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Hill kinetics as a noise filter: the role of
transcription factor autoregulation in gene
cascades†

Anna Ochab-Marcinek, * Jakub Jędrak and Marcin Tabaka‡

An intuition based on deterministic models of chemical kinetics is that population heterogeneity of

transcription factor levels in cells is transmitted unchanged downstream to the target genes. We use a

stochastic model of a two-gene cascade with a self-regulating upstream gene to show that, counter to

the intuition, there is no simple mapping (bimodal to bimodal, unimodal to unimodal) between the

shapes of the distributions of transcription factor numbers and target protein numbers in cells. Due

to the presence of the two regulations, the system contains two nonlinear transfer functions, defined by

the Hill kinetics of transcription factor binding. The transfer function of the regulator can ‘‘interfere’’ with

the transfer function of the target, converting the bimodal input into a unimodal output or vice versa.

We show that this effect can be predicted by a geometric construction. As an example application of

the method, we present a case study of a system of several downstream genes of different sensitivities,

controlled by a common transcription factor which also regulates its own transcription. We show that a

single regulator can induce qualitatively different patterns (binary or graded) of responses to a signal in

different downstream genes, depending on whether the sensitivity regions of the transfer functions of

the upstream and downstream genes overlap or not. Alternatively, the same model can be interpreted

as describing a single downstream gene that has different sensitivities in different cell lines due to

mutations. Our model shows, therefore, a possible kinetic mechanism by which different genes can

interpret the same biological signal in a different manner.

1 Background

Understanding the contributions of the basic building blocks
of gene regulatory circuits is an important step towards the
knowledge of the design principles of larger gene networks.
This step cannot be missed out because even the most simple
network motifs may produce counter-intuitive outputs due to
the interplay of the stochasticity and nonlinearity of biochemical
reactions.

In our earlier work,1 we have shown the possibility of such
effects in as simple a system as a two-gene regulatory cascade
without feedback and with even only one transcription factor
binding site. Due to the cell-to-cell variability of transcription
factor (TF) levels, different cells have different propensities to
transcribe2 from the target gene. Our model has shown that,
counter to intuition, the unimodal distribution of TF numbers

may give rise to a bimodal distribution of target protein
numbers, resulting in a division of a genetically identical cell
population into two phenotypically different subpopulations.
This effect of noise filter-induced bimodality occurred due to
the nonlinear kinetics of the binding of the TF to the operator
of the target gene. It should be noted that only one transfer
function, defined by Hill kinetics, was present in the above
model because the TF was able to bind only to the target
operator. In the present paper, the regulatory gene additionally
regulates its own transcription, which introduces the second
transfer function describing the binding of the TF to its own
operator, which makes the behaviour of the system more
complex.

It was shown in experimental studies that similar mechanisms
of noise filtering by nonlinear kinetics, which distort the input
distribution and produce a bimodal output, may be present in the
MAPK/ERK signalling network in human embryonic kidney
cells3,4 and in the hypoxia-inducible factor-mediated response
network in HCT116 cells.5 However, the input–output pathways in
these systems were composed of multiple intermediate steps of a
rather complex5 or not fully known4 topology, which opens the
question of how the particular building blocks of a pathway,
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being themselves nonlinear, contribute to the final shape of the
distribution of protein levels.

Recently, Sherman et al.2 demonstrated that the cell-to-cell
variability of transcription rates is the main source of extrinsic
noise for the SSA1 promoter in Saccharomyces cerevisiae. This
observation supports the importance of theoretical models that
capture the distribution of TF levels in cells. A noteworthy point
in their analysis is that it indicates fast switching between the
active and inactive states of the promoter. Fast on/off switching
has also been recently observed in the lysogeny maintenance
promoter of phage lambda in Escherichia coli.6 These findings
seem to support the use of Hill kinetics in the modelling of
promoter activity, as we do in the present paper.

Noise propagation through gene cascades has been usually
studied in terms of noise measures such as the Fano factor or
coefficient of variation,7,8 but less attention has been devoted to
the study of how the shapes of protein number distributions
vary as the levels of an external signal, regulating an activity
of TFs, are varied. Such variation may give rise to a binary
response (the distribution of target protein numbers changing
from unimodal through bimodal to unimodal) or a graded
response (the distribution remaining unimodal with its peak
shifting as the signal intensity changes). It has been observed
that the same gene system can have binary or graded responses
to the same stimulus under different environmental conditions
(e.g., Gal1 regulated by Gal4 and Mig1, in response to glucose9)
and that the binary or graded response of an upstream compo-
nent of a network does not necessarily translate itself into
the same shape of the response of downstream components
(e.g., the behaviour of the MAPK cascade module is itself
ultrasensitive but some MAPK pathways have a graded response
to a stimulus, whereas the response of others is binary;10 on the
other hand, some regulators of type III secretion in Salmonella
exhibit a graded response but the response of their targets
is binary;11 however, this was a dynamic response to a single
level of the inducer). Causes of these phenomena are largely
unknown.

In the present paper we study the onset of the binary and
graded responses, induced by the Hill kinetics, in a simple
model system of a two-gene cascade with an autoregulation of
the upstream gene. Positive autoregulation of TFs is wide-
spread; for example, it plays an important role in two-
component systems (see ref. 12 for a recent extensive review)
where the positive feedback allows a single regulator to
control both the more and less sensitive promoters, with the
more sensitive ones responding to the uninduced regulator
(early response) and the less sensitive ones responding to the
induced regulator (late response).

We ask whether the bimodal or unimodal expression of the
self-regulating upstream gene is accurately transferred down-
stream or whether it is re-shaped by the nonlinear kinetics of
the binding of the TF to the target. To answer this question,
we will adapt the method of geometric construction, used
previously to study cascades with an unregulated regulator1

and single autoregulated genes.13 As an example use of our
approach, we will explore the case study of a system where a

single, positively autoregulated upstream gene regulates multi-
ple downstream genes. Using the method of geometric construc-
tion, we will test whether the downstream genes can have
different types of responses, binary or graded, to varying levels
of a signal that activates the TFs.

2 Theory & model
2.1 Distribution of transcription rates

The binding of a TF to an operator can be described by a Hill
function, under the assumption of strong cooperativity and fast
TF binding and unbinding:

HðRÞ ¼ 1

1þ R

K

� �m: (1)

Here, R (regulator) is the total number of TFs in the cell
(assumed to be much greater than the number of promoters
they regulate), and m is the cooperativity. It should be noted
that here m o 0 corresponds to positive regulation (then R
denotes activators), and m 4 0 to negative regulation (then R
denotes repressors). We use this notation throughout the text
for the sake of clarity of mathematical derivations. Further
examples will focus on positive regulation, i.e., m o 0. TF
activity depends on an external signal and is known to be
regulated by the abundance of effector molecules that bind to
TFs or chemical modifications of TFs such as phosphorylation,
acetylation or methylation. We assume that the concentration
of signal molecules is much higher than TF concentration –
that is, the number of free signal molecules is well approxi-
mated by the total number of signal molecules. Under the
assumption of strong TF cooperativity and negligible binding of
inactive TFs, the parameter K is inversely proportional to the
fraction of active TFs (see the ESI,† Section S1). And thus, for
simplicity, we will use K as a measure of signal strength,
analogously to that in ref. 13.

The transcription rate of the regulated gene is kmh(R), where
km is the maximal gene transcription rate (at full activation/null
repression) and h(R) is a relative transcription rate that depends
on the number of TFs:13

h(R) = H(R)(1 � e) + e. (2)

e = kml/km is the ratio of the leaky transcription rate kml to the
fully activated transcription rate. TFs may be randomly distributed
among cells. The distribution of TF numbers p1(R) is transformed
by the transfer function h(R) that acts as a nonlinear filter and
produces a certain distribution of transcription rates q(h) of the
target gene in the cell population:

qðhÞ ¼ p1ðRðhÞÞ
dRðhÞ
dh

����
����; (3)

where R(h) is the inverse function of h(R).

2.2 Model: cascade with an autoregulated upstream gene

Our model system consists of gene 1 (regulatory and autoregulated)
and gene 2 (target), as shown in Fig. 1 and Table S2 (ESI†).
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The binding of the TF to the operators of the i-th gene is
described by Hill kinetics with the transfer function hi(R) as in
eqn (2), signal parameter Ki, leakage ei = kmli/kmi, and coopera-
tivity n (upstream gene) or m (downstream gene), see the ESI,†
Section S1. Gene 1 produces an input distribution of TF
numbers, p1(R), which is transferred through the nonlinear
filter h2(R) and as a result it produces an output distribution of
transcription rates q(h2) of gene 2.

The assumption of Hill kinetics is often made in gene
expression modelling.14,15 Our method is suitable for the
analysis of systems where Hill kinetics are conserved in both
genes, and where the timescales are separated: TF activation/
deactivation and the dominating rates of TF binding/unbinding
are assumed to be greater than other reaction rates (steady state
approximation). In the simulations shown in this paper, we
have used approximately the lowest TF binding/unbinding
rates at which the system still behaves as predicted by our
model, see Fig. S1 (ESI†). Recent experimental data indicate
that promoters in S. cerevisiae2 and E. coli6 can exhibit fast
on/off switching (in particular, faster than mRNA degradation6),
which seems to be consistent with our assumption of Hill
kinetics. In principle, a reasonable assumption for our model
of noise filter to work is that the downstream promoter should
experience an approximately constant TF level compared to the
timescale of its own transcription. Interestingly, in our simula-
tions this assumption is somewhat relaxed – while the fluctua-
tions of the total number of TFs are indeed slower than the
fluctuations in the target mRNA number, the fluctuations of the
number of active TFs, which can bind the operator, are much
faster than the mRNA noise (see the ESI,† Section S7 and Fig. S2).
In spite of that, the results show a very good agreement with the
theoretical predictions, probably because the active–inactive TF
cycling is so fast that the target promoter sees only its mean
value (adiabatic regime).

Since both genes share a common TF, both Ki values are
inversely proportional to the signal-dependent active fraction of

TFs (eqn (S5), ESI†), under the assumptions of our model, i.e.
strong cooperativity and negligible binding of inactive TFs. K1

is, therefore, proportional to K2 at any signal level, so the signal
strength can be measured by one of these parameters.

2.3 Intrinsic noise representation

In the next sections, we will study the behaviour of the
transcription rate distribution q(h2). Here, we give an argument
why it is sufficient to analyse q(h2) instead of the full distribu-
tion of target protein numbers in systems where the intrinsic
noise generated by the downstream gene is relatively low.1 The
full distribution reflects the distribution of transcription rates
q(h2) from the target gene, but the stochastic processes of
mRNA and protein bursting add an overlay of intrinsic noise
g(P;km2h2), which blurs the distribution’s shape. The distribu-
tion of target protein numbers is given by

p2ðPÞ ¼
ð1
e2

q h2ð Þg P; km2h2ð Þdh2: (4)

This approach can be interpreted as an ‘‘intrinsic noise repre-
sentation’’. Both the mixing density q and the integrated
distribution g have a well-defined biological interpretation:1

each cell has its own (approximately constant at a given time-
scale) transcription rate corresponding to the number of TFs
it contains. Those cells, which contain a particular number R
of TFs, have the relative transcription rate h2(R), and that
subpopulation produces proteins with the intrinsic noise
whose distribution is given by g(P;km2h2(R)). By summing up
all sub-populations of different transcription levels h2, we
obtain the final distribution of target protein numbers, which
is a superposition of the intrinsic noise distributions for all
possible transcription levels.

In this paper, we exploit the fact that when the intrinsic
noise of the target gene is sufficiently small compared to the
noise introduced by the non-homogeneous distribution of TF
numbers among cells, then the transcription rate distribution
itself gives significant information about the shape of the target
gene expression. Under the assumption that the lifetime of
target mRNA is shorter than the lifetime of the target protein,16

g can be a negative binomial distribution, as used in ref. 1, or a
gamma distribution as its continuous limit17,18 (see the ESI,†
Section S2). Then, the intrinsic noise of the target gene
decreases as the mean burst frequency a = km2/kdp2 increases
(kdp2 being the target protein degradation rate). For large a, the
functions g(P;km2h2) are sufficiently narrow, such that p2(P) can
be approximated1 by the rescaled distribution of transcription

rates,
1

ab
q

P

ab

� �
(b = kp2/kdm2 being the mean burst size, with the

target protein production rate kp2 and target mRNA degradation
kdm2; see the ESI,† Section S2). In the following sections, we will
demonstrate this by comparison of the distributions of tran-
scription rates q(h2) with simulated distributions of protein
numbers, obtained from mesoscopic simulations using the
Gillespie algorithm19 (see the ESI,† Section S6), at protein levels
typical for E. coli20,21 (see the ESI,† Section S7, for details) and at

Fig. 1 Model system of a two-gene cascade where the upstream gene is
self-regulating. Binding of the transcription factor (TF) to both operators is
governed by Hill kinetics described by the transfer functions h1(R) and h2(R)
that depend on the number of TF molecules, R. The shape of the transfer
function depends on the intensity of an external signal (e.g. concentration
of effector molecules or phosphorylation) which activates a fraction of TFs.
The distribution of TF numbers in a cell population is nonlinearly trans-
formed by the transfer function h2 into a distribution of transcription rates
of the downstream gene, which results in a distribution of the number of
target proteins produced by that gene.
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rate constants that give rise to low intrinsic noise. The degrada-
tion rates of both TFs and target proteins are assumed to be equal,
as in bacteria, where dilution and cell division are the dominating
processes that decrease cellular protein concentrations.22

3 Results
3.1 Geometric construction predicts whether uni/bimodal
expression of the upstream gene is transferred to the
downstream gene

Under the biologically justified assumption of fast mRNA
degradation and exponentially-distributed sizes of protein
bursts, the distribution of the number of TFs produced by
self-regulating gene 1 among different cells is given by13,18

p1ðR; a; bÞ ¼ ARa�1 exp
�R
b

� �
H1ðRÞa 1�e1ð Þ=n; (5)

where a = km1/kdp1, b = kp1/kdm1 (kdp1: TF degradation rate, kp1:
TF production rate, kdm1: TF mRNA degradation rate), and
e1 = kml1/km1 is the relative rate of leaky transcription. A is a
normalization constant which can be presented using standard
special functions (see the ESI,† Section S5). The input distribu-
tion p1(R), transferred through the nonlinear filter h2(R), pro-
duces the output distribution q(h2) of transcription rates of
gene 2 (its explicit form is given by eqn (S16), ESI†). As shown in
ref. 1, in the limit of unregulated gene 1, the distribution p1(R)
of TF numbers is a gamma distribution (eqn (S11), ESI†) and
q(h2) is then given by eqn (S14) (ESI†). However, the explicit
knowledge of q(h2) is not needed if we just want to know the
numbers and positions of its minima and maxima. Invoking

formula (3), we search for the solutions of
dq h2ð Þ
dh2

¼ 0. As a

result, we obtain the geometric construction (see the ESI,†

Section S3.2, for derivation):

H2ðRÞ ¼ �
1

2bm
Rþ ah1ðRÞ

2m
þ 1

2
� LðRÞ: (6)

The points of intersection of the transfer function H2(R) and the
curve L(R) given by the right-hand side of eqn (6), projected
onto the vertical axis (see Fig. 2), define the positions of the
minima and maxima of q(h2) (note that h2 is a linearly rescaled
form of H2). If the number of intersections is even, then one
more maximum is present at h2 = e2 for positively regulated
gene 2, or at h2 = 1 for negatively regulated gene 2. In the limits
of h1 = e1 and h1 = 1, L(R) becomes a straight line, which
reproduces the results from ref. 1 for unregulated gene 1 with
minimal, leaky expression, and with maximal, constitutive
expression, respectively.

After the change of the sign of the downstream gene
regulation, m - �m, the geometric construction and the
transcription rate distribution q(h2) become mirror images of
those for m, such that h2 - �h2 + e2 + 1. This means that the
positive or negative regulation of the downstream gene does
not change the bimodality or unimodality of the distribution.

We can also compare on one plot (Fig. 2B1 and B2) the
properties of the distribution p1(R) of TF numbers and the
distribution of transcription rates q(h2) of gene 2. The extrema
of p1(R) are also given by a geometric construction, which is a
transformed version of that shown in ref. 13 (see the ESI,†
Section S4, for derivation):

mþ 1

2m
¼ LðRÞ (7)

It should be noted that the positions of the maxima and
minima of p1(R) are in this case projected onto the horizontal
axis, R (Fig. 2).

Fig. 2 In deterministic models of gene cascades, a single steady state of TF levels is mapped onto a single steady-state response of the downstream
gene (A1), and a bistable input leads to a bistable output (A2). Contrastingly, there is no such simple input-to-output mapping in our stochastic model (B).
Here, the downstream gene’s transfer function transforms the input distribution of TF levels in a nonlinear manner, possibly changing the number of its
maxima: a bimodal input may lead to a unimodal output (B1), or a unimodal input may give rise to a bimodal output (B2). H2(R) is the rescaled transfer
function of the downstream gene. L(R) contains the transfer function of the upstream gene. The intersections of H2(R) and L(R) indicate the minima and
maxima of the transcription rate distribution of the downstream gene. The intersections of the green line (m + 1)/(2m) with L(R) indicate the minima and
maxima of the distribution of TF numbers. Parameters: (B1) n = m = �2, a = 60, b = 2, e1 = 0.1, e2 = 0.2, K1 = 64, K2 = 19.2. (B2) n = m = �2, a = 25, b = 5,
e1 = 0.15, e2 = 0.01, K1 = K2 = 70.
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Within the deterministic description, there should be a
simple mapping: one steady state of the transcription of the
upstream gene produces one steady state of the transcription of
the downstream gene, and bistability produces bistability
(Fig. 2A). However, if the expression levels of the upstream
gene are randomly distributed in the cell population, then the
output of the downstream gene depends both on the shape of
the input distribution of TF numbers and on the shape of the
transfer function h2 which describes the binding of those TFs to
the operator.

In Fig. 2B we show example constructions for cascades with
positively autoregulated TFs. When the upstream gene has a
bimodal expression but the downstream gene is more sensitive
to TFs, then the bimodal distribution of TF numbers trans-
forms itself into an almost maximal expression of the down-
stream gene. The nonlinearity of the transfer function h2 results
in the amplification of one peak of the TF number distribution,
whereas the other peak does not contribute much to the
transcription rate distribution and thus it does not produce a
second peak of q(h2) (Fig. 2B1). When the upstream gene has a
unimodal expression but it has the same sensitivity to TFs as
the downstream gene, then the overlap of the sensitivity regions
of the transfer functions of both genes may cause the noise
filter-induced bimodality of the expression of the downstream
gene (Fig. 2B2). In the ESI,† we compare the above examples
from Fig. 2B with their deterministic counterparts, and show
that their behaviour is different (Section S9, ESI†). We also
analyse the dependence of distribution shapes on the amount
of leakage. Here, in most cases, we have assumed a significant
basal transcription, as it is frequently observed in wild-type
genes,23,24 see also ref. 13. Our geometric construction suggests
that the significant amount of leakage in the regulatory gene
may lead to a greater diversity of behaviours of the studied gene
cascade (Section S10, ESI†).

In some exotic cases, at very high cooperativities, trimodal
distributions are also possible (Fig. S15, ESI†); however, the
multiple peaks are then very close to each other, such that they
may be easily blurred by intrinsic noise.

3.2 Example application: multiple downstream genes
regulated by a common positively self-regulated TF can have
both binary and graded responses to the same signal

The analysis of the geometric construction at all possible
combinations of the parameter values (cooperativities of both
genes, their TF affinities, protein burst parameters a and b,
different levels of leakiness of the promoters) is beyond the
scope of this article. Therefore, we present in this section a
selected case study of a system in which the regulatory gene
responds in a graded manner to a signal but the interplay of the
non-linearities of the upstream and downstream regulation can
introduce both graded and binary responses in the downstream
genes, an effect which would be impossible to obtain in the
same system upon removal of the feedback.

We consider an upstream gene producing TFs that regulate
several downstream genes, whose promoters have different
affinities for TFs (Fig. 3A). The diversity in promoter–TF

affinities may be due to different promoter architectures and
also due to the gene surroundings (DNA conformation or the
presence of other transcription factors25,26). We model the
different affinities by different K1/K2 ratios. We assume that
the number of TFs is large enough so that the downstream
promoters do not compete for TFs. We want to know how the
genes respond to an external signal that effectively varies K1

and K2. Since K1 is proportional to K2 under our assumptions,
we simply measure the signal strength using one of these
parameters (e.g. K1 proportional to 1/(active TF fraction), i.e.
1/signal, see eqn (S5), ESI†), similarly to that in ref. 13. We ask
whether the shape of the TF response to varying levels of the
signal is reproduced downstream and, if not, how it depends on
the differences between the TF affinities of the upstream and
downstream genes. This problem can also be interpreted
in terms of robustness to mutations: if the upstream gene
regulates a single downstream gene (Fig. 3B), how will the
response pattern change after a mutation in the downstream
promoter that changes its affinity to TFs?

In Fig. 4, we show the geometric construction which predicts
the positions of the minima and maxima of the distributions of
protein levels for both TFs and target proteins. The construc-
tion demonstrates that the number of maxima of the protein
number distributions depends on the overlap (or lack thereof)
of the sensitivity regions of the transfer functions of both genes.
The corresponding distributions are shown in Fig. 5 and
their behaviour is in excellent agreement with the predictions
from Fig. 4.

We have chosen a set of parameters such that the upstream
gene shows a graded response to the signal when self-regulated,
whereas the downstream gene shows a binary response in the

Fig. 3 Self-regulating upstream gene, regulating downstream genes that
have different sensitivities to TFs: single regulator for several downstream
genes (A). An alternative interpretation of the model: a single cascade,
where the promoter–TF affinity of the downstream gene varies from cell
to cell due to mutations (B).
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presence of that autoregulation. However, upon removal of
the feedback in the upstream gene, the downstream gene
would exhibit a graded response (shown in detail in the ESI,†
Section S8); for the minimal and constitutive expression of the
open-loop regulatory gene, the extrema of the downstream
gene’s transcription rate distributions are given by the inter-
sections of the dashed straight lines and the red curve H2(R)
in Fig. 4.

The downstream genes have different promoter–TF affinities
relative to the upstream gene: K2 = 0.1K1, K1, 5K1. The noise 1/a of
the downstream gene is low. We measured the signal strength
using the parameter K1. We assumed that the cooperativity of the
TF binding is n = �2 for the upstream gene (positive regulation),
and the downstream gene can be positively or negatively regu-
lated with m = �2 (note that homodimerisation is typical for
regulators in two-component systems12).

3.2.1 Positively regulated downstream genes. Since the TF
is self-regulated, the signal affects the rate of TF production and
thus the distribution of the total TF numbers varies in its shape
as the signal is varied (Fig. 5A–C).

In our example system, the TF response is graded, although
at the intermediate signal strength (K1 = 70) it becomes
wide, nearly bimodal, which is represented by the blue curve
L(R) almost tangent to the green straight line (m + 1)/(2m)
(Fig. 4E).

At the same time, the response pattern of the downstream
genes depends on their promoter–TF affinity and can be binary
or graded (Fig. 5D–F):

(1) When the downstream gene has the same affinity to the
TF as the upstream gene (K2 = K1, Fig. 5E), its response becomes
binary. The downstream transfer function transforms the
wide unimodal input distribution into a clearly bimodal output
distribution.

(2) However, if the downstream gene is much more sensitive
to the TF than the upstream gene (K2 = 0.1K1, Fig. 5F), its
response becomes graded. The geometric construction reveals
that the upstream gene remains almost fully inactivated, with
only a low expression level caused by the leakiness of its
promoter. Depending on the signal strength, a certain fraction
of this small number of TFs becomes activated and only the
downstream gene with the strongest promoter responds sensi-
tively to the variation of that fraction. The behaviour of the
system is close to that of the cascade with the minimally active
upstream gene without feedback (compare with Fig. S4, ESI†).

(3) An interesting case is the one of the downstream gene
whose promoter is less sensitive to the TF than the regulatory
promoter (K2 = 5K1, Fig. 5D). Here, the target response is, in
principle, graded and sharper than that of the regulatory gene.
The geometric construction shows that at a certain signal
strength (K1 = 62) the transcription rate distribution should

Fig. 4 The overlap of the sensitivity regions of the transfer functions of both genes facilitates the onset of a binary response. The intersections of the red
curve H2(R) and the blue curve L(R) indicate the minima and maxima of the downstream gene’s transcription rate distribution. The intersections of the
green line (m + 1)/(2m) and the blue curve L(R) indicate the minima and maxima of the TF number distribution. Dashed lines: limits of the leaky expression
and constitutive expression. Intersections of the dashed straight lines and the red curve H2(R) correspond to the extrema of the transcription rate
distributions of the downstream gene when the upstream gene has no feedback (left dashed line: minimal expression of the upstream gene; right dashed
line: maximal expression of the upstream gene). Parameters: n = �2, m = �2, a = 25, b = 5, a = 250, b = 5, e1 = 0.15, e2 = 0.01. Constructions shown in
A–C correspond to the distributions shown in Fig. 5A and D. Constructions D–F correspond to Fig. 5B and E. Constructions G–J correspond to Fig. 5C and F.
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become slightly bimodal. However, this bimodality is ‘‘com-
pressed’’ by the transfer function of the downstream gene,
which is close to its lower limit. Moreover, the bimodality
becomes completely blurred by intrinsic noise (see Fig. S16,
ESI,† for a zoomed-in view).

3.2.2 Negatively regulated downstream genes. The beha-
viour of the cascade with a negatively regulated downstream
gene is analogous because the change m - �m only mirrors
q(h2) but does not change its shape (Fig. S18 and S19, ESI†).

The only differences in the shapes of the distributions of
protein numbers, compared to those for positive regulation,
come from intrinsic noise, which introduces ‘‘tails’’ on their
right sides.

3.2.3 Binary or graded response depends on the relative
target promoter–TF affinity as compared to the regulatory
promoter–TF affinity. From the above results, it follows that if
the sensitivity regions of the transfer functions of both genes
overlap, then this overlap amplifies the ultrasensitivity of the

Fig. 5 Response of the self-regulating upstream gene to a varying signal (shown in A–C by the total number of TFs, both active and inactive) is not
simply mirrored by the downstream gene (D–F). The response of the downstream gene can be binary or graded, which depends on whether the sensitive
regions of the transfer functions of both genes overlap or not (see the geometric construction in Fig. 4 and explanations in the text). Distributions shown
in A and D correspond to constructions shown in Fig. 4A–C. Distributions shown in B and E correspond to constructions shown in Fig. 4D–F.
Distributions shown in C and F correspond to constructions shown in Fig. 4G–J. Black dots: simulated protein distributions p2(P). Filled curves:

theoretical distributions, p1(R) in (A–C), and
1

ab
q

P

ab

� �
in (D–F). The theoretical curve for K2 = 310 in (D) has two maxima but the bimodality disappears in

the simulation due to intrinsic noise (see the zoomed-in view in Fig. S16, ESI†). The parameters are the same as in Fig. 4. The values of simulation
parameters are given in Table S3 (ESI†).
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system, which facilitates the binary response of the downstream
gene to a signal. On the other hand, if the sensitivity ranges
of both genes do not overlap (the upstream gene is under- or
overdriven), then the response of the downstream gene is based
only on the sensitivity of its own promoter.

The presence of TF autoregulation may allow different target
genes to display diverse types of responses – not only early or
late but also binary or graded – depending on their affinities to
TFs, even though they are regulated by the same TF. In our
example, this behaviour would be impossible if the upstream
gene were unregulated.

On the other hand, it does not matter whether the regulation
of the downstream gene is positive or negative: the sign of
regulation changes the response direction but not its binary or
graded shape.

3.3 Relative distribution width as a measure of imprecision of
a gene’s response to an external signal

Because we analyse the problem of a gene’s response to varying
levels of a signal, the most natural way to view the distribution
plots is to compare their width to the range of possible gene
expression levels induced by the signal. The standard measures
of noise, the coefficient of variation (standard deviation to
mean, CV) and the Fano factor (variance to mean, FF), ignore
the dependence on the signal range. We can see that the CV
and FF are increased when the sensitivity regions of the transfer
functions overlap (Fig. S17A and B, ESI†). But when the
distributions are plotted in the scale which ranges from
the minimal to maximal mean expression levels, the distribu-
tions do not appear to be the widest or maximally bimodal
at their maximal CV or FF (ESI,† Section S13). For this reason,
we propose the relative distribution width as the measure
which can quantify the imprecision of the gene’s response to a

range of signal levels (greater width implies a less precise
response):

W K1ð Þ ¼ s K1ð Þ
jmð1Þ � mð0Þj: (8)

s(K1) denotes the standard deviation of a distribution at the
signal level measured by K1. m(N) is the mean of the distribution
at K1 = N and m(0) is the mean of the distribution at K1 = 0.

Fig. 6 shows that the precision of the downstream gene’s
response to the external signal is the greatest when the down-
stream gene is less sensitive to the TF than the self-regulating
upstream gene (indeed, the distributions in Fig. 5 are the most
narrow in case D). In general, the precision of the response
depends on the contribution of the intrinsic noise of the
downstream gene. If that noise is gamma-distributed, then
the relative width of the distribution of target protein numbers
differs from that of the distribution of transcription rates by a
term dependent on the mean burst frequency a of the target
gene (the derivation, using the intrinsic noise representation
(eqn (4)), is presented in the ESI,† Section S14):

W K1ð Þ ¼ 1

1� e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mq h2;K1ð Þ

a
þ sq2 h2;K1ð Þ

s
; (9)

where mq(h2,K1) and sq
2(h2,K1) are the mean and variance of the

distribution q(h2,K1).
Interestingly, the response of the downstream gene to a

signal may be more precise than the response of the upstream
gene (Fig. 6). In particular, this is possible even when the
intrinsic noise of the downstream gene is equal to the intrinsic
noise of the upstream gene (Fig. 6C). In our example, the latter
is due to the high leakage e1 of the upstream gene, which
confines the ab(1 � e1) range of its mean expression.

Fig. 6 Imprecision W of the target’s response may be smaller than that of its regulator (A–C). When the intrinsic noises of both the regulator and target
are equal, the target’s response may still be more precise (C) if the regulatory promoter is more leaky (which is the case for the parameter set chosen for
this figure: e1 = 0.15, e2 = 0.01). Here, the target’s response can be less precise than the regulator’s response (D), when the target’s intrinsic noise is greater
than the regulator’s noise. Intrinsic noises of the regulator and the target are defined by 1/a and 1/a, respectively. a = 25 and a = N, 250, 25, 10 are the
maximal mean burst frequencies. The other parameters and the corresponding colours of lines are the same as in Fig. 4 and 5; we added the intermediate
value of 0.5K1 (orange). W was numerically calculated using the analytical formulas for p1(R) (via eqn (8), TFs) and q(h2) (via eqn (9), target proteins).
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3.4 Within the tested parameter range, the model can
describe cell systems where the TF and target protein lifetimes
are equal

We tested different target protein lifetimes, corresponding to
the protein degradation rates kdp2. Fig. 7 shows that there are
two constraints on the target protein lifetime for our analytical
method to be valid. (i) If the target protein lives much longer
than the TF, then its levels average out even the slow fluctua-
tions of the transcription rate (magenta histogram in Fig. 7).
(ii) If the target protein degrades very quickly, then its fluctuations
become correlated with the on/off switching of the promoter,
which generates bimodality due to transcriptional pulsing:1 the
left peak of the resulting distribution (red and green histograms
in Fig. 7) is shifted to zero, which corresponds to the ‘‘off’’ state of
the promoter. These results demonstrate that, at least for this
choice of parameters, the model can be valid for cell systems
where the TF and target protein lifetimes are the same, as in
bacteria, where the main factors that decrease protein levels are
dilution and cell division.22

4 Discussion

In the first part of this section (Section 4.1), we provide a summary
of our theoretical findings. In the second part (Section 4.2), we
discuss their possible relevance to known biological circuits.

4.1 Conclusions

We consider the behaviour of a gene cascade in which the
upstream gene is self-regulating, and the random distribution
of transcription factor (TF) numbers in cells is transformed by
the nonlinear kinetics of the binding of the TF to the operator
of the downstream gene, which results in a distribution of

target protein numbers. Depending on the strength of the
external signal that activates the TFs, the expression of both
regulatory and target gene changes not only in terms of its
mean level but also in terms of its qualitative shape (unimodal
or bimodal).

The nonlinearity and cooperativity of biochemical reactions
are important features modulating gene regulation.27–30 Due to
the presence of the two regulations, there are two nonlinear
transfer functions in the system, potentially having different
sensitivity ranges. Altszyler et al.15 studied, using deterministic
models, how the overlap (or lack thereof) of the sensitivity
ranges of the upstream and downstream modules influences
the sensitivity of the system. However, deterministic modelling
assumes that if the TF expression is monostable or bistable,
then this property is transmitted downstream in the cascade.
We point out, on the other hand, that if TFs are randomly
distributed among cells, then their distribution may be strongly
distorted during transmission downstream and attain or lose
bimodality.

In order to gain insight into this effect, we refer to the
concept of intrinsic noise representation. This approach, which
we previously used to study gene cascades without self-
regulation,1 is similar to the Poisson representation,31,32 where
the protein number distribution was represented by a super-
position of Poisson distributions, or to the method applied by
Thomas et al.,33 who used a mixture of Gaussian distributions.
However, the distribution mixing in these references was a
formal procedure facilitating calculations, without the clearly
defined biological meaning of the distributions and the mixing
functions. The advantage of our approach is that the represen-
tation of the protein number distribution in the form of
a distribution mixture has a clear biological interpretation:
differences in the number of TFs in the cell population lead
to a different propensity to transcribe2 in each cell, which
constitutes extrinsic noise. The distribution of target protein
numbers can be obtained by integration of the distribution of
transcription rates in the population (the mixing function) with
the distributions of intrinsic noise (e.g., negative binomial or
gamma) corresponding to each transcription rate.

From this conceptual approach, it follows that for those
downstream genes which have low intrinsic noise we do not
need to calculate the full distribution of target protein numbers.
Instead, it suffices to analyse the behaviour of the mixing
function, i.e., the transcription rate distribution. This allows us
to look at the system in terms of nonlinear filtering of noise. The
Hill kinetics of the binding of the TF to the operator of the target
gene acts as a noise filter that converts the distribution of TF
numbers into a different distribution of transcription rates from
the target gene. We have shown that the numbers and positions
of the minima and maxima of the transcription rate distribution
can be found using a geometric construction even without the
explicit knowledge of the distribution itself, analogously to the
results for a cascade without feedback.1 However, differently
from that in the latter case, the present construction contains
information not only about the transfer function of the down-
stream gene (defined by the Hill kinetics of TF–target binding)

Fig. 7 Simulated protein number distributions for a cascade with a self-
regulated TF quite faithfully reflect the rescaled transcription rate distribution
1

ab
q

P

ab

� �
. Theoretical curves, which represent q(h2) integrated with the

corresponding gamma (S9, ESI†) or negative binomial (S40, ESI†) distribu-
tions, show that the intrinsic noise is sufficiently low to compare the
simulated distributions with the sole transcription rate distribution. The TF
degradation rate is kdp1 = 10�5. We tested different degradation rates of the
target protein, as shown in the legend. Parameters: n = �2, m = �2, a = 25,
a = 250, b = b = 5, e1 = 0.15, e2 = 0.01, K1 = K2 = 70. The values of other
parameters are shown in Table S7 (ESI†).
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but also about the transfer function of the upstream gene
(describing TF autoregulation). The graphical method demon-
strates how the upstream transfer function can ‘‘interfere’’ with
the downstream transfer function, amplifying its sensitivity. It
also shows whether the uni/bimodality of the upstream gene
expression translates itself into the uni/bimodality of the down-
stream gene expression.

As an example, we have studied a cascade with positive
autoregulation of TFs, such that the response of the upstream
gene to a signal was graded and the response of the cascade
with feedback removed was also graded. We have shown that
the shape of the distribution of TF numbers is not simply
transferred downstream. The response of the downstream gene
can be binary or graded, which depends on whether the
sensitivity regions of both transfer functions overlap. And
therefore, one upstream gene, simultaneously regulating sev-
eral downstream genes, can induce not only early or late
responses in different downstream genes, but also binary
responses in some of them and graded responses in others,
depending on their sensitivity to TFs. Interestingly, these
response patterns do not depend on whether the regulation
of the downstream gene is positive or negative. The recent
experimental paper by Rossi and Dunlop34 analysed, in a
similar spirit, the diversity of the responses of different genes
in E. coli (micF and inaA) to the same TF (MarA). However,
their upstream gene was not self-regulated. They confirmed
the intuitively expected fact that the noise transmitted to the
downstream gene is the highest when the expression of the
regulator falls on the sensitive region of its transfer function.
The distribution shapes in response to signals were not studied
in detail in ref. 34, but the micF response was visibly graded.

The same problem can be alternatively interpreted as a
description of a single cascade, where the strength of the target
promoter is changed by a mutation. Our model shows that such
a mutation may change the pattern of the response of the target
from binary to graded (or vice versa). Since cascades with self-
regulating TFs are frequent network motifs, a question arises as
to whether such a lack of robustness of the response shape to
mutations is common in nature, and if so, whether it could
itself be an adaptation to different environmental conditions:
in some environments, the binary response may be more
preferred, whereas other environments may select for graded
responses. (However, an adaptation of the response shape by a
mutation in promoter–TF affinity would come here at the
expense of a change in the signal level at which the response
occurs.) This problem is somewhat similar to that explored by
Kuwahara et al.35 They have shown that gene systems tend to
evolve in such a way that, on one hand, they favour an increased
phenotypic diversity, and, on the other hand, their phenotypes
undergo strong changes under small genotypic variations.
In our model, mutations in promoter–TF affinity may cause
significant changes in the pattern (binary/graded) of the gene
response to a signal.

Within the tested parameter range, our model can work
when the lifetimes of both the TF and target proteins are the
same (as in most cases in bacteria).

Using the concept of intrinsic noise representation, we have
proposed the relative distribution width as a new measure of
the precision of a gene’s response to a signal, which compares
the distribution width to the range of possible responses. In
this way, we demonstrated how the intrinsic noise of the target
gene affects the response precision. If the regulatory gene has a
low precision of response due to large leakiness, then the target
gene with low leakage can increase that precision. The lower
the affinity of the target promoter to the TF, the more precise
the target gene’s response.

4.2 Relevance to known gene systems

Some gene expression models, which have been used to inter-
pret experimental data, assume that the bimodal expression
pattern of a self-regulating upstream gene should propagate
downstream to the regulated gene (e.g., in ref. 36 the self-
regulating TF, GlnG, activates the LacZ reporter and the bimodal
response of the regulator is assumed to be mirrored by a
bimodal response of the target). However, we have shown that
this may not always be the case: the bimodal distribution
produced by the upstream gene expression can be converted
into a unimodal downstream gene expression and vice versa.

There are many studies that analyse the conversion of
graded inputs into binary outputs due to feedback37–42 but, to
our knowledge, none deals with the possibility of diverse
binary/graded response patterns of different targets to the same
regulator. Recent evolutionary models43 suggest that if a single
TF regulates multiple targets, then TF mutations are less
probable than the mutations of TF binding sites. According
to these models, a substantial variability in promoter–TF affinities
may arise at intermediate selection pressure. Therefore, assuming
our model to be valid, the diversity of responses of different target
genes to the same TF may be a widespread phenomenon.

Although the concept of early and late responses to mild and
acute stress (weak and strong signals) by different target
promoters, which have different sensitivities to TFs, is widely
known, there are no systematic studies, to our knowledge,
of whether these responses are binary or graded. For example,
in ref. 44 steeper and milder responses were observed in
different GATA-1 targets in G1E cells but no histograms of gene
expression variability in a population were recorded and the
study presents only dose–response curves from mean expression.
However, the binary or graded shape of the gene expression may
be of relevance in the context of the cellular response to stress:
the large heterogeneity of the response (binary or wide-graded)
seems to be an advantage at low-stress levels, when the cost of a
possible untimely engagement of cellular machinery over-weighs
the threat to the cell population. A narrowly-graded response
may, on the other hand, be needed when higher stress levels
force all cells to respond unambiguously.45

We have not found systematic experimental studies of the
interdependence between the binary and graded responses of a
regulatory gene and its multiple targets, except for the analysis
of type III secretion in Salmonella by Temme et al.11 However,
ref. 11 described the time-dependent response to a single level
of inducer. Moreover, this system is much more complex than
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our model because of co-regulation of genes by multiple
transcription factors and self-regulation of targets. The topmost
regulator HilD was shown to have a graded response to an
environmental signal. HilC, a self-regulating TF, which itself is
regulated by HilD and which also responds directly to the
signal, showed a graded response as well, but, at the same
time, the responses of the downstream genes PrgH and SicA,
indirectly or directly regulated by HilC and HilD, were binary.

Among the existing studies, there are examples of self-
activating TFs which differentially regulate target genes and
which could perhaps be candidates for the validity check of our
model: the spo0A system in Bacillus subtilis41 has a somewhat
similar topology to that of our model and seems to show a
qualitatively similar behaviour. An autoregulated TF, spo0A,
when phosphorylated, controls downstream genes (we note,
however, that the system is more complex because TF self-
regulation is both direct and indirect41,46). Narula et al.41

proposed a model to explain why the TF responded to starva-
tion in a graded manner despite the feedback, but its target, sF,
showed a binary response. Their model suggests that this type
of response is possible if the target is additionally regulated by
other proteins via a post-translational feedforward loop. On the
other hand, the model we present here suggests a theoretical
possibility that, in a network of a similar topology, the target
gene can show a binary response even if the regulator’s
response is graded, without any post-translational interactions.

Another TF that exhibits a different response pattern from
its targets is the eukaryotic gene p53, self-regulating via many
indirect loops.47 In ref. 48, it has been shown that p53 target
genes display different response types under genotoxic stress:
in mouse embryonic fibroblast cells, endogenous Waf1 showed
a graded response but artificial promoters with the same TF
binding sites responded in a binary manner. In human breast
cancer cells, endogenous Waf1 showed a binary response,
whereas the level of p53 varied gradually. However, the diversity
of the responses of p53 targets may originate from slower or
faster rates of recruitment and decomposition of transcrip-
tional apparatus (and not only TF binding).49–51 But if these
rates influence the ratio of the on- to off-rates of promoter
activity, and hence the K constant in the Hill function, then
perhaps our model could be applicable as long as the on/off
switching is sufficiently fast to assume Hill kinetics.

In S. cerevisiae, a self-activating TF, Zap1, responds to a
range of zinc levels. Among tens of target genes, some are
activated under conditions of mild zinc deficiency, and some
others are activated at zinc starvation, depending on the
strength or number of their Zap1 binding sites.52 In bacteria
of the genus Bordetella, the regulatory gene bvgAS responds to
the deficiency of MgSO4 or nicotinic acid. Phosphorylated TF
BvgA binds to several classes of target promoters,12 which, due
to different affinities to the TF, are activated at low, inter-
mediate, or high BvgABP levels. The latter gene class is only
activated when the positive feedback in the regulatory gene
enters the induced regime and drastically increases the
BvgABP level.53 In bacteria, the NRI transcription factor is
encoded by the glnG Gene and autoactivates its transcription.

It reacts by phosphorylation to ammonia deprivation. Its target
promoters activate in a sequential manner depending on their
affinity to the TF and the number of TF binding sites. The first
line of response to nitrogen deficiency is activation of the
glnALG operon, i.e. autoactivation of the regulatory gene.
Higher levels of phosphorylated NRI activate other operons
regulated by this TF.54 A recent review on self-regulation in two-
component systems12 provides a longer list of possible candi-
date genes for which our model could be tested. However,
Groisman12 notes that bimodal distributions of protein levels have
not been observed in three well-characterized two-component
systems: PhoB/PhoR in E. coli, PhoP/PhoQ in Salmonella, and
BvgA/BvgS in Bordetella.

In Section S16 (ESI†) we discuss possible methods of
measurement of transfer functions in an experimental realisa-
tion of our model, based on the idea of feedback opening,
proposed by Hsu et al.27

Finally, we note that a different, but somewhat related,
mechanism of conversion between the graded and binary
responses of gene systems is also possible: the process of
activation of the TF protein by a signal may itself be strongly
nonlinear, due to the Hill kinetics of effector binding, and thus
it may create a threshold that converts a unimodal distribution
of signals into a bimodally distributed output.55 In our model,
we did not take into account the details of TF activation/
deactivation.
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6 L. A. Sepúlveda, H. Xu, J. Zhang, M. Wang and I. Golding,
Science, 2016, 351, 1218–1222.

7 M. Thattai and A. Van Oudenaarden, Proc. Natl. Acad. Sci.
U. S. A., 2001, 98, 8614–8619.

8 M. Thattai and A. van Oudenaarden, Biophys. J., 2002, 82,
2943–2950.

9 S. R. Biggar and G. R. Crabtree, EMBO J., 2001, 20,
3167–3176.

10 S. Takahashi and P. M. Pryciak, Curr. Biol., 2008, 18, 1184–1191.
11 K. Temme, H. Salis, D. Tullman-Ercek, A. Levskaya,

S. H. Hong and C. A. Voigt, J. Mol. Biol., 2008, 377, 47–61.
12 E. A. Groisman, Annu. Rev. Microbiol., 2016, 70, 103–124.
13 A. Ochab-Marcinek and M. Tabaka, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2015, 91, 012704.
14 U. Alon, An introduction to systems biology: design principles

of biological circuits, Chapman & Hall/CRC, Boca Raton, FL,
2006.

15 E. Altszyler, A. Ventura, A. Colman-Lerner and A. Chernomoretz,
Phys. Biol., 2014, 11, 066003.

16 V. Shahrezaei and P. S. Swain, Proc. Natl. Acad. Sci. U. S. A.,
2008, 105, 17256–17261.

17 L. Cai, N. Friedman and X. Xie, Nature, 2006, 440, 358–362.
18 N. Friedman, L. Cai and X. S. Xie, Phys. Rev. Lett., 2006,

97, 168302.
19 M. Gibson and J. Bruck, J. Phys. Chem. A, 2000, 104, 1876–1889.
20 Y. Ishihama, T. Schmidt, J. Rappsilber, M. Mann, F. U.

Hartl, M. J. Kerner and D. Frishman, BMC Genomics, 2008,
9, 102.

21 A. Ishihama, A. Kori, E. Koshio, K. Yamada, H. Maeda,
T. Shimada, H. Makinoshima, A. Iwata and N. Fujita,
J. Bacteriol., 2014, 196, 2718–2727.

22 M. R. Maurizi, Experientia, 1992, 48, 178–201.
23 I. Yanai, J. O. Korbel, S. Boue, S. K. McWeeney, P. Bork and

M. J. Lercher, Trends Genet., 2006, 22, 132–138.
24 N. T. Ingolia and A. W. Murray, Curr. Biol., 2007, 17, 668–677.
25 M. Slattery, T. Zhou, L. Yang, A. C. Dantas Machado, R. Gordân

and R. Rohs, Trends Biochem. Sci., 2014, 39, 381–399.
26 M. Levo, E. Zalckvar, E. Sharon, A. C. Dantas Machado,

Y. Kalma, M. Lotam-Pompan, A. Weinberger, Z. Yakhini,
R. Rohs and E. Segal, Genome Res., 2015, 25, 1018–1029.

27 C. Hsu, V. Jaquet, F. Maleki and A. Becskei, J. Mol. Biol.,
2016, 428, 4115–4128.
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