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On the role of topology in regulating
transcriptional cascades†

Mahan Ghafariab and Alireza Mashaghi *a

We study the impact of topology on the response of a transcriptional cascade with certain circuit

topologies to a constant and time-varying input signal. We systematically analyze the response of the

output to activating and repressing cascades. We identify two types of responses for a linear cascade,

namely the ‘‘Decaying mode’’, where the input signal becomes exceedingly weaker as it propagates, and

the ‘‘Bistable mode’’, where the input signal can either be amplified or die out in the pathway. We

examine how the transition occurs from one mode to the other as we add coherent and/or incoherent

feed-forward loops in an otherwise linear cascade. We find that pathways with at least one incoherent

feedforward loop can perform adaptive responses with the quality of response varying among different

topologies. Furthermore, we study the origin of a (non)monotonic input–output profile for various circuit

topologies over a wide range of parameter space. For a time-varying input signal, we identify some

circuit topologies that are more prone to noise propagation than others that are more reliable in

blocking out high-amplitude fluctuations. We discuss the effect of cell to cell variation in protein

expression on the output of a linear cascade and compare the robustness of activating and repressing

cascades to noise propagations. In the end, we apply our model to study an example of a transcription

cascade that guides the development of Bacillus subtilis spores and discuss an example from a

metabolic pathway where a transition from the decaying to bistable mode can occur by changing the

topology of interactions in the pathway.

1 Introduction

Genome-wide studies of transcriptional networks have demon-
strated a huge complexity of interactions among many components
of gene expression networks, often referred to as ‘‘hairball’’
diagrams. This level of complexity makes it difficult to formulate
unifying approaches towards understanding the dynamics of such
networks and arrive at useful conclusions.1 Topology plays a
critical role in determining the relation between various parts of
the network and how they function together. To understand the
role of topology in governing the dynamics of transcriptional
regulatory networks such as sensory networks that respond to
signals such as stresses and nutrients, and developmental net-
works that govern differentiation process, many approaches
have been developed to estimate the expression levels of inter-
acting elements, how interactions change with time in response
to environmental cues, and the impact of topology on the robustness
of the responses.2–5 In recent years, various topological features

of signaling pathways have been identified and their functional
relevance has been investigated.6–10 Coherent and incoherent
feedforward motifs, for example, are known to determine the
(non)monotonicity of input–output profiles.11,12 While an incoherent
feedforward loop can provide fold-change detection13 and accelerate
response time,14 a coherent feedforward loop can serve as a
sign-sensitive delay element in regulatory networks.6 These
studies suggest that the nature of interaction between the
members of the pathway (i.e. being repressing or activating)
and their network of interaction determines the response of the
system to various inputs. Longer transcriptional cascades, with
an ordered sequential chain of regulations, are also at the basis
of many complex developmental processes.15 For instance, the
transcriptional program of skeletogenic cell development in a
sea urchin embryo includes several layers of regulation that
correspond to developmental phases.16 Despite experimental
advancements in understanding regulatory networks in such
complex developmental processes, we lack a systematic approach
towards understanding the functional features of long tran-
scriptional cascades and how the addition of coherent and
incoherent interlocked feedforward loops and changing the
arrangement of interactions within the cascade affect its function.
By analogy with the arrangement of intra-molecular interactions
in proteins and nucleic acids, we define circuit topology and
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contact order for a transcriptional cascade.17–23 We propose that
the arrangement of these interactions is an important topological
property and put forward a mathematical model that explains the
dynamics of each element and how various topological features
can change the response of each element in the cascade. We study
how different topologies can change the kinetics and steady-state
level of the response. Most transcriptional factors are composed of
multiple subunit components, e.g. dimers, and tetramers. The
transcription factor gets fully active when these subunits bind to
inducer molecules to regulate gene expression. The binding
process usually reaches equilibrium within milliseconds for
typical inducers. A useful phenomenological model that governs
the reaction kinetics in the steady-state is the Hill function that
captures cooperative behavior in a single exponent.24–26 When
several transcription factors are chained to regulate their respective
downstream genes, they form transcriptional cascades which are
commonly found in developmental transcription networks.27 Long
transcriptional cascades usually lead to longer response time
for the downstream genes which occur in time scale of cell
generations (can take up to hours). Therefore, we can safely
assume that there is a separation of timescale between the
binding process (reaches equilibrium in seconds), transcription
and translation of target genes (take up to minutes), and the
accumulation of protein products (take many minutes/hours).28

The cascade includes a linear chain of reactions that carry
biochemical information received by its first component along
its linear path to the last component. The components of the
linear pathway can interact coherently and/or incoherently, i.e.
every upstream element activates its neighboring downstream
element (no backwards interaction). We used a bottom up approach
for studying the role of topology: we start off by examining the
properties of a simple chain with no out-of-chain interaction and
then add interactions with simplest to the topologically more
complex arrangements. In the end, we use our model to infer the
dynamics of the developmental network for Bacillus subtilis spores
and discuss how a similar mathematical approach can be used to
study the dynamics of metabolic pathways.

2 Methods
2.1 Dynamics of a linear pathway

The concentration of a protein in a population of cells can vary
from cell to cell due to stochastic processes.29–31 If a gene is
bound by a relatively large number of transcription factors, it
exhibits more robust expression and is less prone to stochastic
variations in expression. Here, we employ the widely used
linear noise approximation (LNA)30,32–34 which allows rapid
characterization of the stochastic properties of the cascade over
large parameter regions. By using the LNA method, the reaction
rates in the master equation are linearized and the steady-state
solution becomes a multivariate Gaussian distribution. Thus,
the marginal distributions for each element of the cascade can
be described at the level of Gaussian fluctuations with the
mean value for the number of proteins that is given by the
steady-state solution to the deterministic model. This method

has proven to be effective, especially in describing the dynamics
of gene regulatory networks, where the mean expression level of
each protein can be modelled with high accuracy by combining
transcription and translation into one step.35–37 Thus, to describe
the dynamics of each element in the pathway we use the following
interpretation

dXj

dt
¼ f Xpj ;Kj ;Vj ; n
� �

� gjXj ; (1)

where Xj A {X1,X2,. . .,XN} is the expression level of the jth element, gj

is its degradation/dilution rate, Kj is its binding constant (also
known as the protein number at which production is half of
maximal), Vj is its maximum expression level, and function f is
either an activating (A) or repressing (R) Hill function which governs
the production rate of Xj and is a function of the expression level of
the parent pj of the jth element (depends critically on the topology
of the network) and n which determines the sensitivity of the Hill
function.38,39 We set the production rates to have the following form

f Xpj ;Kj ;Vj ; n
� �

¼

A Xpj ;KjA;Vj

� �
¼

VjX
n
pj

Xn
pj þ Kn

jA

; Activating

R Xpj ;KjA;Vj

� �
¼

VjAK
n
jR

Xn
pj þ Kn

jR

: Repressing

8>>>><
>>>>:

(2)

2.2 Topological measures

By analogy with the arrangement of contacts in a linear
biopolymer,18 arrangement of biochemical interactions in an
otherwise linear cascade is a topological property. Any two
interactions can take one of the three arrangements, series
(S), parallel (P), and cross (X). Another important measure of
the arrangement of interactions is the average distance between
the interacting partners, the so-called contact order in structural
biology.19 The size of the cascade and the position of the
interactions in the pathway are also important structural
features that are examined along with circuit topology. For a
cascade with an arbitrary number of interactions, the assignment
protocol of circuit topologies can be applied to any pair of
interactions leading to a complete characterization of the topology
of pathways. Such classification of arrangements could, in
principle, be implemented in any type of pathway. In the case
of gene regulatory networks, the types of pairwise interactions
correspond to feedforward loop motifs. A feedforward loop
consists of three genes (A, B, and C) and three regulatory
interactions. The most downstream element of the feedforward
loop, e.g. C, is directly regulated by 2 other products A and B.
The production of B, in turn, is regulated by A. While in a
coherent feed-forward loop the regulation of B and C by A is of
the same type (i.e. both activating or both repressing), in an
incoherent loop the regulations are of opposite nature (i.e. one
activating and one repressing). The distribution of cascade
lengths in databases of transcriptional networks for S. cerevisiae,40

endomesoderm development in sea urchin,41 and Drosophila early
development (pair-rule genes) demonstrates that transcriptional
cascades can involve up to 8–9 genes (see ref. 27 for a review).
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3 Results
3.1 Properties of a linear pathway with one feed-forward loop

Consider a linear cascade of arbitrary length, N, with a linear
chain of biochemical reactions consisting of one input signal
Sx, which can be an inducer molecule that binds to protein X1

or a modification of X1 by a signal-transduction cascade, and
a chain of transcription factor proteins {X1,X2,. . .,XN} that
regulate one another. A constant input signal Sx of amplitude
b is transduced through the pathway where it stimulates the
first element, X1. As the level of X1 reaches half of its maximal,
it effectively starts to regulate the second element, X2. The same
chain of interactions regulate X3 up to XN. The basic properties
of a linear activating/repressing cascade before increasing the
complexity of interactions are worth discussing. To address
the mean-field dynamics of the system using eqn (1) and (2), we
assume, from now on, that all the interactions in the linear
cascade are all of the same type (i.e. either activating or
repressing Hill functions) with constant and equal degradation
rates gj = g, binding constants Kj = K, maximum expression
levels Vj = V, and cooperativity coefficient n = 2 (i.e. transcription
factors bind DNA as dimers). Fixing the cooperativity at other
constant values greater than two has marginal effects compared
to n = 2 (see ref. 34 for further discussion). Solving for the
steady-state of the system, we find the following set of fixed
points for the linear cascades:

for an activating cascade :

Xð1Þ
� ¼ V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 4g2K2

p
2g

;

Xð2Þ
� ¼ V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 4g2K2

p
2g

;

Xð3Þ
� ¼ 0;

8>>>>>>><
>>>>>>>:

for a repressing cascade :

X� ¼ �ð2=3Þ1=3
.

27K2
�
gþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81K4=g2 þ 12K6

p� �

þ 1

3
ffiffiffi
23
p 27K2

�
gþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81K4=g2 þ 12K6

q� 	
:

(3)

From eqn (3), we find that an activating cascade exhibits a
saddle-node bifurcation and has three fixed points whereas a
repressing cascade has only one stable fixed point. The critical
protein binding constant, Kcrit = V/(2g), sets the boundary
between two distinct behaviors for the activating cascade (for
detailed analysis see Appendix A, ESI†). (i) Decaying mode: for
K 4 Kcrit, there is only one stable fixed point at X(3)* = 0, as given
by eqn (3). In this parameter regime, the activation threshold for
each element of the cascade is too high such that the input
signal cannot transmit through the downstream elements (also
see Fig. 3). Therefore, irrespective of the magnitude of the initial
signal, the steady-state level of each element decreases as the
signal transmits through the cascade until it eventually dies out
as it reaches the most downstream gene. As a result, the output
gene does not get activated and the cell is at a disadvantage. (ii)
Bistable mode: for K o Kcrit, there are two stable fixed points at

X(1)* and X(3)*, and one unstable fixed point at X(2)*. Depending
on the strength of the input signal, the steady-state level of each
element would either increase to reach a non-zero value (cell is
not at a disadvantage), when SX 4 X(2)*, or decrease to zero (cell
is at a disadvantage), when SX o X(2)*. Since in real biological
systems there are always cell to cell variations in the production
of each protein, for cells in which X* o X(2)*, the downstream
genes cannot get activated which can be disadvantageous
for them.

Note that in this scenario, there is a chance for the signal not
to die out as it propagates further downstream and reaches the
non-trivial fixed point X(1)*. (iii) Transition point: K = Kcrit

defines the boundary between the first two modes of the
cascade. By changing the maximum expression level, V, or
degradation/dilution rate, g, we can tune the transition point.
For instance, by increasing V and/or decreasing g, we can shift
the threshold value up such that the transition from Bistable to
Decaying mode becomes less likely. Thus, we can synthetically
tune an activating cascade to ensure that all genes get activated.
Such points of qualitative change in the behavior of signal-
response profile has also been found in other types of biological
networks.42–46 On the other hand, as eqn (3) suggests, a repressing
cascade has only one stable fixed point. Therefore, given that the
duration of the constant input signal is long enough to effectively
initiate the repressing chain of regulations,28,47 regardless of the
magnitude of the input signal, the steady-state expression level of
the output always approaches a non-zero value. This implies that
repressing cascades are more robust to fluctuations in the
input signal and, thus, can be found more frequently in linear
transcriptional cascades.48,49

This preliminary finding forms the basis for our analysis in
the following sections regarding the role of topology in regulatory
cascades. We now introduce one interlocked (in)coherent feed-
forward loop into the cascade by adding one extra interaction, i.e.
an activating or a repressing regulation, to the linear cascade (see
the curved arrows in Fig. 1a). We consider the behavior of the
cascade near its transition point (K = Kcrit). By changing the
position of the feedforward loop along the cascade, we measure
the steady-state response of each element and the half-life time
for the activation of the last element XN (i.e. output) as a function
of the arrow position. We find that the kinetics and the steady-
state response of the output for both cases with an extra activating
and repressing interaction of length two, i.e. connecting a pair of
elements through a feedforward loop, significantly depends on
their positions in the cascades (see Fig. 1).

To explain the dependency of the steady-state level of the
output on the curved arrow, we need to understand its effect on the
steady-state value of intermediate nodes Xj*. The one-dimensional
map to find the steady-state solution in this case is very similar to
the one we found for a linear cascade, except for the fact that the
regulating function for the doubly regulated node, m, where the
(in)coherent feedforward loop acts, differs from others

Xj
� ¼ A Xj�1

�;K
� �

for jam;

Xm
� ¼ A Xm�1

�;Kð Þ � fc Xm�2
�ð Þ:

(4)
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Note that all the interactions in the linear cascade are either
activating, i.e. f(Xj�1*,KA) = A(Xj�1*,KA), or repressing i.e.
f(Xj�1*,KA) = R(Xj�1*,KR), Hill functions and the extra regulation
by the curved arrow, fc, can create an interlocked coherent
or incoherent feedforward loop depending on whether it is
activating A(Xj�1*,KA) or repressing R(Xj�1*,KR) the production
of Xm. These two regulations should be multiplied together
(AND gate) to get the steady-state level of Xm*.

Therefore, for an activating cascade, the steady-state expression
level of each member of the pathway, Xj*, can be divided into two
sub-groups: before the doubly regulated node, the steady-state of
each element approaches the non-zero fixed point (given by
eqn (3)). After the doubly regulated node (i.e. j Z m), the value
of Xj* changes depending on the nature of interaction from the
curved arrow. Consequently, the cascade may either maintain its
initial non-zero steady-state or jump over the unstable fixed point
and approach zero, i.e. the downstream elements will no longer get
activated (see the green and red dotted lines in Fig. 1b) – size of the
pathway N determines the number of times we apply the mapping
rule in eqn (4). Therefore, an incoherent feedforward loop in the

cascade has the ability to shut down the regulatory cascade which
could potentially damage the cell function. By changing the
position of the curved arrow, we can manipulate the ‘‘jump’’
in the steady-state. While having an incoherent feedforward loop
in the upstream (e.g. X2 repressing X4) can have a dramatic impact
on the fate of the output, i.e. repressing link in the upstream causes
a significant decrease in the expression level of the output, a
coherent feedforward loop can increase the expression of output
to relatively higher amounts (given that the steady-state value of
each element remains above the unstable fixed point). Fig. 1c and d
show that placing the incoherent feedforward closer to down-
stream elements of the cascade (e.g. X8 regulating X10) makes
close to no change in the steady-state and half-life time of the
output. Our simulation results also show that for an activating
cascade of particular size, there is an optimum position for
the interlocked coherent feedforward loop to minimize the
steady-state and maximize the delay in activation of the output
(i.e. X5 activating X7).

On the other hand, a repressing cascade demonstrates a
completely different behavior. Since there is only one stable

Fig. 1 The effect of adding a coherent/incoherent feedforward loop into a linear cascade on the kinetics and the steady-state level of the output (XN). Two
(a) activating and (b) repressing cascades with one interlocked (in)coherent feedforward loop. (c and d) Stability analysis of the activating and repressing
cascades: the steady-state solution (SSS) for each element of the pathway with zero, one coherent feedforward loop (CFFL), and one incoherent feedforward
loop (IFFL) are shown in black, green, and red dashed lines, respectively. (e and f) show the steady-state and (g and h) the half-life value of the output as a
function of arrow position. We numerically calculate the half-life and steady response by setting b = 1, gj = 1, and Vj = 1. Also, Kj = Kcrit = 1/2.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Se

pt
em

be
r 

20
17

. D
ow

nl
oa

de
d 

on
 1

0/
9/

20
24

 6
:1

1:
10

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cp02671d


25172 | Phys. Chem. Chem. Phys., 2017, 19, 25168--25179 This journal is© the Owner Societies 2017

fixed point for the cascade, the steady-state expression level of
downstream elements would ultimately approach that fixed
point. However, the extra feedforward loop introduces a ‘‘lag’’
in the steady-state response of each downstream element after
the doubly regulated node. In other words, for a linear cascade
with one coherent feedforward loop (Fig. 1b), the steady-state
level of each element Xi* is equal to the steady-state level of
Xi�2* of a regular linear cascade with no extra interaction (see
the green and black dashed lines in Fig. 1d). Similarly, for a
linear cascade with one incoherent feedforward loop, the
steady-state level of Xi* would be the same as Xi�4* in a linear
cascade (see the red dashed lines in Fig. 1d). This explains the
ups and downs in the steady-state expression level of the output
as the position of the feedforward loop changes along the
cascade (see Fig. 1f). We can also see in Fig. 1f that the
variations around the steady-state solution for a linear cascade
(solid blue and red lines) are lower for a cascade with an
incoherent feedforward loop than those with a coherent feed-
forward loop. The half-life activation time for the production of
the output in a repressing cascade is much shorter compared to
the activating cascade (see Fig. 1h). This suggests that long
activating transcriptional cascades can lead to long response
times for downstream elements while repressing cascades tend
to respond with almost no delay. Therefore, our analysis
suggests that long activating cascades can exhibit longer delays
(on the order of cell generation) more reliably for biological
processes such as cell differentiation which requires proteins
that are produced in the mother cell to be used in the next
generation of daughter cells.

3.2 What is the fate of an input signal as it transmits through
a pathway with a certain circuit topology?

Having analyzed the properties of a linear cascade with one
feedforward loop, we now have the means to study different
circuit topologies. From now on, we only discuss the topological
properties of an activating cascade – the same approach can be
applied to study repressing cascades. In the previous section, we
found how adding a coherent or incoherent feedforward loop to a
linear cascade can change the response of the system to an external
input (for a detailed analysis see Appendix B, ESI†). Similarly, for a
linear cascade with two extra interactions, we can build two
coherent and/or incoherent feedforward loops and depending on
the arrangement of the two extra interactions, there can be three
different topologies: (i) cross (X), (ii) parallel (P), or (iii) series (S). We
can divide all the possible configurations into four classes: CaC,
CaI, IaI, and IaC, where a denotes a specific circuit topology (i.e. X,
P, or S) and the letter C(I) represents one coherent (incoherent)
feedforward loop. To determine the average contact order, consider,
for instance, one representation of IXC arrangement where X2

represses the production of X4, creating an incoherent feedforward
loop of length two, and X3 activates the production of X5, creating a
coherent feedforward loop of length two. This makes an average
contact order of (2 + 2)/2 = 2. Here, we fix the contact order to two
and study the steady-state and half-life time for one realization of a
pathway with cross topology. A similar approach can be imple-
mented to study the other two topologies (see Appendix C, ESI†).

As we discussed in the previous section, the curved arrows
can have a considerable influence on the fate of the input, especially
when they are in the upstream. We consider an example of a cross
configuration with X2 regulating X4 and X3 regulating X5 as shown in
Fig. 2a. We find three possible scenarios for the bistable mode: (i) in
CXC configuration (see Fig. 2b), both activating curved arrows will
reduce the expression level of the intermediate elements compared
to a normal linear cascade with no extra interaction. However, their
effect is not considerable enough to change the fixed point of the
system (i.e. no ‘‘jumping’’ over the fixed point occurs). Thus, the
pathway will restore the input signal by approaching its non-zero
stable fixed point. (ii) For CXI configuration (see Fig. 2c), the first
curved arrow decreases the steady-state of X4, similar to case (i)
(because the two pathways are identical up to this point), while the
second arrow (repressing interaction) causes the steady-state level to
drop significantly and switches the stable fixed point of the pathway.
Consequently, the input signal will die out as it propagates down-
stream. (iii) For both IXC and IXI configurations (Fig. 2d and e), the
scenarios look similar. The first repressing regulation changes the
fixed point of the pathway, whereas the second curved arrow (either
the activating or repressing interaction) only determines the
magnitude by which the steady-state is going to drop. A similar
analysis exploits the steady-state expression levels of the elements of
the pathway with Parallel and Series topologies (see Appendix C,
ESI†). Our simulations suggest that for CaI configurations, if the
magnitude of the repressing interaction is not too strong, then
downstream genes would still be able to get activated (see also
Fig. S4b and d, ESI†). However, IaC and IaI configurations are less
likely to activate downstream elements of the cascade.

3.3 Non-monotonic input–output profiles and the emergence
of adaptive response in circuit topologies with incoherent
feed-forward loops

Impulse responses and sustained responses are also key features of
linear cascades. To study the monotonicity of the input–output
profile for a certain circuit topology, we first examine the properties
of a linear cascade of length N with no feedforward loop. In order to
effectively activate/repress the output, XN, the adjacent upstream
element XN�1 should reach half of its maximum expression level, i.e.
when XN�1* = K the production rate of XN reaches f (XN�1* = K) = V/2.
Since the cascade is linear, XN�1* is, in turn, regulated by XN�2*.
Thus, for XN�1* to reach K, the expression level of XN�2* should
satisfy the condition XN�1* = K = f (XN�2*). We can write a recursion
relation for the regulation of each gene as a function of its adjacent
upstream gene. Ultimately, we find a condition for the regulation of
output XN* as a function of the input X1*. For an activating cascade,
we have

XN�1
� ¼ K ¼ A XN�2

�ð Þ ) XN�2
� ¼ K3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K
p ;

XN�2
� ¼ K3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K
p ) XN�3

� ¼ K7=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K
p

� K3=2
p ;

..

.

X1
� ¼ K

2N�1�1
2N�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

. . .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K
p

� K3=2
p

. . .� K
2N�2�1
2N�3

q :

(5)
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We were not able to find a closed form for the input–output
profile of a repressing cascade. However, the results of our
computer calculations can be found in Fig. 3. As demonstrated
in Fig. 3a, the expression level of X1* that is needed to activate
XN* gets exceedingly high for K 4 Kcrit, whereas it diminishes to
lower values for K o Kcrit. This highlights the point that we
made earlier about the ‘‘Decaying mode’’, where it becomes
exceedingly unlikely for a signal to propagate through the
pathway with K 4 Kcrit, and ‘‘Bistable mode’’, where the input
signal can get amplified as it propagates through the down-
stream elements. Fig. 3b shows that there is a unique cut-off
value for the protein binding constant, K, given N, beyond
which XN�1 cannot effectively repress the production of XN

(vertical dashed lines). It also demonstrates that the expression
level of X1* required for repressing the output becomes exceed-
ingly large for linear cascades of size N = 4, 6, and 8. This happens
because for these cascades, the steady-state level of XN�1 is below
the fixed point value of a repressing cascade, X(1)* (see eqn (3)).
Thus, if the cut-off value of K is higher than X(1)*, it will be
implossible for XN�1 to repress the production of the output.

Now, we examine the monotonicity of the input–output profile
for three realizations of cross, parallel, and series topologies

(see Fig. 4). Our numerical results indicate that for the CaC
configuration with two coherent feedforward loops (Fig. 4b)
the input–output profile is monotonic. We observe that for
K 4 Kcrit, the response of the output is weaker than that for
K o Kcrit as it is harder for the signal to activate downstream
elements. We also note that when K 4 Kcrit, the response of the
CPC pathway is strongest, whereas for K o Kcrit CXC has the
strongest response. For CaIs with the first feedforward loop
being coherent and the second one incoherent, the CPI path-
way has the highest peak in the non-monotonic response (see
Fig. 4c). While for KR 4 Kcrit the repressing interaction cannot
get fully activated, i.e. the expression level of the output reaches
a non-zero value as the amplitude of the signal increases, for
KR o Kcrit the input–output profile performs an almost adaptive
response where the expression level of the output settles at a
low persistence amount. As demonstrated in Fig. 4d, the IaC
category of pathways demonstrates a fully adaptive response for
KR o Kcrit, i.e. the system’s ability to respond to a change in the
input stimulus and returning to its pre-stimulated output level,
with ISC having the highest peak in the adaptive response.
Comparing the adaptive response in Fig. 4c and d, we find that
if the incoherent feedforward loop appears in the pathway

Fig. 2 (a) One possible realization of the cross configuration where X2 regulates the production of X4 and X3 regulates X5. Note that the two curved
arrows can represent activating or repressing interactions leading to coherent or incoherent feedforward loops, respectively. The stability analysis is
performed on the cross topology with its four possible arrangements of activating/repressing regulations: (b) CXC, (c) CXI, (d) IXC, and (e) IXI. For this
analysis, K = 0.4 o Kcrit (bistable mode) and KA = KR = 0.4 for both the activating and repressing curved arrows. The two stable fixed points are X* = 0.8
and X* = 0, and the unstable fixed point is X* = 0.2.
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before the coherent one, it has a stronger effect in controlling
the adaptive behavior of the response. For IaI, all the circuit
topologies perform an adaptive response with IPI and ISI
having the highest peaks. Also for KR o Kcrit, the input–output
profiles demonstrate lower peak amplitudes and faster decays.
It is also important to note that for the ISI topology, the steady-
state level of the intermediate element X5* (the first doubly
regulated element) acts as an input to the second part of the
pathway, hence, creating an input–output profile that has two
peaks. The first one corresponds to the activation of the first
incoherent feedforward loop by the input and the other corre-
sponds to the activation of the second incoherent feedforward
loop by the first one. This is one of the characteristic features of
incoherent feedforward loops connected in Series which has
been analyzed in regulatory networks.50 Therefore, we have

shown that while some activating cascades with one incoherent
feedforward loop can perform pulse-like responses, others can
also produce sustained responses which make them more
robust against cell-to-cell variations.

3.4 Time dependent input signal: which circuit topology is
more robust to noise?

So far, we have only studied the response of a linear cascade to a
constant input signal. However, in many biological systems, we
often deal with time-varying signals which reflect the changes in the
environmental conditions. Such systems are subject to extrinsic
noise, in which the cellular capacity to produce proteins and the
concentration of transcription factors that regulate a gene fluctuate
over a certain period. The correlation time of such variations in
production rates is often on the scale of a cell generation: that is, a

Fig. 3 Expression level of X1* as a function of K for linear cascades of various lengths. (a) For activating cascades, when K 4 Kcrit, the expression level of X1* that is
needed to activate XN* becomes significantly high. On the other hand, for K o Kcrit, the activation of XN* requires considerably lower levels of X1*. (b) For repressing
cascades of length N = 3, there is a cut-off binding constant, K, beyond which the output cannot get repressed by any input signal with arbitrary magnitude.

Fig. 4 Analysis of (non)monotonicity in the input–output profile of (a) cross, parallel, and series configurations. Input–output curves are the solutions to
the steady-state level of the last element in the linear pathway XN* as a function of the input Sx. The input–output profile for realizations of (b) CaC
configuration, (c) CaI configuration, (d) IaC configuration, and (e) IaI configuration is demonstrated.
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cell with high production levels often tends to stay high for a cell
cycle or more.51 Here, we take an approach similar to the work by
Gomez-Uribe and collaborators52 in studying such systems in the
deterministic regime. We study the response of a coherent and
incoherent feedforward loop to an oscillatory input signal of the
form Sx(t) = s0(1 + a sin(ot)). We further discuss what will happen if
we introduce the second feedforward loop and change the circuit
topology of the cascade. Although a deterministic sinusoidal
signal does not exist in a real biological system, high frequency
changes in the input can serve as fluctuations in the signal. For
a signal with small variations around its baseline level (i.e.
a sin(ot) { 1), the time varying response of the cascade can
be linearized about its steady-state by doing first-order Taylor
series expansion such that the dynamics of the variations is
governed by linear and time-independent coefficients (see Appendix
D for analytical results, ESI†). Therefore, we can approximate |dXi|,
the amplitude of variations in each element, around the steady-state
solution Xi*. By defining a gain, gij, for the ith element being
regulated by its parent element j (depends on the first derivative
of the production rate) and a cut-off frequency oci (depends on the
degradation/dilution rate), we analyze how the system responds to
the changes in input frequency. For instance, in a simple
feedforward loop with 3 elements {X1, X2, X3}, where X3 is the
doubly regulated element, the amplitude of variations in the
response of each element can be found (see Appendix D for
the derivation and full expression of each element, ESI†):

dX1j j / a
o
;

dX2j j / ag21
o2

;

dX3j j / ag31
o2

:

(6)

Therefore, the amplitude of variations in the output around its
steady-state solution decays as 1/o2 for high frequency changes in
the input singal. In other words, the feedforward loop acts as a low
pass filter to the input signal with high frequency. For lower
frequencies in the input, the variations would be larger for proteins
with smaller degradation rates (i.e. smaller values of oc). This
property of feedforward loops has also been highlighted in the work
by Guantes and collaborators.53 The variations in each element also
depend linearly on the amplitude of oscillations in the input a, as
well as the gain from the parent element(s) which directly regulates
them. Note that the amplitude of variation in the doubly regulated
element, X3, to the first leading term in o, only depends on g31
which changes with the expression level of X1. This indicates that the
noise propagation in a feedforward loop with high frequency input
only depends on the parent element with the most variation in the
amplitude. In other words, when X3 is both regulated by X2 and X1

(parent elements), the amplitude of variation in X3 is most domi-
nated by the parent element X1 which is closer to the source and has
a higher variation amplitude. Therefore, cascades where the most
upstream elements are interacting with the most downstream
elements are more susceptible to noise propagation. In the case of
three different circuit topologies demonstrated in Fig. 4a, the
amplitude of variation for the doubly regulated elements is:

(i) Cross configuration

dX5j j / ag21g52
o3

;

dX7j j / ag21g32g43g74
o5

;

(7)

(ii) Parallel configuration

dX5j j / ag21g32g53
o4

;

dX6j j / ag21g62
o3

;

(8)

(iii) Series configuration

dX5j j / ag21g52
o3

;

dX9j j / ag21g52g65g96
o5

:

(9)

We find that while the doubly regulated elements in cross
and series configurations exhibit the same dependency on o
(eqn (7) and (9)), parallel configuration shows a relatively
weaker dependency (eqn (8)). The reason why parallel configuration
is a weaker low-pass filter is that there are long-range interactions
between the upstream and downstream elements, i.e. the upstream
element X2 regulates X6 which is almost at the end of the pathway.
This topological property of the Parallel configuration makes it less
robust to noise propagations. For a slowly varying input signal (o{
oc1, oc2, oc3), the characteristic frequency of each element is higher
than the input signal. Thus, the signal is perceived as a constant
input for each member of the cascade. Thus, each element has
enough time to reach its steady-state expression level before it starts
to sense the oscillations of the input signal (see Fig. 5b). On the other
hand, if the oscillations in the input are too fast (oc oc1, oc2, oc3),
the dynamics of each element is too slow to sense the rapid
oscillations in the input (see Fig. 5a). Consequently, the variations
decay to zero for very large oscillations (see eqn (7)–(9)). Although our
approximation is only suitable for small amplitudes and is expected
to hold for small perturbations around the mean, our experience
with the simulations was that it provides a good guide for describing
output for all amplitudes. This analysis shows that by adjusting the
pathway parameters g and K we can make our linear pathway robust
to fluctuations of high frequency and each circuit topology
demonstrates a unique low-pass filtering property with parallel
topologies being the most susceptible one to noise. We have
shown that, in addition to all these features, they are also able to
reduce signal fluctuations. This further justifies their ubiquity
in biological networks, and perhaps accounts in part for the
robustness of living systems.

4 A linear cascade with series
configuration in B. Subtilis

Here, we provide an example of a regulatory gene cascade that
guides the B. Subtilis spore.54 We identify the underlying circuit
topologies of the cascade and try to understand its dynamics
based on the behavior of individual circuit topologies. When
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B. Subtilis bacteria are under conditions of nutrient limitation,
they stop growing and start to differentiate into spores and
can remain dormant for extended periods of time. When a
bacterium makes a spore, it switches on a new set of proteins
which involves hundreds of genes. The genes are turned on and
off to carry out specific stages in the formation of the spore.28,54

As demonstrated in Fig. 5, the transcriptional network that
regulates sporulation is an activating cascade which is made of
several coherent and incoherent feedforward loops and includes a
subset of parallel configurations.

As we discussed in Section 3.1, this activating cascade
should be in the bistable mode (i.e. has a non-zero steady-
state fixed point) so that all the elements of the cascade are
guaranteed to get activated (as long as the input signal is
persistent). We also know that there should be a well-defined
delay between the activation of each element in an activating
cascade so that each gene is activated at a particular time.
Following the approach in Sections 3.1 and 3.2 (see eqn (3) and
(4)), we can find the steady-state level of each element:

Xi
� ¼ A Xi�1

�ð Þ for i ¼ 2; 3; 7; 9

X4
� ¼ A X3

�ð Þ � R X2
�ð Þ

X5
� ¼ A X4

�ð Þ � A X1
�ð Þ

X6
� ¼ A X5

�ð Þ � A X3
�ð Þ

X8
� ¼ A X7

�ð Þ � A X6
�ð Þ

X9
� ¼ A X8

�ð Þ � A X5
�ð Þ

X11
� ¼ A X10

�ð Þ � A X9
�ð Þ

(10)

We also know that IPC configuration in Fig. 5b is capable of
producing a sustained response to input signal (see Section 3.3)
which is essential for maintaining the robustness of the cascade
(Fig. 6).

5 Dynamics of metabolic pathways

One of the other important categories of pathways are metabolic
networks. The mathematical description of the dynamics of
metabolic pathways is provided by means of a set of ordinary
differential equations which represent the inflow and outflow
rates to the production of metabolites

dsj

dt
¼
X
i

Cijvi (11)

where sj is the concentration of the jth metabolite, Cij are the
elements of the stoichiometric matrix, which indicate the flux
contributions of each element that influences the dynamics of
the metabolite (i.e. responsible for determining the topology of
the pathway), and vi are the activities of enzymes that participate
in the metabolic pathway. Eqn (11), also known as the law of
mass action, provides a simple description of reaction rates
assuming a fixed volume and well-mixed population of molecules.
It also treats all enzyme–metabolite complexes as being in the
steady-state, so that they do not enter explicitly in the dynamical
description of the enzyme system.55 Since many of the experi-
mental observations of metabolic systems are carried out under
the steady-state conditions, modeling efforts often address the
steady-state behavior of the system. Perhaps one of the most well-
studied metabolic pathways is glycolysis.55 Glycolysis is a pathway

Fig. 5 The effect of large amplitude noise propagation on the expression level of each element in a linear activating cascade with cross topology given
in Fig. 4a. The expression level of each element is demonstrated as a function of time for (a.1) and (a.2) o = 10, a = 10, s = 1 and for (b.1) and (b.2) o = 0.1,
a = 1, and s = 1. The expression level of the output X8 for (a) is E0.68, for (b) is E0.70, and for a cascade with constant input signal is E0.70. Thus, there is
a minor change in the steady-state expression level of the output when the noise frequency is high (regardless of the amplitude a) compared to a
constant input (i.e. low-pass filtering property of the linear cascade).
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that converts glucose into pyruvate and, to the first approximation,
is a linear pathway.56–58 Since all the reactions in mass action
kinetics are proportional to the metabolite concentration, the
pathway only has one (non-zero) stable steady-state value, i.e. by
constructing the Jacobian matrix for the net production rate of
each element of the pathway we can find that both of its eigen-
values have negative real parts. Therefore, the steady-state solution
of a linear metabolic pathway resembles the steady-state solution
of a transcriptional cascade in the decaying mode with the
exception that the fixed point of a metabolic pathway can, in
principle, be greater than or equal to zero. Also, such metabolic
pathways with mass action kinetics cannot perform ultra-sensitive
response unless non-linear functions of metabolic concentrations,
such as allosteric regulations, appear in the dynamics of the
pathway. The end-product inhibition scheme is a strong feedback
mechanism in many metabolic pathways that, when appears in an
otherwise a linear pathway, can create oscillatory behavior and
bistability in the steady-state response of the pathway.59,60

Indeed, such points of transition from decaying mode to
bistable mode has also been found in glycolysis and other
metabolic pathways.61,62

6 Discussion

Linear cascades are common in many biological systems. From
G-protein cascade-mediating phototransduction63 and MAP
kinase cascades in S. cerevisiae,64 to gene regulatory cascades
in the flagellar motor development of E. coli.65 More complex
regulatory architectures, such as the one in developmental
programs, include regulators that are ordered in layers where
proteins from one layer control the ones in subsequent
layers.48,49 Such patterns are observed in transcriptional net-
works during sea urchin development16,66 and Bacillus subtilis

sporulation development54 (also see ref. 66 and 67 for a review).
A cascade-like network topology entails an inherent temporal
order of regulation events and provides robustness both to
spurious input signals and to noise in the rates of protein
production.48,68 In this work, by analogy with the arrangement
of intra-molecular interactions in proteins and nucleic acids,
we defined three distinct circuit topologies for an otherwise
linear transcriptional cascade and systematically constructed a
mathematical framework to address some of their key function-
topology features. Following a bottom-up approach, we first found
the steady-state expression level for each member of the cascade
and identified two types of responses to a constant (persistent)
input signal, namely the decaying mode and the bistable mode.
Applying the mean-field approximation, we found a critical bind-
ing constant above which it becomes exceedingly difficult for the
signal to propagate through the cascade. Below this critical value,
the system can assume a non-zero steady-state value. We then
examined how the system can switch from one mode to another as
we add coherent and/or incoherent feedforward loops into the
cascade. We found that, in the bistable mode, a switch from a
non-zero to zero steady-state expression level occurs most
effectively if interlocked incoherent feedforward loops appear
closer to upstream elements. Understanding this switch-like
transition in pathways with incoherent feedforward loops would
also help us better understand the effect of paradoxical components
in transcriptional circuits,69 where one element of the pathway is
responsible for both activating and repressing the expression
level of a downstream element (or promoting proliferation and
death rate), and the conditions under which homeostasis can
be achieved.70 We also examined the input–output profile of
cascades with different circuit topologies and various combinations
of coherent and incoherent feedforward loops. We found that in the
bistable mode, cascades with at least one incoherent feedforward
loop can perform adaptive responses with the IaoC category of

Fig. 6 (a) A transcriptional cascade for the development of Bacillus subtilis spores. Note that the original cascades include multiple sub-branches that
represent groups of tens of hundreds of genes.54 We only selected the longest activating cascade to study the kinetics and steady-state response of the
output and removed all the other sub-branches out of the cascade. (b–e) Are the underlying topological substructures in the cascade.
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pathways demonstrating the sharpest transient peak and the most
sensitive adaptive response. We argued that the strength of the
repressing interaction governs the non-monotonic behavior and
determines the quality of the adaptive response. We also found an
analytical expression for the activation/repression threshold of the
output as a function of the input source for a linear cascade of
arbitrary length. Our results also indicated that cross and series
configurations demonstrate strong low-pass filtering dynamics,
while parallel configurations are not strong low-pass filters due to
a long-range interaction between upstream and downstream
elements, which allows noise to propagate even further down
into the pathway. The cut-off frequency of each element, which
depends on the degradation/dilution rate, can provide a versatile
module to tune the noise-filtering property.52 In the end, we
analyzed the topological features of a transcriptional cascade in
B. subtilis spore development. We believe that the same approach
can be used to understand the dynamics of other transcriptional
cascades. Our mathematical approach can also be implemented
in studying systems with positive or negative feedback,45,71 i.e.
multistable biological systems that switch between discrete states,
and systems with extensive crosstalk between pathways.72,73 Under-
standing the role of topology in cellular networks helps us better
understand how one specific change in the set of interactions can
shift the dynamics from one behavior to another and how regulatory
cascades can bound the fluctuations in the input signal. This could
also be of great value in designing effective therapeutic strategies
to treat diseases and to modify cellular processes with simple
engineering principles. Motivated by recent advancements in
synthetic biology to manipulate biological entities, we believe
that the time is ripe for designing systems that aid in the
development and interpretation of analytical models with
increasing complexity and discover additional constraints on
design principles for biological networks.
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