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A fully general time-dependent multiconfiguration
self-consistent-field method for the
electron—nuclear dynamics

Ryoji Anzaki,*® Takeshi Sato® and Kenichi L. Ishikawa (2 2°

We present a fully general time-dependent multiconfiguration self-consistent-field method to describe
the dynamics of a system consisting of arbitrarily different kinds and numbers of interacting fermions
and bosons. The total wave function is expressed as a superposition of different configurations
constructed from time-dependent spin-orbitals prepared for each particle kind. We derive equations of
motion followed by configuration—interaction (Cl) coefficients and spin-orbitals for general, not
restricted to full-Cl, configuration spaces. The present method provides a flexible framework for the
first-principles theoretical study of, e.g., correlated multielectron and multinucleus quantum dynamics in
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1 Introduction

We are now witnessing rapid progress in ultrashort intense light
sources in different spectral ranges such as terahertz radiation,
optical-parametric-chirped-pulse-amplification mid-infrared lasers,
high-harmonic extreme-ultraviolet (XUV) pulses, and XUV/X-ray free-
electron lasers. These technological advances have triggered various
research activities, including attosecond science,'™ with a goal
to directly measure and, ultimately, control electron and nuclear
motion in atoms and molecules.

Ab initio simulations of the electronic and nuclear dynamics
in atoms and molecules remain a challenge. A multiconfiguration
time-dependent Hartree-Fock (MCTDHF) method*” has been
developed for the investigation of multielectron dynamics in
strong and/or ultrashort laser fields.® In this approach, the time-
dependent total electronic wave function Y(¢) is expressed as a
superposition of different Slater determinants ®,(t),

w(1) = ®i(1)Ci(2), (1)
1

where C,(¢) is the configuration-interaction (CI) coefficients.
Both {C/(t)} and the spin-orbitals constituting {®,(t)} are allowed
to vary in time. In the community of high-field phenomena and
attosecond physics, the term MCTDHF is conventionally used
for the full-CI case, in which the sum in eqn (1) runs over all the
possible ways to distribute the electrons among a given number
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general molecules induced by intense laser fields and attosecond light pulses.

of spin-orbitals. On the other hand, also under active development
are variants without the restriction to the full-CI expansion,
generically referred to as the time-dependent multiconfiguration
self-consistent-field (TD-MCSCF) methods hereafter. Representative
examples include the time-dependent complete-active-space self-
consistent-field,””® the time-dependent restricted-active-space
self-consistent-field,” and the time-dependent occupation-restricted
multiple active-space (TD-ORMAS)" methods. These allow a
compact and computationally less demanding description of
the multielectron dynamics, without sacrificing the accuracy. In
particular, the TD-ORMAS method can treat arbitrary CI expansions
of the form eqn (1) in principle.

Among successful approaches for nuclear dynamics is the
multiconfiguration time-dependent Hartree (MCTDH) method."
Developed for systems consisting of distinguishable particles,
this method expresses the time-dependent total nuclear wave
function as a superposition similar to eqn (1) but that of Hartree
products. The other way around, the MCTDHF method can be
viewed as an extension of the MCTDH method to fermions. By
hybridizing the MCTDHF method for electrons and the MCTDH
method for nuclei, one can construct a multiconfiguration
electron-nuclear dynamics (MCEND) method">" to describe
the non-Born-Oppenheimer coupled dynamics. Nuclei forming
molecules are, however, indistinguishable particles, either fermions
or bosons. Alon et al. have explored methods for systems consisting
of identical particles,"*"” e.g., MCTDH methods for mixtures
consisting of two'* and three'” kinds of identical particles, and
inclusion of particle conversion.'® Kato and Yamanouchi have
extended the MCTDHEF theory to molecules composed of electrons,
(fermionic) protons, and two heavy (either classical or quantum)
nuclei.'®

This journal is © the Owner Societies 2017


http://orcid.org/0000-0003-2969-0212
http://crossmark.crossref.org/dialog/?doi=10.1039/c7cp02086d&domain=pdf&date_stamp=2017-08-09
http://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cp02086d
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP019033

Open Access Article. Published on 25 July 2017. Downloaded on 11/4/2025 6:31:06 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

In this paper, further stepping forward in this direction,
we present a fully general TD-MCSCF method for a system
comprising arbitrarily different kinds and numbers of inter-
acting fermions and bosons (without particle conversion'®).
Treating all the constituent particles on an equal footing, we
expand the total wave function in terms of configurations of the
whole system [see eqn (5) below]. Thus, based on the time-
dependent variational principle, we derive the equations of
motion (EOM) of CI coefficients and spin-orbitals for general
configuration spaces, not restricted to full-CI. As a simple
example, we apply the TD-MCSCF method to high-harmonic
generation (HHG) from a one-dimensional (1D) model hydrogen
molecular ion H," induced by an intense near-infrared (NIR)
laser pulse, for which numerically exact solution is available.

This paper is organized as follows. Section 2 introduces our
TD-MCSCF ansatz for many-particle systems composed of
different kinds of fermions and bosons, and also defines the
target Hamiltonian considered in this work. In Section 3, we derive
the general equations of motion, based on the time-dependent
variational principle. Explicit working equations for a molecule
interacting with an external laser field are shown in Section 4. We
present numerical examples in Section 5. Concluding remarks
are given in Section 6.

2 Definition of the problem
2.1 TD-MCSCF ansatz

We consider a quantum mechanical many-body system with K
kinds of fermions or bosons. The subsystem of kind o consists

K
of N, identical particles. Thus, there are N = ) N, particles as

o=1
a whole. For notational brevity, we call such a system an
N-particle system, where the array of integers N = (N;N,- - -Ng)
carries the information of both particle kinds and the number
of particles in each kind.
Let us define, for each kind of particles, the complete

orthonormal set of spin-orbitals {;{ﬁ?(z) Sl € Qa}, which
spans the one-particle Hilbert space Q,, is time-dependent in

general. Then the N-particle Hilbert space is spanned by
1 2 K
o(1) = ) (@ o (1)@ @ o (1), )

where (P(,Z) (1) is a determinant (or permanent) of ¢-kind fermions

(or bosons), consisting of N, spin-orbitals chosen from { XLO:)}'

We call @,(¢) the I's configuration, where I = II,- - -Ir is considered,
at the moment, to collectively label the chosen spin-orbitals. The
objective of this paper is to formulate the TD-MCSCF theory of
the N-particle system within the ansatz of total wavefunction
analogous to that for the electronic system, eqn (1), but using
the configurations of eqn (2).

For rigorous and compact presentation of theory, we resort
to the second quantization formulation by introducing creation

and annihilation operators {é(“”,éfz)} associated with {}((“)}.

Hy Hy
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These operators obey the (anti-)commutation relations of
bosons (fermions),

[5(1) @<a>] - [@w,@w] —0, [5@) 5(&)1‘] — Sl 3)

Hy 7 Vg Hy Vy Uy 7 Vg Vg

for bosons, where [d, 5] = ab — bé, and
(e eh = e et =0, {e0. et = (@

for fermions, where {d, b} = db + ba.
Within the TD-MCSCF ansatz, the complete set of spin-

orbitals {y,(fy)(t)} is split into n, (=N, for fermions) occupied

iy

spin-orbitals {X(“>(z) tiy=1,2,... 7n1} and remaining virtual

spin-orbitals {/E,Z)(l) cay=n+1ln+2.. } We call the sub-

space of Q, spanned by occupied spin-orbitals the occupied
spin-orbital space Q5°, and that spanned by virtual spin-orbitals
the virtual spin-orbital space QY where Q, = Q2 @ Q. The
total state ¥(¢) is expressed as a superposition of configurations
@,(t) of eqn (2), but constructed from occupied spin-orbitals

only. Thus we write

P(0) = Cnl), (5)
1

where C/(t) is the CI coefficient, and |I(¢)) is the occupation
number representation of the configuration @,

1) = L) © IL©) ©--® 1), ()
_ 1 E‘{ I, E; Ix'z... o Loy vac.
L) = Im![ L] e e )

Ja=
Now I, =1, 11,5 - L, I8 (rigorously) reinterpreted as an integer
array, satisfying i I,;, = N,.Note that I,; € {0,1} for fermions.
=1
Here and in what follows, we use indices i,, j,, k,,. . . for occupied
(25°9), ay, by, €. - . for virtual (er), and pty, Vy, Ky, Tyy- - - fOr general
(Q,) spin-orbitals of kind o. The indices p,, ¢, will be used for
numbering the coordinates.

It should be noted that we do not restrict the expansion
eqn (5) to the full-CI one. It should also be noticed that
occupied configurations are specified in terms of the whole
system rather than in terms of each particle kind as,"”

@) =D > Y Crna(DIN(0) ® (1) @ -+ @ [Tk (1)),
I, I I
(8)

with summation over I, I,. . .,Ix taken independently. Eqn (8)
implies that given the set of configurations {I,} for each kind,
the set of configurations for the whole system {I} must include
all the direct products of {{I};« = 1, 2,...,K}. Our approach
based on eqn (5), including eqn (8) as a special case, allows a
highly flexible choice of CI space, e.g., including up to double
excitations,'® regardless of particle kind, from a reference
configuration of the whole system, thereby enabling a proper
account of correlation between different kinds of particles
while reducing the computational cost.
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2.2 Target Hamiltonian

In this article, we consider the Hamiltonian of an N-particle
system composed of up to M-body terms,

H=H,+H,+ -+Hy,, M<N. 9)

The Hamiltonian is explicitly time-dependent in general, but
the time argument ¢ is dropped in this section for simplicity.
Here, the m-body Hamiltonian is assumed to be given explicitly
in terms of the coordinates (and momenta, see below) in a
general sense characterizing m particles (or degrees of free-
dom), and symmetric under exchange of coordinates among
particles of the same kind. One-particle Hamiltonian, e.g., is
written as

K N,

Z ZH <x0<11«vxap7 )

a=1 py=

(10)

where the non-local form allows us to describe the momentum
dependence of the Hamiltonian, and two-body interaction is
generally given by'®

I !
H, = Z Z Z H,, <xoc-,vax/3-,q/;7xa‘p7 » XBag )

a=1 py=1qu > psy
(11)

K K N, Mg , ,
+ Z Z Z Z Hyp (X&«,pwxﬁ«,q/f’x%m ) XB.ap )
=1 g, =1

a=1 i >apy=1gqy

The reasons why we here consider the (non-local) higher-than-
two body terms, which will not actually be used in Section 4, are
(1) that such a form is used in the multiconfiguration Hartree
(MCH) method for distinguishable particles, and (2) their
possible appearance upon coordinate transformations, or in
the effort of removing translational and rotational degrees of
freedom."%°

The Hamiltonian is equivalently expressed in the second
quantization formalism as

where the net m-body Hamiltonian is further classified into
those contributions H,,, hereafter called the m-body Hamilto-
nian, involving m, particles of the kind o, (0 < m, < N,

K
> my, = m),
a=1

A g AR £l

Hu =3 20 o D (Hal By = D (Hu)E,,

m by Vi VK w
(13)

where pt = (ypty- i), and pt, = (- fym,) indlexes the set of

spin-orbitals to represent m,, particles in the Hamiltonian. £ is

the m-particle replacement operator £} = (E, )c: - (E K)C]’:, with
(Ba)yy = e e, &0, -G e, (14)
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and (H,,)y is given by

(Hp)t =% jdxdx%p; () H (2, )0, (),
11 ma! *
a=1

(15)

where x = (X1X5,.. ., Xx), Xy = (Xy,1%50°
coordinates of particle o, and

K K
= [T 0w G = T T, Cou) 2, (a2) -2, (e, )-
=1 =1
(16)

For the later discussion, we define the m-body reduced density
matrix (RDM) as

“Xym,) is the set of m,

(Pm)ls = (PIEG|P). (17)
One- and two-particle RDMs are also denoted as
vy :
()b = (PI(E2), 1%) = (P0,1,-00 ),
(Palii= (PI(E), o 12) = (Poye ) (18)

( ) HaPp HaVp
Pap 2 -

with f # a.

A NVy /A \A
<‘P\(Ea)m (Eﬁ)y:‘q’) = (Pol---lx--l,,-»-o,(>

.0
Vylp

3 Equations of motion

In this section, we derive the EOMs for the CI coefficients and
spin-orbitals by imposing the time-dependent variational
principle*’* on our TD-MCSCF ansatz. We require the action
integral

1

S = J de(P|(H —i9,)|P), (19)

fp
to be stationary, 8S = 0, with respect to the variation of the total
wavefunction 8% within our TD-MCSCF ansatz eqn (5), subject

to the boundary conditions 8¥(¢,) = 8¥(¢;) = 0. To this end, let
us introduce anti-Hermitian matrices 4, and X, as,

(0 [or) = (ante, (2 ]i2) = (i

(Recall that indices p,, v, refer to both occupied and virtual
spin-orbitals.) We also define,

A=30 (4 (B, X =320 ()i (£,

EZ %yl

(20)

(21)

with which orthonormality-conserving spin-orbital variations
and time derivatives can be written as

o) =), [ai) = %)

Then, the variation and time derivative of total state are
compactly given by,”****

(22)

8%) = "8C|I) + 4]¥), =Gl + X|P), (23)
1 1
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and their Hermitian conjugates are

(8%| = Zsc, (Il = (w14, (P|=>_Cril—(vIX. (24)
1
1t follows from eqn (19) that,
88 = Jlldz[(ﬁlﬂ(H —i0,)|¥) + (P|(H —i8,)|5%)]
' (25)

_ ﬁ'dz@lﬂ [H|W) —i|¥)] + [(P|H +i(¥]|5%).

Substituting eqn (23) and (24) into this equation, after some
algebraic manipulation,”** we obtain,

8S = Jd’Z SCr {(I|H —iX|¥) —iCr}
1

= > {(WIH - iX|I) +iCr }5C,
1

+ (PIA(L — D)(H —iX)|¥) — ma|¥y),

(26)

(PI(H - i%)(1

where IT = Y |I)(I| denotes the projector onto the CI space, ie.,
1

the subspace of N-electron Hilbert space spanned by the
configurations included in eqn (5). The action functional S
should be made stationary with respect to all independent

variations; {3C;, 8Cp*} for CI coefficients and {(Ax)“ :} for

V.
spin-orbitals.
First, the EOM for CI coefficients are obtained from 35/
3C* =0,
iy iX))Cy

=> (-

J

(27)

Requiring 6S/8Cy = 0 derives the complex conjugate of eqn (27).
Next from 35/8(4,),*= 0, one obtains

i}j}j<Wﬂ@lﬁfKEwZ—G%XﬁﬂEOZNWMXMX
B Kptp
= (WI[(B.)y 1 - ATI(E,))]|),

(28)

where IT =1 — II. Eqn (28) is to be solved for (X, = <y“ |yy1 >

thus determines the time derivative of spin-orbitals. We now
take a closer look at eqn (28) for the following two
distinct cases:

Case 1: (Uyy Vy) = (i Ju)
In this case we focus on the components of the spin-orbital
variations within the subspace spanned by the occupied

spin-orbitals. Since f[(Ey)Z [T)#0 and (1| (Ey);zf[;éo in general,

This journal is © the Owner Societies 2017
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one needs to directly work with eqn (28) within the occupied
spin-orbital space

122 lP\[

(B~ (E) T (E,)" ) 19 ()
i /\/;/ﬁ

lg I ip

(29)
In the full-CI case, where ﬁ(Ea);:PP) =0, (‘P|(E1):l:1 =0,
eqn (29) reduces to an identity 0 = 0. Therefore, the corres-
ponding (X, )’:’ may be arbitrary anti-Hermitian matrix elements,

of which the simplest choice is (X, ) i* 0.

Case 2: (1, Vy) = (i ay)
In this case we deal with the components of the spin-orbital
variations outside the occupied spin-orbital space. Since

(‘P|(E1)Zﬁ = (‘I’\(Ey)“ and (EAQ();:\‘I’) =0, eqn (28) becomes,

Ay

1222 (PIE, (B

kg Jp

() 1) (Xp) 7= (WI(E,); H|).

(30)

However, the matrix element in the left-hand side of the above
equation survives only when f§ = ¢ and k, = a, € Q;", namely

(PI(E,): (E) M%) = 530 (W|(E,)|¥) = 536% (0, Thus
eqn (30) is simplified to
() )= (PI(E.) HIP). (1)

The m-body Hamiltonian contribution to the RHS of eqn (31) is
evaluated as follows;

=N (WI(E)) BN (Ha)
_Z |I/|Elﬂ1. E) (E)v,”

uv

(EK)”KW’)(H )#1"%"'!%

vk m)y| vy vy

[ -~ ik, ~
= 30 30 (U (B (B
Ju KA
ikl '
= > S (WIE | P) (Ha)
Ju KA
= my Z MZ ”@k )/al (32)
Ja ) gl

In the second line of the above equation, we note that the matrix
element survives when one and only one of the m, creation operators
in (E“)C: refers to a, € QY, and all the others to the occupied spin-
orbitals. All such cases [, = @,y fyg-p € Q51 < p < m,] give the
same contribution since the phase (Ff " [+ (—) sign for bosons
(fermions), arising in (anti-)commuting the creation operators] is
canceled by shifting the corresponding annihilation operator v,
and the Hamiltonian is symmetric for interchange of particles
of the same kind. The third line is thus obtained after renaming

Phys. Chem. Chem. Phys., 2017, 19, 22008-22015 | 22011
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summation variables, where k™ = (K1y. - K- - ki) is the array
of m — 1 indices with k, = (ks 2, - -,ks,m ) and kg = (kg 1,. - kﬁymﬁ)
for f # a, with I defined Slmllarly The fourth line 1ntr0duces
the short-hand notation for the array of m indices, MJC =
Rty - ol . o) With sk, = (ks oy - o Km ) (1,17 is defined
similarly), and the fifth line uses the definition of the m-body
RDM, eqn (17).
Now the RHS of eqn (31) is given by the sum over m,

(PI(E) AP =m, > > Z

m o j, eyl

ol
m/l )y

(33)
= (- S,
J
where (Ha)]l: is the effective one-particle operator,
m Kl i1
)L Z:K[x Z )i“(mzk (34)
m 1T myg! # )
p=1
and ( ,,,)[7' is given in the coordinate representation as
[o] ’
(Wm):{(x] (xou Xy )
(35)

:de[x]dz[a]q, " (ﬂ])[ o (68 g (2

where y[“] = (V1,- - -Vas- - Vi) is the set of m — 1 coordinates with
Vo = Wure - ,yym) and yg = (Vp,15- - -3, m/,) for f # o, and xoy
(W15 - »XYws- - V&) is the array of m coordinates. 2 and x,/2* ]

are defined similarly.

Finally, gathering the occupied and virtual components of
the time derivative completes the derivation of the EOM for
spin-orbitals

/C/a( >

il >—IZ
+ZW><A@
-1y

(0, )Y

Iy

> (2

Joke
= Py) Y (H)p,

A]w > )ix +
Juka

N
Xj(':)>(pa l)i,7
(36)

where P, =3

lo

%, ){x;,| is the spin-orbital projection operator

onto the occupied spin-orbital space, with which the virtual
1) (1) = 1=
Ay

space > P, is referenced as a whole, thus

Xa)ﬁz in the
first term is to be obtained by solving eqn (29), and, as
discussed above, can be set zero in the full-CI case. Eqn (27)
for CI coefficients and eqn (36) for spin-orbitals form fully
general TD-MCSCF equations of motion, not restricted to full
CI, for a system composed of any arbitrary kinds and numbers
of fermions and bosons.

avoiding the explicit use of virtual spin-orbitals. (
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4 Molecules interacting with an
external laser field

In this section we present the working equations for a molecule
subject to an external laser field. Let the molecule consist of
electrons and K;, different kinds of nuclei treated quantum mechani-
cally (the kind does not necessarily corresponds to the nuclear
species, see discussion below), and Ny nuclei treated as a classical
point charge. For clarity and notational simplicity, we assign the
electrons to the first kind of particle (x = 1), and kinds « = 2, 3,...,K
represent quantum nuclei with K = 1 + K,. The numbers of identical
particles are, as before, denoted by {N,}. Then the number of

K
electrons is N;, the number of quantum nuclei is N, = >, and
a=2

the total number of atoms is Nyom = Ny + No. We use atomic units in
this section.

The spin-independent molecular Hamiltonian in the coordinate
representation is given by

K Ny K Ny Ny

H = Z Z h“ (rpx’rl7x,7 t) + Z Z Z U““(’r[’d ¥y, )
=1 py=1 =1 py=14¢s > pzy
K K
DI

o=1 > apy=1qp=1

(37)

where U,4(r) = Z,Zy/r is the Coulomb interaction with Z, being the
electric charge, and

v,.?
2m,,

Z,7.4
=l ‘l’— RA|

hy(r, ¥ 1) =6(r—v) |- + V(e v, 1), (38)

is the one-particle Hamiltonian composed of the kinetic energy [the
first term with m, being the mass (not to be confused with the
number of particles)], Coulomb interaction with classical nuclei
with the charges {Z,} located at {R,} (the second term), and the
time-dependent laser-particle interaction V5, given, e.g., within
the dipole approximation either in the length gauge (LG) or in
the velocity gauge (VG), by

ViNa(r,r t) = =6(r — rZ,E(®)r, (39)
VSNo(r 1) = 8~ ¥)iZ2A() -V + 24, (40)
where E(¢) is the laser electric field, and A(r) = —[E(r)dt is the

vector potential.
The general formulation of Section 3 is readily applicable to
the molecular Hamiltonian of eqn (37). The CI EOM reads
Z Z (hzy> E

iy = E (|
o iyjy
TP

o dgfakyly

ZZZ S (U (B (En))y) | o

« fEaiyikply

iyky

[Xa /ilf (E )/alx (41)
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where
(k)= dea £ ) 02| o) i) (@)
(o) LB LTy () B) (1!
ik i, ()t (X)), (%)%, (X5
(Uaﬁ),“i” Z Z,;deydw b {(, )"; Al ),
—
(43)
with x, = (r,0,) being the composite spatial- and spin-

coordinates, and the EOM for spin-orbitals is given by
i >—1Z 1 > (X + (1- )(hﬁ- % >‘,(la > (44)

where the one-body contribution to the second term of eqn (36)

> by noting [( )(px)fl];:: 6;z, and

is extracted to lead to /i, |y

jx,[/i N
A’a > ZZZ “ﬁ l/; i >(p64/3>., (px I)Aéav (45)
Juid B ksl Jakp
By (!N B (!
iy ()1, (xp)
(Wap))! () = ZaZ/dexﬁ R (46)
! e — 1|

Finally, eqn (29) is formulated as the linear system of
equations,

lm/\/f 1»/;: (B )z,

(yﬁ ]x//; l/f Ju® (47)

2.2

kply

(F.)—(F,) , with

where (dug) 47 = (Ao) 0= ()7, (B2)f = (F,):

()1 = (PI(Ex);11(E

kg
) )y, |P);

53(p)et, - ! (48)

(F)2 = () ()

ks,

+2.2.0.

ke kplg

Iak/i kol Iy 11 5
Uap klﬁ( %ﬁ) —(¥|(E )/,HH|W>~

(49)

In order for eqn (47) to be solvable (with non-singular coefficient
matrix A), one needs a systematic method of constructing non-
full-CI space analogous to the TD-ORMAS method '’ for electrons.
We shall discuss this issue in the future publication.

Equations of motions (41) and (44), with the matrix eqn (47),
define the general TD-MCSCF method, not restricted to full CI,
for molecules interacting with an external field. Our formulation
is very flexible; it includes as special cases both the electron
dynamics at the classical-nuclei approximation (N, = 0, Ng =
Nawom) and the full quantum molecular dynamics (N, = Nagom,
N, = 0). Furthermore, it allows various approaches to the same
physical problem; e.g., the same nuclear species in the molecule
can be treated either as identical particles or distinguishable ones
to investigate the physical outcomes of the particle statistics
during the course of laser-molecule interactions.
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5 Numerical examples

In order to demonstrate the utility of the TD-MCSCF method for
an exactly solvable system, in this section, we consider a one-
dimensional model hydrogen molecular ion with the singlet
protonic spin configuration (1D para-H,"), driven by an intense
near-infrared laser pulse. The Hamiltonian within the dipole
approximation in the velocity gauge is given in terms of electron
coordinate x and proton coordinates X;, X, by

1[0
HHf:—z{ +iA(t ] Zvne

2 2 (50)
Z_—M|:——1A( )] +Vnn(Xl _X2)7

where M denotes the proton mass, and vy (r) = 1 / Vene + 12,

and vy, (r) =1 / v/ ¢on + 1% are the electron-proton and proton-

proton soft Coulomb potentials, respectively. Following ref. 25,
we set ¢, = 1 and ¢,, = 0.03, and transform the coordinates as
2=x — (X1 +X,)/2,X=(X; + X,)/2,and R = X; — X,. Neglecting the
terms involving X, 0/0X and transforming into the length gauge
lead to the reduced Hamiltonian,”

) 1 o
Hy,+ oo Vne(z — R/2) — vne(z + R/2) — qer E(2)z
1 &
“aor T im®)
(51)
with e = 2M/(2M + 1) and ge = —(2M + 2)/2M + 1). This

Hamiltonian was used, e.g., for investigating charge-resonance
enhanced ionization,> but application of the multiconfiguration
method to this system in the context of highly nonlinear laser-
driven dynamics such as high-harmonic generation has not
previously been reported to the best of our knowledge.

Let us compare the following treatments: (1) numerically
exact solution of the time-dependent Schrodinger equation
(TDSE) for the spatial part Wexace(2,R,t) of the 1D x 1D wave-
function by discretizing electron coordinate z and nuclear
distance R with constant grid spacing 6z = 0.4 and dR = 0.2,
respectively, within the simulation volume |z| < 640 and |R| < 80,
(2) the electron only dynamics by solving for electronic wave-
function Yeiea(2,t) given the first line of eqn (51) with a fixed
(near to equilibrium) internuclear distance R, = 2.6 [fixed
(classical point) nuclei approximation], and (3) TD-MCSCF
method with the total wavefunction given by

n n

ZZC’J pal zt/,(R 1),

using n occupied spatial orbitals both for the electron and the R
degree-of-freedom of the protons. Note that n = 1 corresponds,
in this example, to the time-dependent Hartree approximation,
Yorpu = V1 = 152,071 (R,0). (4) Based on this TDH method we also
consider the frozen (quantum) nuclei approximation, where the
protonic orbital is fixed to the initial form,

Pu(z, R, 1) (52)
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lPfrozen(zyRyt) = X?(Z,t)XT(R,O)- (53)

The same spatial discretization as that in the first treatment is
applied to the latter three. For each method described above we
first obtain the ground state by imaginary time propagation of
the respective EOM, and then investigate the molecular
dynamics induced by the NIR laser pulse with a peak intensity
of 10" W ecm 2 and a central wavelength of 800 nm, with a sin®
envelop of the foot-to-foot pulse duration of 12 optical cycles.
The TDH ground state orbitals are used as initial orbitals in
eqn (53).

Fig. 1 shows the time evolution of the dipole acceleration
a(t) = d*(¥(¢)|z| P(£))/d¢* computed using the Ehrenfest theorem.
As shown in Fig. 1(a), both fixed-nuclei (light blue curve) and
frozen-nuclei (red) approximations strongly underestimate the
nonlinear response seen in the TDSE result (black), which
suggests the importance of the dynamical quantum treatment
of nuclei. The TD-MCSCF method with n = 1, or TDH [Fig. 1(b)]
provides improved description of the nonlinear response, but
still fails to quantitatively reproduce the TDSE result. The
TD-MCSCF method with n = 8 [Fig. 1(c)], on the other hand,
produces the dipole acceleration that agrees with the TDSE

T
TDSE
Fixed nuclei
Frozen nuclei

20 |

(a)

dipole acceleration (1 03 a.u.)

ERpTat 'TDSE " ]
b TD-MCSCF(1,1) A A (b)
= 10} N | 1 M -
c |
o I
ks [
8 J 11}
S -1.0 \/ ‘{‘ B
2 N M ‘
2 20} o 1
i 1 L 1 ! 1
T T T T T
20 TDSE |

[ TD-MCSCF(8,8)
1.0 F

()

0.0

-1.0

dipole acceleration (10‘3 a.u.)

0 2 4 6 8 10 12
time (optical cycle)

Fig. 1 Time evolution of the dipole acceleration of one-dimensional H,"™
exposed to a laser pulse with a wavelength of 800 nm and an intensity of
1.0 x 10" W cm™2. Comparison of the results of fixed nuclei and frozen
nuclei approximations (a), TD-MCSCF method with n = 1 (b), and
TD-MCSCF method with n = 8 (c) with numerically exact TDSE results.
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result nearly perfectly, on the scale of the figure. The HHG
spectra calculated as the modulus squared of the Fourier transform
of the dipole acceleration are shown in Fig. 2. The fixed and frozen
nuclei approximations underestimate the intensity of the first few
harmonics, while overestimating the higher plateau (the cutoff
position is estimated to be the 39th harmonic from the Lewenstein
model*®) [Fig. 2(a)], both suggesting an important contribution from
(more polarizable and loosely bound) the larger |R| region in the
TDSE result. The TD-MCSCF spectrum with increasing 7 [shown for
n =1 (Fig. 2(b)) and n = 8 (Fig. 2(c))] shows increasingly better
agreement with the TDSE one, and the TD-MCSCF method with
n = 8 nicely reproduces the overall spectrum obtained using the
TDSE simulations, especially for low-order harmonics, albeit
with a still remaining slight overestimation of the plateau intensity
which implies a strong electron-proton correlation.

Finally, also plotted in Fig. 2(b) with a red line is the result of
TD-MCSCF method directly applied to the Hamiltonian of the
original coordinate, eqn (50), with one electronic orbital and
two protonic orbitals to expand the three-particle wavefunction
¥(x,X1,X,), using the method described in ref. 19 to eliminate

T T T T o
= - TDSE ]
S N Fixed nuclei - ]
a4 H Frozen nuclei E
k)
= ixio®
(2]

] -10
€ 1x10 1
© ‘
< -15

1x1 i
g x10
© L
< 1x10% |
s : TD-MCSCF(1) ——— ]
& \ TD-MCSCF: Eq.(50) _
© \ ]
= ixi0® E
= 1
5 -10 ]
€ 1x10 Y -
Q -
c 15 | L
g 1x10 = —
® 1
= 1X10_20 C 1 1 1 1 1 1 .
— N T T T _I[_[)SE T 4
E N TD-MCSCF(8) ]
e} i 1
&8 5 ]
> 1x10° {\ el — 7]
AP
@ 10 Ragi ]
€ X107 | A -
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§ 0™ Ibiidani o,
3 (© ]
= 1X10-20 C | | I I 1 I -
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harmonic order

Fig. 2 The HHG spectra of one-dimensional H,* for the same laser pulse
and simulation methods as those in Fig. 1. Comparison of the results of
fixed nuclei and frozen nuclei approximations (a), TD-MCSCF method with
n =1 (b), and TD-MCSCF method with n = 8 (c) with numerically exact
TDSE results. Also shown in (b) is the result of the TD-MCSCF method
directly applied for the Hamiltonian of egn (50) with one electronic orbital
and two protonic orbitals.
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the translational degree of freedom. We find a remarkable
agreement between the results from the original Hamiltonian
eqn (50) and the reduced Hamiltonian eqn (51). The former
approach can be applied to more complex systems in general.

6 Summary

We have developed a fully general ab initio TD-MCSCF approach
to describe the dynamics of a many-body system that is a mixture
of any arbitrary kinds and numbers of fermions and bosons
subject to an external field. In this approach, the total wave
function is expanded in terms of configurations constructed from
time-dependent single-particle spin-orbitals. The expansion is
not limited to the full-CI one, and the configurations used in
the expansion can be specified in terms of the whole mixture. The
equations of motion for the CI coefficients and spin-orbitals have
been derived, based on the time-dependent variational principle.
Furthermore, we have presented the working equations applicable
to the investigation of the ultrafast dynamics in a molecule
irradiated by intense laser fields and/or ultrashort XUV pulses.

The present framework is highly flexible. For example, we
can treat identical nuclei in spatially separated subdomains of a
molecule as different particle kinds. We can also treat heavy
nuclei and incident projectiles as classical particles'® instead of
quantum ones. The latter may be handled as an external field
as well. This flexibility will be useful for unraveling the physical
mechanisms underlying the phenomena under investigation.>”
As a future prospect, an introduction of a CI space that adaptively
changes following the dynamics as well as an inclusion of particle
conversion'® would enable even more efficient and flexible
simulations.

Whereas our original motivation lies in ab initio simulations
of the electron-nuclear dynamics in molecules driven by a laser
pulse, our method will be applicable to a wide variety of
problems far beyond. Especially, the Hamiltonian can contain
non-local terms and involve many-body (more than two-body)
interactions. Thus, it may also find applications in cold-atom/
cold-molecule physics and nuclear physics.
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