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Lattice dynamics of the tin sulphides SnS2, SnS and
Sn2S3: vibrational spectra and thermal transport†

Jonathan M. Skelton, *a Lee A. Burton, b Adam J. Jackson,c Fumiyasu Oba,b

Stephen C. Parkera and Aron Walsh ade

We present an in-depth first-principles study of the lattice dynamics of the tin sulphides SnS2, Pnma and

p-cubic SnS and Sn2S3. An analysis of the harmonic phonon dispersion and vibrational density of states

reveals phonon bandgaps between low- and high-frequency modes consisting of Sn and S motion,

respectively, and evidences a bond-strength hierarchy in the low-dimensional SnS2, Pnma SnS and Sn2S3

crystals. We model and perform a complete characterisation of the infrared and Raman spectra, including

temperature-dependent anharmonic linewidths calculated using many-body perturbation theory. We

illustrate how vibrational spectroscopy could be used to identify and characterise phase impurities in tin

sulphide samples. The spectral linewidths are used to model the thermal transport, and the calculations

indicate that the low-dimensional Sn2S3 has a very low lattice thermal conductivity, potentially giving it

superior performance to SnS as a candidate thermoelectric material.

1. Introduction

The drive for ‘‘green’’ energy has spurred a search for new, high-
performance materials for photovoltaic (PV) devices for solar-
energy conversion, and thermoelectric generators for waste heat
recovery. The key challenge in both fields is to find materials with
favourable electrical properties that are cheap, earth abundant
and non-toxic, and that are easily synthesised and processed.

Due to their simple binary composition and the abundance
of tin and sulphur, the tin sulphides SnxSy have been widely
studied as candidate energy materials. SnS has significant potential
as a PV absorber, with a large optical absorption coefficient and a
bandgap close to the theoretical optimum for peak PV efficiency.1–3

It has also been investigated as a thermoelectric material,4 in the
context of a sustainable replacement for SnSe, which was recently
shown to possess record thermoelectric efficiency.5

SnS2 is of interest due to its layered bonding structure, which
is similar to that of 2D transition-metal dichalcogenides such
as MoS2,6 and a wide bandgap that makes it suitable for use as

a buffer layer in photovoltaic devices,7 as a high surface-area
photocatalyst,8 and as a photodetector.9

Sn2S3 occurs naturally as the mineral ottemanite,10,11 but
has been comparatively less intensively studied.12 However,
preliminary characterisation has indicated that the properties
of Sn2S3 may make it an excellent PV material in its own right.12

The rich phase chemistry of the SnxSy system presents a
challenge to synthesis and characterisation.13 In addition to the
three stable compositions, SnS itself has several known or proposed
polymorphs, viz. the pseudo-2D herzenbergite Pnma structure,14 the
high-temperatures Cmcm phase,15 and cubic phases obtained by
epitaxial growth16 and as nanoparticles.17–19 Many early reports
identified bulk cubic SnS as a zincblende structure,17,18,20 but it has
been demonstrated that this phase is highly unlikely to form,13,21

and that nanoparticulate cubic SnS most likely corresponds to the
recently-identified p-cubic phase with a 64-atom unit cell.21–23

Furthermore, Sn2S3 can be easily misidentified as SnS, due to its
similar bandgap and hence colour,12 and its similar macroscopic
morphology. Indeed, commercial samples of SnS have been
reported to be more than 50% Sn2S3 by mass in the past.24

The difficulty in identifying and characterising samples and
possible phase impurities may be an important factor in SnS-based
PV devices having so far failed to achieve a conversion efficiency
above 5%.25 Despite near-ideal material properties and a large
body of research,26 this efficiency falls well short of other current
flagship materials such as Cu(In,Ga)Se2 (CIGS; 421%),27,28

Cu2ZnSn(S,Se)4 (CZTS/Se; 12%)29,30 and hybrid halide perov-
skites.31 The lower mass of S and the stronger chemical bonding in
SnS also render it uncompetitive as a thermoelectric in comparison
to the benchmark SnSe and nanostructured PbTe.4,5,32
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It has been shown that the presence of multiple phases in
SnS films would likely have a negative impact on photovoltaic
(and thermoelectric) performance, with SnS2 in particular
being predicted to act as a recombination centre for holes and
electrons.33 Similar issues are of relevance to devices based on
CZTS, as tin sulphides are known to occur as secondary phases
during CZTS deposition,34,35 and again are expected negatively
to impact performance.

It is therefore essential to explore techniques for reliably
confirming the identity of SnxSy materials, as well as for identifying
tin sulphide impurities in materials such as CZTS.

Recent X-ray photoemission spectroscopy (XPS) measurements
showed that, with suitable energy resolution and careful analysis,
this technique can reliably distinguish phase-pure Pnma SnS and
SnS2.12 However, the presence of both Sn(II) and Sn(IV) in Sn2S3

would make it difficult to distinguish from mixtures of SnS and
SnS2, and hence to unambiguously assign impurity peaks.

X-ray diffraction (XRD) can also indicate the presence of
multiple phases. However, the assignment can be ambiguous, and
it is not uncommon in the literature to find samples assigned as
‘‘predominantly’’ one phase based on this technique.36–38 There
are also examples where XRD has conflicted with macroscopic
appearance: one study reported the synthesis of yellow plates of
Sn2S3 and black needles of SnS2 based on XRD,39 which is the
opposite expected from theoretical modelling and single-crystal
characterisation.33

Infrared (IR) and Raman spectroscopy are ubiquitous techni-
ques for materials characterisation, which have proven extremely
useful for CZTS among others.35,40–42 To use them effectively,
however, requires high-quality reference spectra, which can be
challenging to obtain for systems with complex phase diagrams.
Recent advances in ab initio modelling techniques have enabled
the accurate prediction of phonon spectra,43,44 including IR
and Raman intensities and spectral linewidths,45 providing a
valuable aid to experimental characterisation.

In this work, we present the simulation and complete assign-
ment of the spectra of the four bulk-stable tin sulphide systems,21

viz. SnS2, Pnma and p-cubic SnS and Sn2S3. In the following section,
we provide an overview of the lattice-dynamics techniques employed
in this work. Section 3a details the four compounds under study,
and Section 3b presents their harmonic phonon dispersions and
vibrational density-of-states curves. In Section 3c, we present a full
set of simulated infrared and Raman spectra, and discuss how the
different sulphide phases could be identified and distinguished
from their spectral signatures. Finally, in Section 3d we model and
compare the lattice thermal conductivity of the four sulphides, and
investigate the potential of the as-yet unexplored Sn2S3 and p-cubic
SnS as candidate thermoelectric materials.

2. Ab initio lattice-dynamics
calculations
a. Harmonic phonon frequencies and eigenvectors

Within the harmonic approximation, the phonon frequencies
and eigenvectors of a periodic system can be determined from

the second-order interatomic force-constant matrices F( jl, j0l0),
which capture the change in force F on atom j in response to
the displacement of atom j0 from its equilibrium position r:

Fab jl; jl0ð Þ ¼ � @Fað jlÞ
@rbð j0l0Þ

� �DFað jlÞ
Drbð j0l0Þ

(1)

The indices l and l0 in eqn (1) label the unit cells of the two
atoms, and a and b label the three Cartesian directions x, y and z.
As illustrated by the right-hand side expression, a common method
for computing the force-constant matrices is to perform small
displacements of atoms along symmetry-inequivalent directions
and to compute the resultant forces, thereby building up the
required derivatives using finite differences.

The force-constant matrices can be transformed to the
dynamical matrices D(q) for a given phonon wavevector q,
which captures the wavelength and propagation of the atomic-
displacement wave (eqn (2)). Diagonalisation of D(q) then
yields the set of phonon frequencies (eigenvalues) o(q,s) and
atomic-displacement patterns (eigenvectors) W(q,s) for the given
wavevector.

Dab j; j0; qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
mjmj0
p

X
l
0
Fab j0; j0l0ð Þexp iq � r j0l0ð Þ � r j0ð Þð Þ½ �

(2)

where mj are the atomic masses. The phonon frequencies o are
indexed by the q-point and a band index s which runs over the
3na modes arising from the na atoms in the primitive cell.

The (real-space) range of the force-constant matrices deter-
mines the accuracy with which the dynamical matrices for
wavevectors away from the Brillouin zone centre (G; q = (0,0,0))
can be calculated, and so the finite-displacement calculations
are often performed on supercell expansions of the primitive
unit cell, e.g. using the Parlinski–Li–Kawazoe method.46 Alter-
natively, the dynamical matrices for a given set of q-vectors can
be evaluated directly using perturbation theory, and force-
constant matrices to an appropriate range obtained by back
transformation.

b. Infrared and Raman activities

The visible and infrared radiation used in conventional infra-
red (IR) and Raman spectroscopy only interacts with phonon
modes close to the zone centre where the phonon wavelength
approaches infinity. IR and Raman spectra are therefore effec-
tively a phonon density of states (DoS) for q-vectors close to the
G point, with the spectral lines weighted by the spectroscopic
activity of the modes and broadened by the lifetimes.

The eigenvectors obtained directly from the diagonalisation
of the dynamical matrix are weighted by the atomic masses.
The relation between W(q,s) and atomic displacements u(q,s,jl)
is given by:

uðq; s; jlÞ ¼ Qðq; sÞffiffiffiffiffiffiffiffiffi
Nmj

p Re expðijÞWðq; s; jÞexpðq � rð jlÞÞ½ � (3)

where Q(q,s) is the normal-mode coordinate (amplitude), N is
the number of unit cells in the supercell used to model the
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displacement and j is an arbitrary phase factor. Setting j = 0
and considering G-point modes, for which W(q,s) are real,
N = 1 and the second exponent term is zero, simplifies eqn (3)
considerably.

To calculate the infrared intensities, we follow ref. 47 and
define the G-point ‘‘eigendisplacements’’ X(s,j) as the eigen-
vectors after division by the square root of the atomic masses,
such that:

uðs; jÞ ¼ QðsÞWðs; jÞffiffiffiffiffiffi
mj
p ¼ QðsÞXðs; jÞ (4)

This expression is equivalent to the G-point simplification of
eqn (3); we have also dropped the indexing by q, and assume
q = (0,0,0) in the remainder of this section.

The absolute infrared (IR) activities IIR(s) are given by the
square of the change in macroscopic polarisation P (i.e. the
dipole moment per unit volume) with respect to displacement
along the normal-mode coordinates. The change in polarisation
with respect to atomic displacements is captured by the Born
effective-charge tensors Z* defined as:

Zab
�ð jÞ ¼ O

ej j
@Pa

@rbð jÞ
(5)

where O is the volume of the primitive cell. The Born charges
can be used to obtain the polarisation derivatives along the
mode eigenvectors using the relationship:

@A

@QðsÞ ¼
Xna
j¼1

X3
b¼1

@A

@rbð jÞ
Xbðs; jÞ (6)

where A is a generic physical quantity, and the sum runs over
the na atoms in the primitive cell. IIR is calculated as:47,48

IIRðsÞ ¼
X3
a¼1

Xna
j¼1

X3
b¼1

Zab
�ð jÞXbðs; jÞ

�����
�����
2

(7)

The three components of the dipole derivative in eqn (7) are
summed to give the overall intensity.

The Raman activity tensors IRaman are given by the change in
the polarisability tensor a along the mode eigenvectors, which
can be recast in terms of the macroscopic high-frequency dielectric
constant eN:49,50

IRamanðsÞ /
@a

@QðsÞ �
@e1

@QðsÞ �
De1

DQðsÞ (8)

The implementation of the method in ref. 47 used in this work
is the central-difference scheme:50

IRaman;abðsÞ ¼
O
4p
�1
2

e1abð�sÞ
DQðsÞ þ

1

2

e1ab þsð Þ
DQðsÞ

� �
(9)

where eNab(�s) are the components of the dielectric tensor
evaluated at positive and negative displacements along the
mode s.

To obtain the scalar Raman intensities, IRaman, measured in
a typical experiment, the Raman tensor must be averaged for
the measurement geometry. This typically corresponds to the
direction and polarisation of the incident laser beam, and the

direction of the scattered light measured, being perpendicular to
one another, which yields the following expression for IRaman:47

IRaman ¼ 45
1

3
I11 þ I22 þ I33ð Þ

� �2
þ 7

2
I11 � I22ð Þ2 þ I11 � I33ð Þ2

h

þ I22 � I33ð Þ2 þ 6 I12
2 þ I13

2 þ I23
2

� �i
(10)

In eqn (10), we have used the notation Iab in place of IRaman,ab(s)
for brevity.

With mj in amu, and Z* in e, the calculated IR intensities will

have units e2 amu�1. With Q in amu
1
2 Å, the elements of the

Raman-activity tensor (eqn (9)) have units of Å2 amu�
1
2, and the

units of the scalar Raman intensity (eqn (10); the square of
the Raman activity) are Å4 amu�1.

c. Phonon linewidths and thermal conductivity

As discussed in detail in ref. 51, temperature-dependent phonon
linewidths G(l,T) for a phonon mode l (with wavevector q and
band index s; we use this single-letter notation in the following
for brevity) can be calculated as the imaginary part of the phonon
self-energy from many-body perturbation theory.

The many-body equation assumes three-phonon interactions
to be the dominant contribution to finite mode lifetimes. The key
quantities are the three-phonon interaction strengths F(l,l0,l00)
between triplets of phonon modes, which can be computed from
the harmonic phonon frequencies and eigenvectors and the
third-order force-constant matrices F(jl,j0l0,j00l00) using:51

F l; l0; l00ð Þ ¼ 1ffiffiffiffi
N
p 1

3!

X
jj0 j00

X
abg

Waðl; jÞWb l0; j0ð ÞWg l00; j00ð Þ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h

2mjoðlÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mj
0o l0ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2mj00o l00ð Þ

s

	
X
l
0
l
00
Fabg j0; j0l0; j00l00ð Þeiq0 � r j0l0ð Þ�r j0ð Þð Þeiq

00 � r j00 l00ð Þ�r j0ð Þð Þ

	 ei qþq
0þq00ð Þ�r j0ð ÞD qþ q0 þ q00ð Þ (11)

The delta function D(q + q0 + q00) enforces conservation of
momentum. F(l,l0,l00) are then used to compute the phonon
linewidths according to:

Gðl;o;TÞ ¼ 18p
�h2

X
l0l00

F �l; l0; l00ð Þj j2

	 nðl0;TÞ þ nðl00;TÞ þ 1½ �d o� o l0ð Þ � o l00ð Þ½ �f

þ n l0;Tð Þ � n l00;Tð Þ½ � d oþ oðl0;TÞ � oðl00;TÞ½ �½

� d o� oðl0;TÞ þ oðl00;TÞ½ ��g (12)

where n(l,T) are the mode occupation numbers computed from
a Bose–Einstein distribution:

nðl;TÞ ¼ 1

exp �hoðlÞ=kBTð Þ � 1
(13)

The delta functions in eqn (12) enforce conservation of energy,
and the mode linewidths G(l,T) are obtained by setting o = o(l).
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The key quantities in eqn (11) and (12) are the phonon
frequencies and eigenvectors, which are calculable within the
harmonic approximation as described above, and the third-
order force constants F(jl,j0l0,j00l00). These can be obtained in an
analogous manner to the second-order force constants, by
enumerating the unique pairwise atomic displacements. However,
the number of two-atom displacements scales with the supercell
size, meaning that the third-order force constants typically must be
calculated up to a shorter real-space range than the second-order
ones. A longstanding assumption in anharmonic phonon theory is
that the range of the third-order interaction is shorter than that of
the second-order one, which provides some justification.

Also, it is noteworthy that during the post processing to
obtain the phonon lifetimes, the application of eqn (11) scales
with the number of phonon bands (and hence the number of
atoms in the primitive cell) as well as number of irreducible
wavevectors in the Brillouin-zone sampling mesh, and this step
can easily require a non-trivial amount of computer time for large
and/or low-symmetry primitive cells and dense Brillouin-zone
sampling.

The linewidths obtained from the third-order calculations are
equivalent to the intrinsic full-width at half-maxima (FWHM) of
the peak profiles observed in vibrational-spectroscopic techni-
ques such as IR and Raman. G(l,T) are related to the phonon
lifetimes t(l,T) according to:51

tðl;TÞ ¼ 1

2Gðl;TÞ (14)

By the Heisenberg uncertainty principle, the uncertainty in
energy E(l,T) = hn(l,T) is related to t(l,T) according to:

DEðl;TÞtðl;TÞ ¼ �h

2
! Dvðl;TÞ ¼ 1

4p
1

tðl;TÞ ¼ Gvðl;TÞ (15)

where Gv are the linewidths in ordinal frequency units (i.e. G/2p).
Equating Gv(l,T) with the FWHM, IR and Raman spectra can be
modelled as a sum of the spectral lines from the G-point modes,
with the lineshapes given by Lorentzian functions with the central
frequencies and areas set to the calculated phonon frequencies
and IR/Raman activities, respectively:

Iðv;TÞ ¼
X
l

I0ðlÞ
p

1

2
Gvðl;TÞ

ðv� vðlÞÞ2 þ 1

2
Gvðl;TÞ

� 	2
(16)

where I(v,T) is the spectroscopic intensity at frequency v and
temperature T. For a given mode, I0(l) is the height of a delta
function at v = v(l), and the base intensity is spread over a range
of frequencies due to the measurement uncertainty arising
from the finite lifetime of the mode.

Finally, the mode lifetimes can also be used to calculate the
lattice thermal conductivity, jlatt, using the single-mode relaxation-
time approximation (RTA) solution to the Boltzmann transport
equation.51 The RTA gives a simple closed-form expression for jlatt

in terms of the phonon lifetimes and quantities readily calculable
within the harmonic approximation:

jlattðTÞ ¼
1

NV0

X
l

Cðl;TÞvgðlÞ 
 vgðlÞtðl;TÞ (17)

where N is again the number of unit cells in the crystal, equivalent
to the number of reciprocal-space wavevectors q included in the
sum over phonon modes, C(l,T) are the modal heat capacities and
vg(l) are the mode group velocities. We note that the product
vg(l)t(l,T) gives the phonon mean free path K(l,T), which appears
in the frequently-used alternative form of eqn (17).

3. Results and discussion
a. Optimised crystal structures

The crystal structures of SnS2, Pnma and p-cubic SnS and Sn2S3,
optimized at the generalised-gradient approximation (GGA) level
of theory using the PBEsol functional,52 are shown in Fig. 1, and
the corresponding lattice parameters are listed and compared to
experimental data in Table 1.

SnS2 contains Sn(IV), which tends to favour octahedral (e.g.
in SnO2) or tetrahedral (e.g. in Cu2ZnSnS4) coordination environ-
ments. The compound adopts a hexagonal layered structure in
which 2D planes of edge-sharing SnS6 octahedra are separated
by a van der Waals’ gap.

Both polymorphs of SnS contain Sn(II), which tends to favour
asymmetric coordination environments owing to a stereochemically-
active 5s2 lone electron pair. The Pnma phase of SnS is a ‘‘pseudo-
2D’’ orthorhombic structure in which each cation bonds to three
S atoms with two slightly different bond lengths (2.633/2.671 Å).
The Sn lone pair occupies the fourth coordination site and
facilitates weaker bonding along the crystallographic b direc-
tion. The p-cubic phase (space group P213) contains 64 atoms
(32 formula units) in the primitive cell, and can be thought of
as a heavily-distorted supercell expansion of a rocksalt (Fm%3m)

Fig. 1 Crystal structures of SnS2, Pnma and p-cubic SnS and Sn2S3, viewed along the crystallographic a (SnS2), c (both SnS phases) and b axes (Sn2S3).
The Sn and S atoms are coloured grey and yellow, respectively. These snapshots were generated with the VESTA software.53
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conventional cell. The local coordination is similar to that in
the Pnma phase, but in this polymorph the covalent bonding
forms a 3D network.

Sn2S3 is a mixed oxidation state material containing equal
proportions of Sn(II) and Sn(IV). As with Pnma SnS, it crystallises
in an orthorhombic Pnma structure, but consisting of 1D chains
of six-coordinate Sn(IV)S6 octahedra capped by tetrahedral Sn(II),
with one coordination site occupied by the lone pair as in SnS.
The mixed-valence Sn2S3 can thus be regarded as having a
reduced dimensionality compared to the single-valence phases.

b. Phonon dispersion and density of states curves

Fig. 2 shows the calculated phonon dispersion and density of
states (DoS) curves for SnS2, Pnma and p-cubic SnS and Sn2S3.

The primitive cells of the four structures contain 3, 8, 64 and
20 atoms, respectively, giving rise to 9, 24, 192 and 60 phonon
bands at each phonon wavevector (q-point). The larger crystal
structures therefore have considerably more complex band dis-
persions and DoS curves with more fine structure. The phonon
frequencies in the four compounds span a range of approx.
400 cm�1, with the upper limits falling in the order SnS2 4
Sn2S3 4 SnS; this could be related to the different Sn oxidation
states in the three systems, as Sn(IV) would be expected to have a
higher charge than Sn(II), leading to a larger ionic component
to the Sn–S bonding.

All four sets of phonon data have in common a separation
between the low- and high-frequency modes (a so-called ‘‘phonon
bandgap’’). A projection of the mode eigenvectors onto the Sn and
S atoms shows that the lower-frequency branches are primarily
motions of the Sn atoms, while the higher-frequency branches are
mainly associated with S.

Another common feature shared by the SnS2, Pnma SnS
and Sn2S3 band structures is a large frequency dispersion along
segments of the Brillouin zone corresponding to real-space
directions with strong covalent bonding, contrasting with notice-
ably shallower variation along directions with weak non-bonded
interactions. In the dispersion of SnS2, the segments G–A, H–K
and M–L along the band path correspond to the hexagonal c axis,
and the branches are flat in comparison to the others. A similar
contrast can be seen between the X–S and R–U segments of the
Sn2S3 dispersion, which correspond to the short crystallographic
b direction along which the chains are bonded, and the other
directions, particularly in the lower-frequency branches. In Pnma
SnS, which has the same space group, the b axis is the layering
direction, and the same segments of the band structure thus
generally show a shallower dispersion than the others, although
the difference is not as striking as in Sn2S3.

The acoustic modes of p-cubic SnS show a large frequency
dispersion, comparable to the equivalent modes in the Pnma
phase, but the high density of branches above B40 cm�1 make it
difficult to discern whether or not the higher-frequency modes
also exhibit large dispersion.

The shallow phonon-frequency dispersion along the notionally
weakly-bonded directions in the 2D/1D crystals evidence the
bond-strength hierarchy in these materials, and in particular
lend some support to considering Pnma SnS and Sn2S3 to be
‘‘pseudo 2D/1D’’. The different bonding strengths are also
reflected to a large extent through an anisotropy in the elastic
constants (Tables S1–S4, ESI†). The C33 elastic constant of SnS2

was calculated to be 13.9 GPa, which is B9	 smaller than the
C11/C22 elastic constants of 124 GPa and indicates the structure to
be much less resistant to compression along the c direction. The
C11, C22 and C33 elastic constants of Sn2S3 are 34.0, 93.7 and 44.5,
which suggests that the structure is least compressible along the
strongly-bonded crystallographic b direction, as expected. On the
other hand, as with the phonon dispersion the calculated elastic
constants of Pnma SnS give a less clear picture – while the largest
C33 elastic constant (89.4 GPa) is that associated with the shortest
of the three crystallographic axes, the C22 elastic constant is larger
than the C11 by a significant margin (69.5 vs. 44.3 GPa).

c. Infrared and Raman spectra

The differences in structure and bonding and in the phonon
densities of states of the four sulphides suggest that there
should be significant differences in the frequencies and spectral
intensities of the G-point modes probed in IR and Raman
experiments. We therefore calculated the spectroscopic activities
of these modes and used them to generate simulated spectra.
As shown in previous work, lifetime-broadening effects can lead
to significant differences in the form of measured spectra when
compared to simulations assuming a uniform linewidth.45

To account for this possibility, we also included phonon line-
widths in the simulated spectra, which were calculated using
the many-body perturbative approach implemented in the Phono3py
software.51

Spectra broadened with 10 K, 150 K and 300 K linewidths are
shown in Fig. 3, and a complete set of peak tables, including
assignments of the irreducible representations of the modes,
are given in Tables S5–S8 (ESI†). The mode eigenvectors are
shown in Fig. 4 and Fig. S1–S3 (ESI†).

Excluding the three acoustic modes, which at G correspond to
rigid translations of the lattice, SnS2 has six vibrational modes,
with the irreducible representation G = A1g " A2u " Eg " Eu. The
eigenvectors of the nine modes are shown in Fig. 4. The Eu modes

Table 1 Optimised lattice parameters of SnS2, Pnma and p-cubic SnS and Sn2S3 (DFT/PBEsol). Experimental measurements from ref. 11, 15, 23 and 54
are shown in parentheses. The angles a, b and g for all four compounds are fixed by symmetry to a = b = 901 and g = 1201 for SnS2 and a = b = g = 901 for
both polymorphs of SnS and Sn2S3

Compound Space group a [Å] b [Å] c [Å] V [Å3]

SnS2 P%3m1 3.651 (3.63854) — 6.015 (5.88054) 69.42 (69.4454)
SnS (Pnma) Pnma 4.251 (4.3315) 11.082 (11.1815) 3.978 (3.9815) 187.4 (192.715)
SnS (p-cubic) P213 11.506 (11.60323) — — 1523 (156223)
Sn2S3 Pnma 8.811 (8.87811) 3.766 (3.75111) 13.813 (14.02011) 458.4 (458.311)
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at 203 cm�1, which correspond to planes of Sn and S atoms
sliding with respect to one another, are IR active, while the
A1g mode at 305 cm�1, corresponding to compression of the
SnS2 layers, is Raman active, resulting in a single main band in
each spectrum (Fig. 3a and b). The Eu modes are predicted to
have a narrow linewidth of 0.03 cm�1 at 10 K, resulting in a
sharp peak. The linewidth increases to 2.0 and 4.3 cm�1 at 150
and 300 K, respectively, and results in a substantial relative
reduction in the intensity at the central wavelength. The line-
width of the Raman-active A1g mode undergoes a less marked
increase with temperature, with a correspondingly less dramatic
change to the peak shape.

Pnma SnS has 21 optic modes, which reduce to G = 4Ag "
2Au " 4B1g " B1u " 2B2g " 3B2u " 2B3g " 3B3u. The corre-
sponding mode eigenvectors are illustrated in Fig. S1 (ESI†). The
B1u and one each of the B2u and B3u modes are strongly IR active,
leading to three sharp peaks between B125–200 cm�1 in the 10 K
IR spectrum (Fig. 3c). At higher temperatures, line broadening
causes the closely-spaced peaks at 174 and 180 cm�1 to merge
into a single broad feature with an apparent intensity similar to
the third absorption at 141 cm�1. The other two B3u and one of
the B2u modes are also weakly IR active and give rise to a set of
smaller features at 10 K, which remain visible against the more
intense peaks from the other three modes at 150 and 300 K. The
Ag modes at 189 and 220 cm�1 and the B2g mode at 161 cm�1

are Raman active. The 189 cm�1 mode has the highest base
intensity, but the 220 cm�1 mode has a narrower linewidth,

resulting in the latter forming the most prominent of the three
peaks in the spectrum (Fig. 3d). The 161 cm�1 mode gives rise
to a relatively weak feature at all three temperatures. Several
of the other modes show weak Raman activity, most notably an
Ag mode around 92 cm�1; this mode maintains a relatively
narrow linewidth up to room temperature, and as such becomes
more prominent relative to the three main peaks in the 300 K
spectrum.

The high-symmetry space group of p-cubic SnS allows for only
three irreducible representations, viz. the singly-degenerate A,
doubly-degenerate E and triply-degenerate T. Most of the G-point
modes are degenerate, and the 189 optic branches reduce to
G = 16A " 16E " 47T. The mode eigenvectors are shown in
Fig. S2 (ESI†). The low-temperature IR spectrum (Fig. 3e) is
dominated by a strongly IR-active T mode at 168 cm�1, which is
around an order of magnitude stronger than the other IR-active
modes at 92, 166, 174, 180, 197–202 and 249 cm�1. Around half
of the other T modes are also weakly IR active, but have much
lower intensities than the primary absorption bands. The line-
width increases significantly with temperature, such that at
300 K much of the fine structure visible at low temperature is
lost. There are three strongly Raman-active A modes at 174, 187
and 202 cm�1, two prominent E modes at 166 and 183 cm�1, and a
collection of weaker modes between B50–125 and 200–250 cm�1.
As for the IR modes, temperature leads to peak broadening, but
the majority of the low-temperature features remain discernible
at 300 K (Fig. 3f).

Fig. 2 Simulated phonon dispersion and density of states (DoS) curves for SnS2 (a), Pnma (b) and p-cubic (c) SnS, and Sn2S3 (d). The partial DoS (PDoS)
projected onto Sn and S is overlaid as filled curves with blue and orange shading, respectively.
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The 57 G-point optic modes of Sn2S3 reduce to G = 10Ag "
5Au " 5B1g " 9B1u " 10B2g " 4B2u " 5B3g " 9B3u (eigenvectors
shown in Fig. S3, ESI†). As for the other sulphides, however,
only a small subset display significant spectroscopic activity.
The three prominent features in the 10 K IR spectrum (Fig. 3g)
arise from a sharp B3g band at 55 cm�1, B1u and B2u bands at
B179 cm�1 and a B2u mode at 213 cm�1. There are some
notable smaller peaks at 186 and 221 cm�1, plus a cluster of

weakly IR-active modes from 260–290 cm�1. The calculated
phonon lifetimes for this system are comparatively very short,
leading to substantial line broadening at 150 and 300 K. A
similar pattern is observed in the Raman spectrum in Fig. 3h. The
Ag mode at 291 cm�1 has a significantly higher Raman intensity
than any of the others, but is characterised by very broad line-
widths of 34, 85 and 159 cm�1 at 10, 150 and 300 K, respectively.
A second Ag mode at 300 cm�1 has a more moderate intensity,

Fig. 3 Simulated infrared (IR; a, c, e and g) and Raman (b, d, f and h) spectra of SnS2 (a and b), Pnma SnS (c and d), p-cubic SnS (e and f) and Sn2S3 (g and h).
The spectral lines have been broadened using calculated 10 K (blue), 150 K (red) and 300 K (orange) linewidths. For clarity, the simulated spectra at the latter
two temperatures have been enhanced by 2	 and 3	, respectively.
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but a narrower linewidth. In combination, the two features
result in a broad, asymmetric peak at 150 and 300 K. Several
comparatively weaker features at 182, 210, 226, 244 and 252 cm�1

are resolved at 10 K and are visible as fine structure against the
main feature at higher temperatures.

We note that for all four materials the calculated Raman
intensities were found to be relatively insensitive to the choice
of the displacement step used to compute the polarisability
derivatives (see Section S4 of the ESI†). Although more sophis-
ticated exchange–correlation functionals, e.g. hybrids such as
PBE0 or HSE06,56–59 may predict more accurate electronic struc-
tures and hence Raman activities, the large primitive cell and the
number of modes in p-cubic SnS and Sn2S3, together with the
sensitivity of the dielectric constant to the electronic k-point
sampling, make it infeasible to perform such higher-level calcu-
lations at present. We therefore make the assumption that, while
the absolute calculated Raman intensities may be in error, the
relative intensities should nonetheless be comparable.

We also carefully checked the convergence of the calculated
spectral linewidths with respect to the q-point grid and inter-
polation technique used to form the integral over three-phonon
interactions (Section S5, ESI†). However, given the prohibitive
cost of calculating the third-order force constants with larger
supercells, we cannot test whether the range of the third-order
force constant are fully converged.

The positions of the main peaks in the simulated room-
temperature Raman spectrum of Pnma SnS at 92, 161, 189 and
220 cm�1 are an excellent match for the Raman shifts reported in
ref. 18 and 60 (97/95, 160, 191/190 and 216/218 cm�1), although
the assignment of the symmetries of the 160 and 190 cm�1

modes in ref. 18 are at odds with those determined from the
calculations. The intensity pattern in the spectrum in ref. 60
differs from the calculated one, although this could be due in
part to experimental issues such as instrumental broadening
and/or the presence of a fluorescence background. The promi-
nent features in the room-temperature spectra of SnS2 and

Fig. 4 Phonon eigenvectors of the nine G-point modes of SnS2, with frequencies as marked (cm�1). The Sn and S atoms are coloured green and yellow,
respectively. The three acoustic modes, which correspond to rigid translations of the crystal lattice, necessarily have zero frequency, and so the
frequencies of these modes are not shown. These images were generated using the ascii-phonons software.55
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Sn2S3 occur at B305 and 295 cm�1, respectively, again in
excellent agreement with the values of 312 and 305 cm�1 quoted
in ref. 18. The simulated 300 K spectra of SnS2, Pnma SnS and
Sn2S3 are a reasonable match for the data in ref. 39, albeit with
differences in the intensity pattern and some apparently missing
peaks in the low-frequency part of the simulated Sn2S3 spectrum
below 100 cm�1.

The spectroscopy in ref. 23 identifies the major Raman
bands of p-cubic SnS to occur at 59, 71, 90, 112, 123, 176, 192,
202 and 224 cm�1, the majority of which are present as features in
our simulated room-temperature spectrum (B59, 66, 83, 109, 119,
175, 187, 203 and 221 cm�1). As with the spectrum of Pnma SnS,
there are some notable differences in band intensities between
the simulated and experimentally-recorded spectra, particularly at
lower frequencies, although this could again be due in part to the
measurement setup. The mode symmetries assigned to the bands
are not consistent with the irreducible representations of the
T point group of P213; based on the calculations, the modes
can be tentatively labelled as follows: 59: E, 66/83: A, 109: A/E,
119/175: A, 187: A/E, 203: A/E/T, 221: A.

The simulated spectra in Fig. 3, particularly those of SnS and
Sn2S3 (Fig. 3c–f) illustrate the impact of lifetime-broadening
effects in potentially rendering characteristic spectral features
difficult to identify, a problem which would in many cases be
further exacerbated by instrumental broadening. These simula-
tions therefore suggest that for characterisation, and in parti-
cular for detecting small amounts of phase impurities, it would
be desirable to record the spectra at as low a temperature as
possible, and to optimise instrumental parameters to maximise
resolution.

The four sets of simulated IR spectra show markedly different
characteristic bands that should allow impurities of some phases
to be identified in bulk samples of others. For example, the
multiple intense absorptions of Pnma SnS should allow this
phase to be identified by IR measurements, and the lower-
frequency absorptions are sufficiently well separated from the
bands in the spectra of the other sulphides that it may be
possible to use IR to detect Pnma SnS as an impurity in bulk
samples of the other materials. On the other hand, the simu-
lated IR spectra of p-cubic SnS and Sn2S3 are broadly similar in
overall form, and would be difficult to tell apart except using a
high-resolution instrument and/or a low measurement tem-
perature. The purity of bulk SnS2 could be assessed by IR from
its single sharp absorption peak at low temperatures, but it may
be difficult conclusively to identify a weak SnS2 impurity peak
in the spectra of the other three sulphides.

Comparing Fig. 3b, d, f and g suggests that Raman would be
a very good technique for distinguishing the four materials.
The single sharp Raman feature in SnS2 is well separated from
the peaks in the two SnS phases, which suggests it would be
possible to detect S-rich impurities in SnS samples. Similarly,
it should be relatively easy to use Raman to check for the
presence of Sn-rich phases in bulk SnS2. The primary Sn2S3

Raman band overlaps the SnS2 peak, but is fairly well separated
from the features from the two SnS phases. The large difference
in linewidth between the SnS2 and Sn2S3 spectra should

however make it possible to distinguish between SnS2 and
Sn2S3 impurities in SnS samples.

Overall, these simulations suggest that both IR and Raman
measurements could be a useful tool for characterising tin
sulphide samples. In addition, modern Raman setups often
operate as microscopes and have the ability to map a substrate,
which could be useful, for example, for checking the phase identity
of individual particles in a nanoparticle batch, or the homogeneity
of SnS films prepared using different techniques.

d. Thermal-transport properties

The broad spectral linewidths calculated for SnS and Sn2S3 are
indicative of short-lived phonon modes, which would be con-
ducive to a low lattice thermal conductivity.

The performance of thermoelectric materials is typically
quantified using the figure of merit ZT, defined by:

ZT ¼ S2rT

jlatt þ jel
(18)

where S is the Seebeck coefficient, r is the electrical conducti-
vity, and jlatt and jel are the lattice and electronic contributions
to the thermal conductivity, respectively. All four quantities,
and hence the ZT score itself, are implicitly temperature depen-
dent. jel is usually negligible for semiconductors, and so
thermoelectric research typically focuses on systems with large
power factors S2r and low jlatt. SnS and Sn2S3 are both known
to be good semiconductors,12 and with low lattice thermal
conductivities would potentially make good candidate thermo-
electrics. The thermal-transport properties of SnS are of parti-
cular interest due to the recently-demonstrated very low bulk
thermal conductivity of the selenide analogue, Pnma SnSe,5

which was shown to arise from its strongly-anharmonic lattice
dynamics.61,62

Fig. 5 compares the calculated isotropically-averaged lattice
thermal conductivities (kiso) of SnS2, Pnma and p-cubic SnS and
Sn2S3 to those of four established and candidate thermoelectric
materials, viz. PbTe,43 Pnma SnSe62 and the quaternary chalco-
genides Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTS/Se).45 The temperature
dependence of the thermal conductivity along each Cartesian
direction is plotted separately in Fig. S8–S10 (ESI†). The calculated
room-temperature (300 K) thermal conductivities are collected in
Table 2, which lists the three diagonal components of the tensors
together with the isotropic average, kiso = (kxx + kyy + kzz)/3. We
also calculate an ‘‘anisotropy’’ value as the ratio of the largest
and smallest conductivities along the three directions. For com-
parison, we show the isotropic thermal conductivities calcu-
lated including isotope-scattering effects, which are generally
not included in the relaxation-time approximation, and which
were not accounted for in the previous calculations in ref. 45
and 62. Comparisons of the full kiso(T) curves computed with
and without isotope effects for each system, together with the
axial components of the 300 K tensors, are given in Fig. S11–S17
and Table S13 (ESI†).

The isotropically-averaged thermal conductivity of the four
sulphides falls into the range SnS2 4 Pnma SnS 4 p-cubic
SnS 4 Sn2S3. Strikingly, p-cubic SnS and Sn2S3 are both predicted
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to have a very low klatt, some order of magnitude lower than
that of all the other compounds, including the benchmark
thermoelectrics PbTe and SnSe. Above 100 K, SnS2 has the highest
klatt of the seven systems included in the comparison, although
the conductivity is highly anisotropic, being much smaller along
the layered c direction than along the two in-plane directions. The
calculated klatt of the two SnS phases falls between those of Sn2S3

and Pnma SnSe.
The calculations on Pnma SnS predict it to have a lower

thermal conductivity than the structurally-analogous selenide,
which is unexpected, and indeed with reference to experimental
measurements there appears to be a larger error in the calcu-
lated isotropic 300 K conductivity of SnSe than in that calcu-
lated for SnS. The difference in thermal conductivity is largest
between the kxx components of the jlatt tensors (corresponding
to transport along the crystallographic a direction), but the

calculations predict the thermal transport to be larger along all
three axes of the selenide compared to the sulphide. This is
particularly odd given that the chemical bonding in the selenide
would be expected to be weaker. CZTS is also predicted in calcu-
lations to show a lower thermal conductivity than CZTSe,45

whereas the experimental measurements in ref. 66 suggest the
opposite.

One possible explanation for this discrepancy is the omis-
sion of isotope effects from these calculations: in principle, the
natural mass variation among atoms of the same species has
an effect on jlatt, but it is generally thought that neglecting this
compensates for other deficiencies in the relaxation-time approxi-
mation, thereby giving overall good agreement with experiment.43

A comparison of the kiso values in Table 2 with and without
isotope-scattering effects included shows that this alone cannot
explain the higher predicted thermal conductivity of the sulphides

Fig. 5 Isotropically-averaged lattice thermal conductivity (klatt,iso) as a function of temperature for SnS2 (blue), Pnma (red) and p-cubic SnS (magenta)
and Sn2S3 (orange), compared to similar calculations on PbTe (green),43 Pnma SnSe (cyan)62 and kesterite Cu2ZnSnS4 (CZTS; black) and the selenide
analogue Cu2ZnSnSe4 (CZTSe; purple).45

Table 2 Calculated 300 K lattice thermal conductivities (jlatt) of SnS2, Pnma and p-cubic SnS and Sn2S3, compared to values for PbTe, Pnma SnSe, and
kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTS/Se) from other calculations.43,45,62 Each row lists the thermal conductivities along each Cartesian direction
together with the isotropic average kiso. Values of kiso calculated including isotope-scattering effects, assuming the natural atomic-mass variances for the
constituent elements, are also given where possible, and experimental values are listed for comparison where available.5,63–66 The final column presents
‘‘anisotropy’’ values for each system, defined here as the ratio of the maximum and minimum diagonal components of the jlatt tensors

Compound

klatt,300K [W m�1 K�1]

Anisotropykxx kyy kzz kiso kiso,isotope Expt.

SnS2 11.40 11.40 0.48 7.76 7.60 — 23.99
SnS (Pnma) 0.74 0.36 1.10 0.73 0.72 1.254 a 3.02
SnS (p-cubic) — — — 0.13 0.13 — —
Sn2S3 0.03 0.14 0.01 0.06 0.06 — 10.29
PbTe — — — 2.5943 b — 1.99, 2.263,64 —
SnSe (Pnma) 1.44 0.53 1.88 1.2862 1.24 0.64 (kxx/kzz: 0.70, kyy: 0.45)5 3.57
Cu2ZnSnS4 1.75 1.75 1.57 1.6945 1.60 2.95, 4.765,66 c 1.12
Cu2ZnSnSe4 4.68 4.68 3.98 4.4445 4.36 3.7566 c 1.18

a The thermal-conductivity measurements in ref. 4 are given as ktot = klatt + kel.
b For consistency with the other calculations, we report the 300 K

value from the klatt,iso(T) curve computed at the 0 K lattice volume, as shown in Fig. 5. c The CZTS/Se lattice thermal conductivities reported in
ref. 66 were measured slightly above 300 K.
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than the selenides. For both SnS/Se and CZTS/Se, isotope effects
reduce kiso, but the effect is not large, and is insufficient to lead
to a reordering.

Other possible explanations could be the neglect of quasi-
harmonic effects (i.e. thermal expansion) and/or higher-order
anharmonic effects such as four-phonon processes. Phonon
frequencies and thermal conductivity have been shown to be
strongly volume dependent,43,44 and it is possible that the
selenides, with ‘‘softer’’ chemical bonding, would have a larger
thermal-expansion coefficient than the sulphides, leading to a
more significant decrease in the thermal conductivity at higher
temperatures. Thermal expansion can be modelled using the
quasi-harmonic approximation, but this is beyond the scope of
the present study.

Yet another possibility is that calculations and experimental
measurements are often simply not directly comparable. Although
it is possible to carry out measurements on large single crystals,5

it is more typical to prepare e.g. pressed powders,66 which will
naturally have a high concentration of defects such as grain
boundaries that are not easily accounted for in calculations on
bulk materials.

It is worth noting, however, that despite these caveats the
calculated 300 K thermal conductivities are generally within a
factor of 2–3 of the experimental measurements, and we would
therefore be surprised if the predicted very low thermal con-
ductivities of p-cubic SnS and Sn2S3 compared to the other
compounds were to be qualitatively incorrect.

Previous theoretical studies62,67 have reported an axial aniso-
tropy in the thermal conductivity of Pnma SnSe, which was
ascribed to the different strengths of the bonding interactions
along the three crystallographic directions. These calculations
indicate that Pnma SnS likewise shows a particularly low thermal-
conductivity along the non-bonded crystallographic b axis, with
one of the two perpendicular directions representing an ‘‘easy
axis’’ for transport. This anisotropy in thermal-transport proper-
ties mirrors that in its electrical properties.68 The weak interlayer
interactions along the c axis of SnS2 lead to poor thermal
transport in that direction compared to the in-plane conductivity.
By analogy, the very low jlatt of Sn2S3 compared to SnS could be
ascribed to its reduced dimensionality, and indeed the thermal
conductivity is an order of magnitude larger along the crystallo-
graphic b axis, corresponding to the direction of the bonding
along the chains; however, at 0.14 W m�1 K�1 at 300 K, this is
still close to an order of magnitude smaller than the conduc-
tivity along the ‘‘easy’’ direction in SnS at the same temperature
(1.10 W m�1 K�1), implying that intrinsic anharmonicity, as
well as low dimensionality, is responsible for its poor thermal
transport.

The high thermal conductivity of SnS2 is likely to make it a
poor candidate thermoelectric in comparison to existing materials.
The thermoelectric performance of SnS has previously been
investigated,4 but its unfavourable electrical properties led to
an averaged ZT score of 0.16, which is not competitive with
either of PbTe or SnSe.5,69 The p-cubic phase of SnS has an
unusual band dispersion with shallow valence and conduction
bands,70 which would in principle allow for the formation of

multiple ‘‘carrier pockets’’ on doping,71 and in conjunction
with its low thermal conductivity this may make it a good
candidate thermoelectric. Sn2S3 has been shown to have good
electrical properties12 and is predicted to have ambipolar
dopability,72 which, together with the very low jlatt predicted
in the present calculations, suggests it too may be a good
candidate thermoelectric. If the intrinsic electrical properties
of either or both of p-cubic SnS or Sn2S3 are suitable, or can be
made so by doping,4,71 taking into account the relative abun-
dance of Sn and S our calculations indicate that the thermo-
electric properties of this system may be well worth pursuing
further.73

4. Conclusions

We have presented a complete characterisation of the lattice
dynamics of four bulk-stable phases of tin sulphide, viz. SnS2,
Pnma and p-cubic SnS and Sn2S3.

Analysis of the phonon dispersion and DoS curves confirms
that all four phases are dynamically-stable energy minima. The
complex structures of SnS and Sn2S3 lead to intricate band dis-
persions, and the upper limit on the range of phonon frequen-
cies observed in the three systems is relatable to the presence of
distinct Sn(II) and Sn(IV) species. The shallow dispersions along
the crystallographic directions associated with weak interactions
indicate that the lattice dynamics, and hence the thermal trans-
port, are heavily influenced by the strength of the chemical
bonding, and thus intimately linked to the dimensionality of
the bonding network in the crystal structures.

From a detailed analysis of the simulated infrared and Raman
spectra, we have identified and assigned the key spectral signa-
tures of each phase. Our calculations suggest that both spectro-
scopic techniques could serve as valuable tools for characterising
tin sulphide samples and for identifying phase impurities in bulk
materials or thin films. Due to lifetime broadening at room
temperature, which is particularly pronounced in the spectra of
the two SnS phases and Sn2S3, low-temperature measurements
are expected to give the best feature resolution. The good agree-
ment between the calculated spectra and available experimental
data is highly encouraging, and suggests that first-principles
simulations such as these can serve as a valuable support to
interpreting and assigning vibrational spectra.

Modelling of the thermal-transport properties predict p-cubic
SnS and Sn2S3 to have an unexpectedly-low lattice thermal con-
ductivity. The poor thermal transport of Sn2S3 is due in part to
the 1D covalent bonding, but also to strong intrinsic anharmo-
nicity leading to short phonon lifetimes. With reference to work
on SnS, and given its favourable electrical properties, Sn2S3 is
expected to have considerable potential as a high-performance
thermoelectric material.

Finally, this study illustrates the utility of lattice-dynamics
methods both for general materials modelling and as a tool to
inform experimental characterisation. We expect these techni-
ques to be applicable to a broad range of other systems and
problems, particularly as the infrastructure and computational
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power required to tackle systems with complex phase spaces
becomes more widely available.

5. Methods

All calculations were performed using the plane-wave pseudo-
potential density-functional theory formalism, as implemented
in the Vienna ab initio Simulation Package (VASP) code.74 The
PBEsol exchange–correlation functional52 was used in conjunc-
tion with projector-augmented wave (PAW) pseudopotentials75,76

treating the S 3s and 3p and the Sn 5s, 5p and 4d electrons as
valence.

The starting points for the calculations were the primitive unit
cells of SnS2 (space group P%3m1), SnS (Pnma, P213) and Sn2S3

(Pnma),11,14,23,54 which were stress relaxed until the magnitude of
the forces on the ions fell below 10�2 eV Å�1.

The elastic constants of the four optimised structures were
calculated using the finite-displacement method outlined in
ref. 77, with a step size of 0.01 Å.

Harmonic phonon calculations were performed using the
Phonopy code,78,79 with VASP as the force calculator and a
finite-displacement step of 0.01 Å. Force-constant matrices for
SnS2, Pnma and p-cubic SnS and Sn2S3 were computed using
6 	 6 	 2, 6 	 1 	 6, 2 	 2 	 2 and 2 	 4 	 2 expansions of the
primitive unit cells, containing 216, 288, 512 and 320 atoms,
respectively.

During post processing, symmetrisation of the force con-
stants was performed within Phonopy, and DoS curves were
constructed by evaluating the phonon frequencies on a uniform
G-centred q-point mesh with 48 	 48 	 48 subdivisions and
interpolating using the linear tetrahedron method. Phonon
dispersions were obtained by computing the frequencies along
band paths passing through all the high-symmetry points in
the Pnma, P213 and P%3m1 Brillouin zones.

We also computed the vibrational frequencies and mode
eigenvectors at the zone centre (G point) using the DFPT
routines implemented VASP, and found very good agreement
between the calculated frequencies and those obtained using
Phonopy (see Tables S5–S8 in the ESI†).

The IR intensities of the G-point modes were calculated
using a custom-written script implementing the formula in
ref. 47 and 80, while the Raman activities were obtained using
the vasp_raman script.50 The Born charges and dielectric con-
stants required in these calculations were both computed using
the density-functional perturbation theory (DFPT) routines in
VASP.81

The Phono3py code51 was used to set up and post process the
linewidth/thermal-conductivity calculations. The third-order force
constants were computed using 3 	 3 	 2, 3 	 1 	 3 and
1 	 3 	 1 supercell expansions for SnS2, Pnma SnS and Sn2S3,
containing 54, 72 and 60 atoms, respectively. Due to its size, the
third-order force constants for the p-cubic phase were com-
puted in a single primitive cell (64 atoms). During post proces-
sing, the phonon lifetimes of the four systems were sampled
on regular G-centred q-point grids with 24 	 24 	 24 (SnS2),

16 	 16 	 16 (Pnma SnS), 8 	 8 	 8 (p-cubic SnS) and 12 	 12 	
12 (Sn2S3) subdivisions. Tests of the convergence of the G-point
phonon linewidths and lattice thermal conductivity with respect
to mesh sampling are shown in Fig. S4–S7 and S18–S21 (ESI†),
respectively.

During all calculations, the kinetic-energy cutoffs for the
plane-wave basis sets were set to 500 eV for Pnma SnS and
550 eV for SnS2, p-cubic SnS and Sn2S3. The Brillouin zone of
SnS was sampled using a regular Monkhorst–Pack (MP) k-point
mesh82 with 8 	 4 	 8 subdivisions, while 8 	 8 	 6, 2 	 2 	 2
and 4 	 8 	 3 G-centred MP meshes were used for SnS2, p-cubic
SnS and Sn2S3, respectively. A tolerance of 10�8 eV was applied
during the electronic minimisations. The PAW projections were
performed in reciprocal space, and the precision of the fast
Fourier-transform (FFT) grids was chosen automatically so as to
avoid aliasing errors. Finally, for the supercell force and DFPT
phonon calculations, an additional FFT grid with 8	 the number
of points was used to evaluate the PAW augmentation charges,
in order to obtain accurate forces.

6. Data-access statement

Key raw data from these calculations, including the optimised
structures, data from the lattice-dynamics calculations, the simu-
lated spectra and the thermal-conductivity tensors, are available
free of charge online from https://doi.org/10.15125/BATH-00357.
All other data may be obtained from the authors on request.
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