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Ab initio calculation of inelastic scattering

Andrés Moreno Carrascosa and Adam Kirrander *

Nonresonant inelastic electron and X-ray scattering cross sections for bound-to-bound transitions in

atoms and molecules are calculated directly from ab initio electronic wavefunctions. The approach

exploits analytical integrals of Gaussian-type functions over the scattering operator, which leads to

accurate and efficient calculations. The results are validated by comparison to analytical cross sections

in H and He+, and by comparison to experimental results and previous theory for closed-shell He and

Ne atoms, open-shell C and Na atoms, and the N2 molecule, with both inner-shell and valence

electronic transitions considered. The method is appropriate for use in conjunction with quantum

molecular dynamics simulations and for the analysis of new ultrafast X-ray scattering experiments.

1 Introduction

X-ray scattering has been, and continues to be, instrumental
for investigations into the properties of matter. While elastic
scattering plays a key role in determining the structure of
matter,1 inelastic scattering enables studies of dynamic properties
such as the dispersion of phonons, valence electron excitations,
and time-dependent electron dynamics.2 Recently, new double-
differential, high energy-resolution X-ray scattering measure-
ments at synchrotrons have begun to provide an increasingly
detailed picture of electronic structure and dynamics in gas-phase
atoms and molecules.3–12 One particular strength of inelastic
X-ray scattering (IXS) is the ability to access optically forbidden
transitions.

New X-ray Free-Electron Lasers (XFELs), in turn, generate
high intensity and short duration pulses13–19 that enable time-
resolved X-ray scattering,20–25 and thus ultrafast imaging of
photochemical dynamics.26 An attractive feature of such experi-
ments is that they provide direct access to the evolution of
molecular geometry via the elastic scattering.27 However, ques-
tions remain regarding the degree to which inelastic contribu-
tions to the scattering signal can be ignored when analysing
experiments, especially in regions where the separation of
different electronic states is small.28–31 For instance, the inelastic
contributions are known to be important for imaging of electronic
wavepackets in atoms.32–35 A full theoretical analysis of ultrafast
X-ray scattering, beyond the conventional elastic approximation,
will require matrix elements corresponding to IXS,31 which
provides an important incentive for the work presented in this
article. In addition, it is conceivable that once the appropriate
theoretical and computational tools for a more detailed analysis

of ultrafast X-ray scattering experiments are in place, more
detailed information can be extracted regarding the electron
dynamics that accompanies the structural dynamics of a photo-
chemical process.

In the following, we outline a method for the calculation of
IXS from ab initio electronic structure calculations in atoms and
molecules, based on our previously developed code for the
prediction of elastic X-ray scattering.36–38 An important objective
is to match the level of accuracy required for quantum molecular
dynamics simulations of photochemical reactions,31 which
generally implies a high-level multiconfigurational description
of the electronic structure (e.g. CASSCF, CASPT2, or MRCI), while
not quite reaching the level of sophistication possible when
evaluating IXS from atomic targets or very small molecules
(e.g. R-matrix theory) in order to maintain a necessary degree
of computational efficiency. In the following, we will outline the
theory, present our computational approach, and demonstrate
that we can calculate IXS accurately.

2 Theory
2.1 X-ray scattering

The total double differential cross section for X-ray scattering is,2

d2s
dOdo1

¼ ds
dO

� �
Th

Sðq;o0Þ; (1)

where the strength of the photon–electron coupling is given by
the Thomson cross section,

ds
dO

� �
Th

¼ r0
2 o1

o0

� �
e0 � e1�j j; (2)

with r0 = e2/mc2 known as the classical electron radius (e is the
charge of an electron and c the speed of light), o1 and o0 the angular
frequencies of the scattered and incident X-rays, and |e0�e1*|
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the polarization factor. The so-called dynamic structure factor,
S(q,o0), describes the material response,

Sðq;o0Þ ¼
X
b

Cb L̂
�� ��Ca

� ��� ��2d Eb � Ea � �ho0
� �

; (3)

where |Cbi and |Cai are the final and initial states, o0 = o0� o1,
and L̂ is the scattering operator,

L̂ ¼
XN
j¼1

eiqrj ; (4)

with the sum running over all N electrons. The momentum
transfer vector, q = k0 � k1, is defined as the difference between
the incident and the scattered wave vectors, with k0 = k1 + o0/c,
and h�o0 = Eb� Ea the transition energy, which often is negligible
compared to the energy of hard X-rays.39

The matrix elements Lba = hCb|L̂|Cai in eqn (3) originate
from the

-

A�
-

A terms in the interaction Hamiltonian,2 where
-

A is
the vector potential of the electromagnetic field, at first order of
perturbation theory. The competing contributions from the -p

-

A
terms in the Hamiltonian, which for scattering appear in
second order, are sufficiently small to be disregarded.40 Diagonal
matrix elements, Laa = hCa|L̂|Cai, correspond to elastic scattering
and are equivalent to the Fourier transform of the target electron
density, a circumstance that underpins the role of elastic scatter-
ing in structure determination.1 Further details regarding the
calculation of elastic scattering from ab initio wavefunctions can
be found in ref. 36 and 41. The remaining off-diagonal, a a b,
matrix elements correspond to nonresonant IXS, also referred to
as Compton scattering, and are the focus of this article. The
elastic and inelastic matrix elements for X-ray scattering, Lba, are
a necessary ingredient in detailed treatments of ultrafast X-ray
scattering from non-stationary quantum states by coherent X-ray
sources such as XFELs, see e.g. ref. 31, and the requirement for
these matrix elements is one of the motivations for the work
presented in this article.

There is an immediate link between IXS and inelastic
scattering of fast charged particles, such as electrons, which
has been exploited extensively in Electron Energy-Loss Spectro-
scopy (EELS).42 The inelastic scattering of electrons is described
by the same matrix elements as IXS,43,44 although the approx-
imations involved are more severe for electrons than X-rays.45

Formally, eqn (1) pertains to electron scattering if the Thomson
differential cross section, (dI/dO)Th, is replaced by the corres-
ponding Rutherford cross section, (dI/dO)Ru. The scattering
elements for elastic electron scattering are not quite identical
to X-ray scattering, since they contain additional contributions
from electron-nuclei scattering.

The similarity between electron and X-ray scattering in the
first Born approximation can be emphasized by the use of
generalised oscillator strengths (GOS).44 In brief, the GOS
renormalizes the spectra using the Bethe f-sum rule,43

N ¼ 2

q2

ð1
0

o0Sðq;o0Þdo0; (5)

where N is the number of electrons. Such renormalization
provides an unitless measure of the strength of spectral
features, at a given energy resolution Do, as,

GOSðq; �oÞ ¼ 2

q2

ð �oþ0:5Do

�o�0:5Do
o0Sðq;o0Þdo0: (6)

The GOS is often rotationally averaged to account for lack of
alignment in the experiments,44 which explains the usage of q
rather than q in eqn (5) and (6) above. In the literature, a sum
over the final degenerate substates and an average over initial
Boltzmann-weighted states is frequently implied.

2.2 Scattering matrix elements

An accurate description of excited electronic states in atoms
and molecules requires a multiconfiguration expansion of the
wavefunction. Simple versions of the one-electron approxi-
mation for inelastic scattering are insufficient to describe
Compton scattering and multielectron correlation effects must
therefore, at least to some extent, be accounted for.46 In multi-
configurational ab initio electronic structure theory the valence
electrons are distributed over molecular orbitals in an active
space which consists of multiple electron configurations repre-
sented by Slater determinants. An electronic state, |Cai, can be
expanded as,

Caj i ¼
XNconf

i¼1
ca;i F

a;i
SD

�� �
; (7)

where the ca,i are the configuration interaction coefficients for
the electronic state a, Nconf is the number of configurations
included in the expansion, and |Fa,i

SDi are the Slater determinants.
The Slater determinants are given by,

Fa;i
SD

�� �
¼ ðN!Þ�1=2

XN!

n¼1
ð�1ÞpnPnFi

H; (8)

with Pn the pair-wise permutation operator acting on the Hartree
product Fi

H = wi
1(q1). . .wi

N(qNe
) where qj = (rj,oj). The spin orbitals

w i
j (q j) are the products of the spin functions, |mi or |ki, and the

orthonormal spatial molecular orbitals, fj(rj), used to construct
each Slater determinant.†

Scattering matrix elements Lba between electronic states b
and a are thus given by,

Cb L̂
�� ��Ca

� �
¼
X
ii0

cb;i
�ca;i0 Fb;i

SD L̂
�� ��Fa;i0

SD

D E
; (9)

using the scattering operator L̂ from eqn (4). It is worth noting
that we do not explicitly decompose the matrix elements into
multipole components by applying the Wigner–Eckart theorem
to the operator L̂ in eqn (4). The multipole expansion has the
advantage that it makes it possible to derive selection rules for
single atoms46 or diatomic molecules,47 but confers significantly
less advantage in the general, non-symmetric, case. Importantly, the

† Note that for convenience we allow the index j on the spin orbitals w j mirror the
electron index j on the electrons (qj), but that the subset of spin orbitals {w j} is
different for each Slater determinant. For a total set of 2K spin orbitals, one can

generate
2K
N

� �
different determinants.
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current treatment has the advantage that the full physical value of
the matrix element is obtained straight away.

To evaluate the matrix elements, we note that L̂ is the sum of
one-electron operators, leading to three standard cases for the
evaluation of the brackets on the right-hand side of eqn (9).48

The first case occurs if the two Slater determinants are identical,

Fa;i
SD L̂
�� ��Fa;i

SD

� �
¼
XN
j¼1

wij l̂
��� ���wij

D E
¼
XN
j¼1

fi
j l̂
��� ���fi

j

D E

¼
XNMO

j¼1
bj fi

j l̂
��� ���fi

j

D E
;

(10)

where l̂ is the single electron operator corresponding to L̂ in
eqn (4). In the final line of eqn (10), bj A 0, 1, 2 is the occupancy
number for each spatial orbital in the Slater determinant when
running the summation over all unique spatial orbitals, not just
those included in that specific determinant. The second case
occurs if the two Slater determinants differ by a single spin
orbital when arranged in maximum coincidence,

Fb;i
SD L̂
�� ��Fa;i 0

SD

D E
¼ wiN l̂

��� ���wi 0N
D E

¼
fi
N l̂
��� ���fi 0

N

D E

0

8<
: ; (11)

which is nonzero when the spins of wi
N and wi

0
N are parallel, but

vanishes via hk|mi = 0 otherwise. Finally, if the two Slater
determinants differ by more than one spin orbital, the result is
always zero.

2.2.1 Evaluation of matrix elements. The next step requires
the evaluation of the integrals that contribute to the matrix
elements in eqn (3), corresponding to the brackets listed in
eqn (10) and (11). These one-electron integrals over spatial
orbitals, expressed in a Gaussian basis, can be evaluated analy-
tically as outlined in the following. The molecular orbitals fj (rj)
are obtained as linear combinations of the basis functions Gk(r),

fjðrÞ ¼
XNBF

k¼1
Mj

kGkðrÞ; (12)

where Mj
k are the molecular orbital expansion coefficients. The

total number of basis functions Gk(r) is NBF, with j A NMO = NBF.
Each basis function Gk(r), in turn, is a contraction of Gaussian-type
orbitals (GTOs), gs(r), such that,

GkðrÞ ¼
Xnk
s¼1

mks g
k
s ðrÞ; (13)

where mk
s are the basis set contraction coefficients for the

primitive GTOs. A Cartesian Gaussian-type orbital centered at
coordinates rs = (xs,ys,zs) has the form,

gs(r) = Ns(x � xs)
ls(y � ys)

ms(z � zs)
nse�gs(r�rs)

2

, (14)

with exponent gs, Cartesian orbital angular momentum
Ls = ls + ms + ns, and normalisation constant Ns,

Ns ¼
2

p

� �3=4
2 lsþmsþnsð Þg 2lsþ2msþ2nsþ3ð Þ=4

s

2ls � 1ð Þ!! 2ms � 1ð Þ!! 2ns � 1ð Þ!!½ �1=2
; (15)

where !! denotes the double factorial. The usage of Cartesian
GTOs is convenient in the present context, but there is a direct
mapping between Cartesian and spherical Gaussians.49 If
spherical Gaussians are used the mathematics of the analytic
Fourier transform takes a different form.50

The one-electron bracket in eqn (10) and (11) can then be
evaluated as,

fa l̂
��� ���fb

D E
¼
XNBF

k1 ;k2

Ma
k1
Mb

k2

Xnk1 ;nk2
s1;s2

mk1s1 m
k2
s2
Kk1k2

s1s2

�Fr gk1k2s1s2
ðrÞ

h i
ðqÞ

(16)

where we use the Gaussian product theorem51 to rewrite the

product gk1s1 ðrÞg
k2
s2
ðrÞ as,

gk1s1 ðrÞg
k2
s2
ðrÞ ¼ Kk1k2

s1s2
gk1k2s1s2
ðrÞ; (17)

where Kk1k2
s1s2
¼ exp �gk1s1 g

k2
s2

rk1s1 � rk2s2

	 
2�
gk1s1 þ gk2s2

	 
� 
is the

pre-factor and gk1k2s1s2
ðrÞ is the new Gaussian centered at rk1k2s1s2

¼

gk1s1 r
k1
s1
þ gk2s2 r

k2
s2

	 
.
gk1s1 þ gk2s2

	 

with exponent gk1k2s1s2

¼ gk1s1 þ gk2s2 .

Since the Cartesian coordinates (x,y,z) are linearly independent
and each Gaussian function can be written as a product of
x, y and z components,

gk1k2s1s2
ðrÞ ¼

Y
r0¼x;y;z

gk1k2s1s2
ðr0Þ; (18)

the problem is reduced to the solution of one-dimensional

Fourier transforms Fx gk1k2s1s2
ðxÞ

h i
ðqÞ. These can be determined

analytically, as has been shown and tabulated in a previous
publication.36

3 Computational details

As pointed out in Section 2.2, a correct description of excited
electronic states requires multiconfigurational wavefunctions.
In the following, we focus on CASSCF, MCSCF, and MRCI level
theory, which provides an attractive compromise between
computational resources and accuracy, and constitutes a level
of theory frequently used in quantum molecular dynamics
simulations of small and medium sized molecules.52–55 The
wave functions are calculated using state averaging and the
results are expressed using CI configurations, with the weights
given by the configuration interaction vector. The calculations
are more convenient if the CI vector is expanded over configu-
ration state functions (CSF) instead over individual Slater
determinants. In the case of MRCI methods, the calculation
is performed using CSF already, expressing the spin popula-
tions as branches with only a merely statistical meaning in
terms of spin quantum numbers. This gives the inelastic
scattering matrix elements as,

Cb L̂
�� ��Ca

� �
¼
XNCI

i; j

vCIb;iv
CI
a; j Fb;i

SD L̂
�� ��Fa; j

SD

D E�����
�����
2

; (19)
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where vCI
a are the CI-vectors of length NCI. Only pairs of Slater

determinants that differ by less than two occupied orbitals will
give a non-zero result, as discussed earlier, which makes it
possible to swiftly filter out null contributions to the integrals.
If doublet or triplet states are considered, appropriate prefac-
tors need to be included when spatial orbitals are evaluated.
Furthermore, in small systems, such as atoms or diatomic
molecules, symmetry is useful to reduce the number of calcula-
tions required. We have used the electronic structure package
MOLPRO56 to carry out the ab initio calculations, and calculated
the IXS cross sections using a new version of our recently
developed ab initio X-ray diffraction (AIXRD) code.36

The IXS cross sections in this article are given in terms of the
dynamic structure factor, S(q,ob), or the generalized oscillator
strength, GOS(q,�o), with the choice between the two representa-
tions determined by the source of the reference data used for
comparison. All calculated data is given at perfect energy resolu-
tion, i.e. with no averaging over energy (Do = 0 in eqn (6)). The
results for Ne and N2 are rotationally averaged to match pub-
lished data. Furthermore, the astute reader will notice that some
graphs show the cross sections as a function of q, while others as
a function of q2. The choice, again, reflects the source of the
reference data, with EELS measurements (or IXS measurements
that compare to EELS data) generally shown as a function of q2

in order to offset the small angle of scattering for EELS.

4 Results and discussion
4.1 Single-electron atoms

We begin by a comparison of analytical and numerical results
for the dynamic structure factor, S(q,o), in the single-electron
atoms H and He+. The analytical results are computed along the
lines in ref. 50. Numerically, the wavefunctions are calculated at
the CASSCF(1,3) level, which is more than sufficient in the
present case, using the Dunning basis d-aug-cc-PV5Z. The
d-aug family of basis sets allows a better description of the diffuse
orbitals in hydrogen-like atoms when the principal quantum
number is n 4 1, i.e. for hydrogenic Rydberg states. The
calculated ab initio transition energies for (2s,2p,3s) ’ 1s are
within o0.1% of the experimental57 and analytical result. As
apparent from Fig. 1, the analytical and numerical results for
S(q,o) agree well in both cases, with the dynamic structure factor
extending to larger values of q for transitions for the more compact
He+ states (Fig. 1b) compared to H (Fig. 1a), as expected.

4.2 Two-electron atoms

We now consider the He atom, a two-electron system. The
electronic states of He are well known. The energy convergence
for CASSCF(2,10) ab initio calculations with four different
Dunning basis sets is shown in Table 1 for the two excited
states 1S0(1s2s) and 1P1(1s2p), with the corresponding dynamic
structure factor for the 1S0(1s2s) ’ 1S0(1s2) transition from the
ground state shown in Fig. 2 together with reference calcula-
tions using explicitly correlated wavefunctions by Cann and
Thakkar.58 Agreement between the reference results and our

calculations is good, with the best agreement achieved with the
aug-cc-PV6Z basis, which also has the best energy convergence.
The remaining discrepancies for the aug-cc-PV6Z basis occur
predominantly at small values of q. Importantly, the correlation
between energy convergence in Table 1 and the quality of the
scattering in Fig. 2, indicate that the calculations are robust
and that systematic improvements are possible. The energy
convergence is a good predictor of the quality of the calculated

Fig. 1 Comparison between numerical ab initio calculations, using our
approach, and analytical results for (a) the H neutral atom, and (b) the
He+ cation. The dynamic structure factor, S(q,o), is shown for the transi-
tions 2s ’ 1s, 2px(2py) ’ 1s, 2pz ’ 1s, and 3s ’ 1s.

Table 1 Energies E for the 1S0(1s2s) and 1P1(1s2p) states in He calculated at
the CASSCF(2,10) level with Dunning basis sets: aug-cc-PVQZ, aug-cc-PV5Z,
aug-cc-PV6Z, and d-aug-cc-PV5Z. The percentage error, DE, compared to
experimental values from NIST57 is also given

He

1S0(1s2s) 1P1(1s2p)

E (eV) DE (%) E (eV) DE (%)

Exp.57 20.615 — 21.218 —
PVQZ 20.793 0.8 23.943 12.8
PV5Z 20.748 0.6 23.078 8.8
PV6Z 20.684 0.3 22.667 6.8
d-PV5Z 20.000 3.0 20.680 2.5
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inelastic scattering; we have previously made the same observa-
tion for the calculation of elastic scattering matrix elements.37,38

In Fig. 3 we compare our calculated dynamic structure factors for
the two transitions 1S0(1s2s) ’ 1S0(1s2) and 1P1(1s2p) ’ 1S0(1s2) in
He to experimental results by Xie et al.7 and reference calcula-
tions by Cann and Thakkar.58 The agreement between present
and previous calculations and the experimental data is good,
with the reference calculations reproducing experiments
slightly better for q o 2 a.u. The fact that the energy conver-
gence for the 1S0 state is better than for the 1P1 state in our
calculations (see Table 1) appears to have little effect on the
agreement between the dynamic structure factor for the two
transitions in our calculations and the experimental results,
with the convergence of 1S0(1s2s) ’ 1S0(1s2) only marginally
better than for 1P1(1s2p) ’ 1S0(1s2). Notably, for both transi-
tions the best agreement with experimental data is achieved

with the basis set that yields the best energy convergence for
that state (see Table 1).

4.3 Multi-electron atoms

4.3.1 Ne. The first multi-electron atom that we consider is
the closed-shell rare-gas atom Ne, where we investigate inelastic
excitations from the outer subshell np6 electrons. These have
been studied before, theoretically46,59 and experimentally using
both EELS60 and IXS.10 The IXS measurements by Zhu et al.10

demonstrate elegantly that the intensity of the EELS measure-
ments at high q is increased by contamination from high-order
Born terms corresponding to multiple scattering. For X-ray
scattering, only first-order Born terms contribute due to the
weaker interaction.

In the following, we focus the comparison on the previous
benchmark random-phase with exchange (RPAE) calculations
by Amusia et al.46 The excitations studied are characterized by
the dependency on the total angular momentum, and following
the lead of Amusia et al. we discuss the cross sections in terms of
the monopole, dipole, and quadrupole transitions, respectively.
We perform our ab initio calculations at the CASSCF(10,9)/aug-
cc-PVTZ level of theory. Note that when using a general-use
ab initio electronic structure package, one has to pay careful
attention to symmetry and multiplicity in order to isolate different
contributions correctly for an atom. The energies of the excited
states of Ne involved in the monopole, dipole, and quadrupole
transitions from the ground state are listed in Table 2.

In Fig. 4 we compare our results with those by Amusia
et al.46 for the monopole and quadrupole 3p ’ 2p and the
dipole 3s ’ 2p transitions. Note that the cross sections have
been rotationally averaged (see Section 2). Overall, the agree-
ment is very good, with the only notable discrepancy occurring
for the dipole 3s ’ 2p transition, where the low-q peak in our
calculations is marginally shifted to lower values of q compared
to Amusia et al., although the height and width of the peak
agree almost perfectly. The Amusia et al. calculations have been
compared to the recent IXS experiments by Zhu et al.,10 and the
agreement for the monopole 2p53p[1/2]0, the dipole 2p53s[1/2]1,
and the quadrupole 2p53p[5/2,3/2]2 were found to be quite
good, which carries over to our present calculations.

4.3.2 C and Na. Next we consider two open-shell atoms,
C and Na, which provides an opportunity to examine cross
sections for inner shell excitations in higher multiplicity systems
with unpaired electrons in the ground state and a significant
degree of electron correlation. The energy convergence of the
CASSCF/aug-cc-PVTZ calculations are shown in Table 3.

Fig. 2 Calculated dynamic structure factor, S(q,o), in He for the 1S0(1s2s) ’
1S0(1s2) transition compared to results from Cann and Thakkar.58 The numerical
calculations are performed with CASSCF(2,10) and four Dunning basis sets
(aug-cc-PVQZ, aug-cc-PV5Z, aug-cc-PV6Z, and d-aug-cc-PV5Z).

Fig. 3 Calculated dynamic structure factor, S(q,o), in He for the 1S0(1s2s) ’
1S0(1s2) and 1P1(1s2p) ’ 1S0(1s2) transitions compared to theory by Cann and
Thakkar58 and experiments by Xie et al.7 The ab initio calculations are done at
the CASSCF(2,10)/aug-cc-PV6Z and the CASSCF(2,10)/d-aug-cc-PV5Z levels,
with the d-aug results identified by the label ‘‘(diff.)’’.

Table 2 Energies Ecalc for excited states in Ne atom calculated using
CASSCF(10,9)/aug-cc-PVTZ. The percentage error, DE, relative experi-
mental values Eexp from NIST57 is also given

Ne Eexp (eV) Ecalc (eV) DE (%)

2s2p53s[1/2]1 16.715 16.554 1.0
2s2p53p[1/2]0 18.555 18.290 1.4
2s2p53p[3/2]2 18.704 18.720 0.1
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The IXS cross sections for the transitions from the ground
state of the C atom to the first two inner-shell excited states, i.e.
3P([He]2s2p3) ’ 3P([He]2s22p2) and 3D([He]2s2p3) ’ 3P([He]2s22p2),
are shown in Fig. 5. Our ab initio calculations, done at the
CASSCF(6,5)/aug-cc-PVTZ level, agree well with the RPAE calcula-
tions by Chen and Msezane,61 also included in Fig. 5. For q2 - 0
the GOSs should converge to the optical oscillator strength of the
transitions. In our calculations these values are 0.0615 and

0.1130, respectively, which agrees reasonably well with the
experimental values of 0.0634 and 0.0718,63 as well as previous
theory.61 Further improvements in the oscillator strength would
most likely require CASPT2 level corrections.

In Na, we have done the calculations at the CASSCF(11,9)/
aug-cc-PVQZ level of theory. We consider an inner shell excita-
tion from the doublet ground state, i.e. the 2P([He]2s22p53s2) ’
2S([He]2s22p63s) transition, which has a very low oscillator
strength compared to outer electron excitations. The cross sections,
shown in Fig. 6 compare well to previous theory at the HF and
RPAE level61 and EELS experiments by Bielschowsky et al.62

4.4 Molecules

Finally, we demonstrate that our codes can also calculate IXS
cross sections in molecules. We consider the nitrogen molecule,
N2, which is a major component in the earth atmosphere and
has an important valence dipole forbidden transition at 9.3 eV
that has been studied extensively.42 This quadrupole allowed
transition, called the Lyman–Birge–Hopfield band, corresponds
to the a1Pg ’ X1S+

g transition. Previous theoretical calculations
include Tamm–Dancoff (TDA) and random-phase (RPA) approx-
imations by Szabo and Ostlund,51 Hartree–Fock calculations
by Chung and Lin,66 and more recent CAS and MRCI calcula-
tions by Giannerini et al.65 and TD-DFT by Sakko et al.67 These
complement a large number of experimental studies.5,6,42,64,68

Bradley et al.5 have identified deviations from first Born
approximation scattering in the EELS signal at high q by
comparison to IXS, along the lines of similar observations in
Ne discussed earlier. A detailed analysis of TD-DFT theory and
experiments in ref. 6, shows further that the a1Pg ’ X1S+

g

transition occurs in a region where there are additional con-
tributions from the octupolar w1Du ’ X1S+

g transition in the
experimental signal, although in the following we focus on the
transition to the a1Pg state.

The energy for the transition obtained using SA-CASSCF(14,12)/
aug-cc-PVCTZ is within 0.3% of the experimental42 value.

Fig. 4 Dynamic structure factor, S(q,o), in Ne for the 3s ’ 2p dipolar and
3p ’ 2p monopolar and quadrupolar transitions compared to results by
Amusia et al.46

Table 3 Energies Ecalc for excited states in atoms C and Na calculated at
the CASSCF/aug-cc-PVTZ level of theory (see text for details). The per-
centage error, DE, compared to experimental values Eexp from NIST57 and
Bielschowsky et al.62 is also given

Atom [state] Eexp (eV) Ecalc (eV) DE (%)

C [2s2p3 3P] 9.33057 9.576 2.6
C [2s2p3 3D] 7.94657 7.410 6.7
Na [2p53s2 2P] 31.20062 31.489 0.9

Fig. 5 Generalized oscillator strengths, GOS(q,o), in C for the two transi-
tions 3P0(2s2p3) ’ 3P0(2s22p2) and 3D0(2s2p3) ’ 3P0(2s22p2). The current
ab initio calculations using CASSCF(6,5)/aug-cc-PVTZ are compared to
RPAE calculations by Chen and Msezane.61

Fig. 6 The generalized oscillator strength, GOS(q,o), in Na for the
2P(2s22p53s2) ’ 2S(2s22p63s) transition. The ab initio calculations using
CASSCF(11,9)/aug-cc-PVQZ are compared to experiments by Bielschowsky62

and theory by Chen and Msezane.61
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Table 4 shows the experimental and theoretical energies E for
the a1Pg state in N2, as well as the percentage error, DE,
compared to experimental values from Leung.42 Also included
are the results for a MRCI(14,10)/aug-cc-PVCTZ calculation,
which in principle should perform better than CASSCF, but
due to computational problems had to be run at lower symmetry
which adversely affected the energy convergence.

The generalized oscillator strength, GOS(q,o), that we have
calculated is in good agreement with the experimental results
from Leung et al.42 and Barbieri et al.,64 shown in Fig. 7, as well
as recent theoretical calculations by Giannerini.65 The MRCI
results provide a slightly lower scattering cross section, but the
difference is small. The calculated cross sections are below the
experiments at high values of q. As discussed above, in terms of
comparison to EELS the reason for this difference is primarily
the failure of the first Born approximation in EELS. For IXS the
discrepancy is smaller, and is due to additional contributions
from the w1Du state in the Lyman–Birge–Hopfield band.6

Finally, a brief remark regarding the energy convergence
of the ab initio calculations, as summarized in Tables 1–4.
In C and Na the number of Slater determinants is restricted to
correctly isolate the inner-shell transitions considered, which
impacts on the treatment of electron correlation. The valence
transition considered in N2 allows for greater flexibility in the
choice of active space, leading to a good account of static
electron correlation, with the calculation close to full CI.

5 Conclusions

We have calculated a wide range of inelastic scattering cross
sections, including inner-shell and valence transitions in
closed and open shell atoms, and a benchmark transition in
the N2 molecule. We find good agreement with experimental
data from IXS and EELS, and agreement with exact theory for
the H and He+ atoms and previous calculations. In terms of the
Lba off-diagonal matrix elements, a range of different computa-
tional techniques is now available. At the highly accurate end,
R-matrix and RPAE based methods perform very well for
calculations in single atoms, while for large systems TD-DFT
strikes the necessary balance between computational cost and
accuracy.67 However, TD-DFT is generally not appropriate for
the simulation of complex photochemical reactions in isolated
molecules, and is known to yield results that are quite divergent
from established reaction paths.69

The approach presented in this paper covers the ground
between these two extremes. It calculates inelastic scattering
matrix elements at a level of ab initio theory congruent with
state-of-the-art quantum molecular dynamics simulations,
and is therefore well placed to evaluate inelastic contri-
butions to the signals observed in ultrafast X-ray scattering
experiments.31 As discussed in the Introduction, an important
motivation for this work is the prospect of identifying electro-
nic transitions in time-dependent ultrafast X-ray scattering
experiments, which could enable complete characterization of
reaction paths using X-ray scattering. Achieving the same
insights today requires the combination of ultrafast X-ray
scattering with a different experimental technique, e.g. time-
resolved photoelectron spectroscopy.70 Finally, the accuracy of
the matrix elements calculated by our method is only limited
by the quality of the ab initio wavefunctions, and can be
systematically improved by adjustments of the ab initio
method and basis. Our approach involves a direct summation
over all multipole matrix elements, aiding immediate compar-
ison to experiments.

The link between IXS and EELS suggests that the codes
developed here could be useful for detailed analysis of ultrafast
electron diffraction (UED) data, as long as the nuclear-scattering
contribution is included in the elastic terms.71 Future extensions
of this work would be to include the effect of nuclear motion in the
IXS signal, as we have recently done for elastic scattering,37,38 and
to consider Compton ionization by the inclusion of continuum
states either via multichannel quantum defect formalism72–74 or a
Dyson orbital approach.75 We also aim to examine in greater detail
the mapping of the wavefunction in momentum space made
possible by inelastic measurements.
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Table 4 Energy E for the a1Pg state in N2, corresponding to the transition
energy from the X1S+

g ground state. The experimental result is taken from
Leung et al.42 Ab initio CASSCF(14,12) and MRCI(14,10) results are shown,
using the Dunning Rydberg-adapted aug-cc-PVCTZ basis. The percentage
error, DE, compared to the experimental value is also given

N2 E (eV) DE (%)

Exp.42 9.300 —
CASSCF(14,12) 9.332 0.3
MRCI(14,10) 9.700 4.3

Fig. 7 Generalized oscillator strength, GOS(q,o), for the a1Pg ’ X1S+
g

transition in N2. Our CASSCF and MRCI ab initio results are compared to
experimental results from Leung et al.42 and Barbieri et al.,64 and to
calculations by Giannerini et al.65
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K. Hämäläinen, G. Cooper, A. P. Hitchcock, K. Schlimmer
and K. P. Nagle, Phys. Rev. A: At., Mol., Opt. Phys., 2011,
84, 022510.

7 B. Xie, L. Zhu, K. Yang, B. Zhou, N. Hiraoka, Y. Cai, Y. Yao,
C. Wu, E. Wang and D. Feng, Phys. Rev. A: At., Mol., Opt. Phys.,
2010, 82, 032501.

8 L. Zhu, L. Wang, B. Xie, K. Yang, N. Hiraoka, Y. Cai and
D. Feng, J. Phys. B: At., Mol. Opt. Phys., 2011, 44, 025203.

9 X. Kang, K. Yang, Y. W. Liu, W. Q. Xu, N. Hiraoka, K. D.
Tsuei, P. F. Zhang and L. F. Zhu, Phys. Rev. A: At., Mol.,
Opt. Phys., 2012, 86, 022509.

10 L. F. Zhu, W. Q. Xu, K. Yang, Z. Jiang, X. Kang, B. P. Xie,
D. L. Feng, N. Hiraoka and K. D. Tsuei, Phys. Rev. A: At., Mol.,
Opt. Phys., 2012, 85, 030501.

11 Y.-G. Peng, X. Kang, K. Yang, X.-L. Zhao, Y.-W. Liu, X.-X.
Mei, W.-Q. Xu, N. Hiraoka, K.-D. Tsuei and L.-F. Zhu,
Phys. Rev. A: At., Mol., Opt. Phys., 2014, 89, 032512.

12 Y.-W. Liu, X.-X. Mei, X. Kang, K. Yang, W.-Q. Xu, Y.-G. Peng,
N. Hiraoka, K.-D. Tsuei, P.-F. Zhang and L.-F. Zhu, Phys. Rev.
A: At., Mol., Opt. Phys., 2014, 89, 014502.

13 J. N. Galayda, J. Arthur, D. F. Ratner and W. E. White, J. Opt.
Soc. Am. B, 2010, 27, B106.
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