

2 and then
transitions to tending towards AwIL + CwD

IL(1 � wIL) = FwIL
2 in

regime II as the CS:IL interaction term becomes more signifi-
cant. From the perspective of the random walk model, the
presence of PC results in an increase in an interaction between
the SSs above that of the ‘normal’ system where there is no
CS:IL interaction. (Conversely, the presence of DMSO, 1-MI, DMI
or TMU results in a decrease in the theoretical interaction at
particular molar fractions.) It is theorised that at low wIL, where
SSs have formed, the PC molecules interact with the shells, but
there are enough other PC molecules present in the bulk such that
they cannot interact with more than one shell. Therefore, the
interactive term is negligible and the curve initially follows the
AwIL { FwIL

2 curve. However, as the wIL increases, the ‘shielding’
effect of the free PC molecules decreases, which implies that PC
molecules interact with more than one SS and decrease the
dissolution of cellulose compared to a non-interactive system,
regime IIa. Finally, in regime II the PC molecules interact with the
maximum number of SS, minimising dissolution.

3.2.1 Regime 0. The random walk model starts with regime I,
as, if there is an empty site, a walker can always move into it. As
this model relies on site filling, it is not possible to predict
regime 0, i.e. where cellulose is insoluble in the mixture. It is,
however, useful to discern the start of regime 1, i.e. the lowest
IL concentration at which cellulose begins to be soluble, based
on a small number of measured data points, as is discussed in
detail below. In our system, an empty site is a SS and the point
of transition from the zeroth regime, where there is no cellulose
dissolution, is a measure of the amount of cellulose solvated by
a SS and the amount of IL in the OES. The transition point
between regime 0 and regime I is correlated with the CS molar
volume, Fig. 7. This trend is described by the following equation
(which comes from the definition of wIL):

wILjmin¼
VCS

M vIL

V IL
M vCS þ VCS

M vIL
(8)

where vIL is the volume of IL in the mixture, vCS is the volume of
CS in the mixture, and VIL

M and VCS
M are the molar volumes of IL

and CS, respectively. Eqn (8) fits the data well (R2 of 0.957)
with the f = �28.89 and vIL = 0.0414 (this quantity is related
to the choice of IL). As a check, the data were also linearised

(see eqn (6)), yielding a fit with R2 = 0.830 with wIL|min =

0.171x � 0.122, x ¼ VCS
M

V IL
M � VCS

M

� � (Fig. S5 in the ESI†).

An intuitive explanation of how SS, with approximately the
same volume, could have drastically different wIL|min is given in
Fig. 8. In contrast with Fig. 3, where the wIL was constant, here
we assume that the volume available is constant, and compare
the effect of VCS

M on wIL. As shown in Fig. 8, the number of CS
molecules that can fill the available volume (vCS) depends on its
VM. The bulkier the CS, the less fit into the available volume
(vCS), thus the ratio of IL:CS is greater, resulting in a larger wIL.

3.3 Comparison of the models

Both models were built separately, from separate assumptions,
and both lead to the conclusion that (if the CS is an appropriate
OES former, i.e. has suitable solvent properties, as defined
previously44), the volume available to form solvent shells is
the most important aspect of the system. The 1-D random walk,
grounded in ideas of universality explains this: once the solvent
system is tending towards its limiting behaviour, a deep under-
standing of the underlying chemistry of the system is not
required, the system can be modeled as described (as evidenced
by the fact that differences between different high wIL OES are
within experimental error) and solvent shells act like hard
spheres in a finite box. This holds over the range identified
as regime II of that model, which is associated with a signifi-
cant IL:IL term in the linear model (the models are compared in
Table 4). That this model is able describe most of the behaviour
for most of the OESs is remarkable. The random walk model does
not allow direct separation of the effects of a CS and IL inter-
action, but the multi-polynomial model does: a comparison of the
two models shows where this interaction affects the system, and
thus where the chemistry of the CS and IL should be considered.

3.4 Use of the random walk model

The random walk model is useful to the experimentalist,
allowing good prediction of experimental data from very few

Fig. 8 Cartoon depiction of the relationship between VCS
M and wIL|min.

Assuming a fixed volume available to the solution, and minimal number
of SS, fewer bulky CS are required to fill the remaining volume (10 in this
example) than the smaller CS (42). As the number of IL ion pairs is fixed (6),

this number makes up a larger number proportion for the bulky CS
6

16

� �

than for the smaller CS
6

48

� �
, as illustrated on the right.
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measurements, and should work for other ILs. As a demonstration,
the predictions that could be gained from the model and measure-
ments from a single OES composition, for Fig. 2 will be calculated;
other figures can be calculated following a similar method. The
value of a mixture of wIL = 1 is known, the value of wIL|min can be
obtained from eqn (8) (or Fig. 7, or eqn (6)), so only a single OES
composition need to be measured. For an experimentalist, the
most important range is nearest the corner of the curve as this is
the most efficient composition.44 As this is not known, a value of
0.2 r wIL r 0.4 is a good choice for measurement. To demon-
strate the method, typical CSs, g-but and DMAc, were chosen
and, to demonstrate the limits, the CS least-well described by the
model in Fig. 2, DMSO, was chosen.

A subset of three points was chosen and the fits to these
were compared to the fit to the entire data. The molar volumes
of g-but, DMAc, DMSO and IL were input into eqn (8). DMAc
has a wIL|min value of 0.09 (the less accurate, linearized eqn (6)
gives 0.12 and the value calculated from the fit in Fig. 2 is 0.06),
wIL|min DMSO is 0.056 and g-but is 0.06. The measurements
around wIL = 0.35, wIL = 0.4 and wIL|min = 0.4 were chosen as the
single measurement (which is made of 3 repeats for DMSO and
DMAc, two repeats for g-but) for DMAc, DMSO and g-but respec-
tively. To balance the fit, the points as wcell = 0 were repeated the
same number of times as the experimentally measured point
(i.e. 3 repeats for DMSO and DMAc and 2 repeats for g-but). The
final point was the value for wIL = 1 which was known.

As an example, the fit to the chosen subset of points is
shown for g-but in Fig. 9 (the data for DMSO and DMAc are
given in Fig. S7 and S8 of the ESI†). For DMAc OES, the single
measurement fit had an R2 value of 0.995 to the whole data (as
the fit to the whole data had an R2 of 0.999 (see Table 1) by only
measuring one point most of the variance in the data has been
explained). The average residual between the single measure-
ment fit and the actual data is only 7.06%. For DMSO, the
single measurement fit has an R2 to the whole data of 0.991
(again, using just a single measurement point affects only the
third decimal place), and an average error of 9.43%. For g-but,
the single measurement fit has an R2 to the whole data of 0.995
(the fit using the entire data has an R2 of 0.996), and an average
error of 7.40%.

Thus, to predict the data to within 10% error, an experi-
mentalist need only locate the molar volume of the selected CS
and measure one point in the range 0.2 r wIL r 0.4 (assuming
the solubility in pure IL is known, if not, that measurement is
also required). This is valid because, as results presented here

have demonstrated, the volume of the SS (which relates to
the volume of the CS and IL) is the most important feature
for predicting behaviour in these systems. A good predicted
solubility curve is provided, even where there are interactions
between CS and IL, which cause the OES to deviate slightly
from the 1-D random walk model. For example, the predicted
curve for the DMSO-based OES fits well with that predicted
from the random walk model, even though the regression
model suggests CS/IL interactions: the non-random walk terms
account for only around 10% of the variance. So, even for these
CSs, an experimentalist could save significant time by starting
with the predictions from the one measurement fit to the
random model and refining any critical regions, if very precise
data are required.

If the experimentalist chose to investigate a different IL
(provided that it was measured experimentally with a minimum
of two data points, including one that was the solubility of
cellulose in the neat IL), this method would be appropriate and,
moreover, very quick to apply. The key value needed, which is
the minimum mole fraction of IL required to initiate cellulose
dissolution, could be calculated from eqn (8). An alternative,
and simpler approach, especially for finding the OES composi-
tion needed to dissolve a known amount of cellulose, is to use
the fit to Fig. 4.

4 Conclusions

It has previously been demonstrated that suitable cellulose
dissolving OESs may be selected by matching co-solvent
parameters.42,44 Here we show that, once such a co-solvent is
identified (either by data-mining of solvent properties,44 or by
experimental means), minimal experimentation combined with
the 1-D random walk model described here allows prediction of
the entire experimental dissolution curve of a solute in an OES.
In this scenario, the most relevant parameter governing the
behavior of ‘good’ OESs is the volume available to form solvent
shells, which is related to the molar volumes of both CS and IL.

Table 4 Comparison between the models

Quantity
Random
walk model

Polynomial
regression model

Minimum wIL
(crossing point)

p d p B

SS frustration
ffiffiffiffiffiffiffiffi
ln x
p �FwIL

2

Regime I wcell p x EAwIL

Regime II wcell !
ffiffiffiffiffiffiffiffiffiffiffiffi
m ln x
p

as x! xmax -AwIL � FwIL
2 as wIL - 1

wcell p nIL

CS:IL interaction No Yes = CwD
ILw

E
CS

Fig. 9 Using the random walk model for prediction of g-but OES data.
Brown: data (dots) and fit (line) to all measured data. Black: fit (line) to
measured or estimated points (dots). Only the measurement at around
wIL = 0.4 needs to be measured, the point at wIL = 1 is known and the point
at wcell = 0 can be estimated from eqn (8). The single measurement fit
differs from the actual data by only 7.4% on average.
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This fits with the previously noted indication of preferential
solvation of cellulose chains derived from RISM calculations.44

The 1-D random walk model is an example of a type of
universal process, which has been applied to complicated
multicomponent systems. It is useful to identify and under-
stand the single dimension that a system can be described by,
and doing so gives insight into the process and economy of the
model. The success of this model helps highlight the important
aspects of these systems and the most relevant control para-
meter (for the OESs in this paper), which is the volume fraction
available to the IL. The amount of cellulose soluble in an OES is
largely a function of the number of solvent shells that can be
formed by the available IL, which relates to the number of IL
ion pairs available and the volume of the solvent shell as a
proportion of the total volume available. Thus, a space packing/
counting model of solvent shells, modelled as hard spheres
being added to a box, is sufficient to describe most (and in
some cases all) observed behaviour. This model is general and
could be applied to other solvent mixtures.

The 1-D random walk model is suitable for rapid and effi-
cient prediction of a dissolution curve with changing composi-
tion of a mixed solvent system, such as an OES, requiring only
two experimental measurements: maximum solubility of solute
in the pure IL and solubility of the solute in the OES in the
descending portion of the solubility curve, i.e. where solubility
is sensitive to changes in composition. Thus, this provides a
useful tool for vastly reducing the number of experiments
required to develop the solubility curve for a new co-solvent,
as demonstrated here for g-butyrolactone. The very utility of
this model derives from the reductionist approach. However,
even the most superficial consideration of the chemistry of
the components would suggest that intermolecular/interionic
interactions are likely to modulate solvent properties in a
manner not modelled by consideration of space-filling alone.
Thus, a polynomial regression model was developed indepen-
dently of the 1-D random walk model, to allow robust comparison.
This highlights OESs that demonstrate slight deviations from the
behavior predicted by the 1-D random walk model and, thus,
points to interactions that are likely to be important. For example
interaction, or cross terms, of the form (wIL)D(1� wIL)E are required
to describe some systems. Amongst the CSs tested, consideration
of molar volume alone proved adequate to describe OESs formed
with [EMIM][OAc] and NMP, g-but, DMF, sulfolane, DMAc or g-val,
i.e. the CS:IL interaction was negligible. Positive interactions
between CS and IL result in enhanced solubility, above that
predicted by the 1-D model, for 1-MI, DMSO and DMI at low wIL,
although it is notable that these require such minor adjust-
ments to the model that most effects would disappear into
experimental error, except in very comprehensive testing. In
addition a positive CS:IL interaction was indicated for TMU
across the entire range and a negative CS:IL interaction sug-
gested for PC (a rather poor solvent for preparing OESs for
cellulose dissolution). This shows the value of our approach
whereby a simple, analytical and easy to understand model can
describe almost all of the measured data, and a fitted regression
model can highlight where other aspects, such as CS:IL

interactions, are important. In one of these cases, previous results
from more detailed theory (RISM) agreed with the findings from
the regression model and confirmed the presence of a DMSO:IL
interaction at low wIL and its absence at mid-range wIL.44,52

Clearly, such intentional simplification of OES systems does
not serve to describe the detailed interactions at a molecular,
or electronic level, which would require detailed modelling
approaches utilising high levels of theory. Nonetheless, the
remarkably good fits demonstrated indicate a model that is very
useful to reduce experimentation required, allowing rapid
selection and implementation of new OESs. Furthermore, the
deviations identified in the regression model point to groups of
solvents and CS/IL combinations that merit further in-depth
modelling to understand the subtle interactions occurring.
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