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On the validity of linear response approximations
regarding the solvation dynamics
of polyatomic solutes

Esther Heid, Wanda Moser and Christian Schröder *

The time-dependent fluorescence of a chromophore can be calculated from either nonequilibrium

simulations, or, as long as linear response theory holds true, from equilibrium solvent fluctuations in the

ground or excited state if the perturbation inflicted by the chromophore is small. The assumption of Gaussian

statistics, in contrast, links the nonequilibrium dynamics to solvent fluctuations solely in the excited state, as

long as the energy gap distribution is Gaussian throughout the process. The validity of linear response theories

on the ground and excited state surface as well as Gaussian statistics is thoroughly tested in this study by

calculating the time-dependent Stokes shift of different benzene-like solutes. The effect of the size of change

in partial charges of the solute, the multipolar order of charge distribution, the direction of change, as well as

the influence of different solvents on the validity of linear response theory is examined by simulating 54

different systems. Calculation of the Gaussian character of the energy distribution in equilibrium, as well as the

time-evolution of the peak width in the nonequilibrium simulation sheds light on the validity of Gaussian

statistics in a nonstationary regime. We observed that a large intermediate broadening of the width of the

energy distribution correlates with a failure of correlation functions to describe the nonequilibrium event.

These results are accompanied by analysis of higher order correlation functions, as well as the structure of the

solvents water, acetonitrile and methanol around the solute, to yield a comprehensive view, as well as general

guidelines, on when and why equilibrium solvent fluctuations can correctly depict solvation dynamics.

1 Introduction

Solvation dynamics describe the dynamical response of a
solvent to any changes of an immersed solute, as for example
may occur during a chemical reaction. The timescale of the
solvent rearrangement after such a change directly affects
the reaction rates of fast chemical reactions in solution such
as electron or proton transfer and has therefore been used
extensively to examine the processes related to charge-transfer
reactions.1–5 Solvation dynamics can be probed using time-
dependent fluorescence measurements or simulations. The
perturbation is realized via a chromophore that can be electro-
nically excited by a laser pulse. The changed electron distribu-
tion of the excited state solute causes the system to be initially in
a nonequilibrium state, which relaxes to a new state of equili-
brium by rearrangement of solvent molecules. The change in
fluorescence frequency of the chromophore, the so-called time-
dependent Stokes shift, is directly linked to the solvent struc-
ture as the rearrangement of the solvent molecules lowers the

excited state energy. Normalizing this shift yields the Stokes
shift relaxation function S(t)

SðtÞ ¼ hnðtÞ � hnð1Þ
hnð0Þ � hnð1Þ (1)

The time axis is chosen such that the excitation occurs at t = 0
and the rearrangement completes as t - N.

S(t) is directly accessible via experiments or nonequilibrium
molecular dynamics simulation. Experiments, however, cannot
account fully for the molecular details of the solvent rearrangement,
so that computer simulation of the time-dependent Stokes shift is
an important part of understanding the underlying mechanisms
and principles.6 The simulation of solvation dynamics using none-
quilibrium trajectories is straightforward: the solute is immersed
in a box of solvent molecules and equilibrated. After a sudden
excitation created by changing the charge distribution within the
solute, the solvent motion is monitored and converted into the time-
dependent interaction energy between solute and solvent

DUðtÞ ¼ 1

4pe0

X
jg

X
ib

Dqjg � qib
rjgibðtÞ

(2)

where Dqjg is the change in partial charge of atom g in the
solute molecule j, qib the partial charge of atom b of solvent
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molecule i and rjgib the respective distance between the two
atoms. This interaction energy is then converted to the solvent
relaxation function

SðtÞ ¼ DUðtÞ � DUð1Þ
DUð0Þ � DUð1Þ

(3)

where DUðtÞ is the averaged electrostatic energy difference
between ground and excited state.

As the computer simulation requires averaging over a large
number of independent simulations and is therefore time-
consuming, only few studies focus solely on nonequilibrium
simulation.7–10 More often, nonequilibrium computational
solvation dynamics is accompanied11–16 or even replaced4,17–25

by equilibrium molecular dynamics simulation. Here, the nature

of DUðtÞ is assumed to depend linearly on the perturbation,
so that the nonequilibrium event can be described by the energy
fluctuations present in the equilibrium state of the system. S(t) is
then assumed to be represented by the correlation function Cg(t)
or Ce(t) of the energy gap in the equilibrated ground (g) or
equilibrated excited (e) state. The underlying approximations
and concepts of the different linear response assumptions are
described in detail in Section 2.

The validity of linear response approximations has been tested
for many systems. It is often claimed that linear response holds as
long as the change in solute properties requires only a change in
charge,26,27 but not for changes in solute size.6,28,29 However, there
is evidence for a failure of linear response in quite a few systems
involving only a change in solute charge distribution.11–13,19,30–33

Fonseca and Ladanyi31 observed a failure of both Cg(t) and Ce(t) in
methanol for different diatomic solutes. Hynes and coworkers30

examined the Stokes shift after the excitation of a neutral pair to
an ion pair in a solvent roughly resembling methylchloride and
found that only Ce(t) resembled S(t) quite well and attributed this
to the observed Gaussian statistics. They also found a nonlinear
spectral broadening and narrowing and suggested that this effect
should be explored for different solvents and solutes. This study
will therefore take up the interesting topic of the time evolution
of the widths of the respective energy distributions in different
systems.

As solute we chose a well known artificial model, namely
a polyatomic benzene-like structure where different charge
distributions showing different multipolar moments can be
realized,19,20 and adapted it to fit our purpose. As the relevant
excitation mechanisms of real chromophores are mostly based
on excitations of a large p-system, the benzene model reflects
some of those chromophore features (in contrast to simpler
mono- or diatomic models). Kumar and Maroncelli19 compared
Cg(t) and S(t) for such a benzene-like solute showing an octupole
moment in its excited state in acetonitrile and methanol. They
found perfect agreement for solvation dynamics in acetonitrile,
but the approximation failed for methanol. As the charge distri-
butions differed greatly in the ground and excited state (�0.75e as
well as �1e per carbon atom), the failure was attributed to a too
large perturbation, as well as to the different hydrogen bonding
behavior in ground and excited state resulting from these large

charge differences. A consecutive work by Ladanyi and Maroncelli20

investigated different Cg(t) of the same system using different
multipole moments in the excited state. Both studies found that
the solvation response depends on the multipolar moment of the
solute, but did not investigate the failure of linear response theory
observed in the first study any further. The current work is therefore
aimed at examining the failure of linear response approximations
for different charge redistributions in the solute, so that general
conclusion when and why linear response is applicable can
be drawn.

To this aim, non-equilibrium and equilibrium simulations
of the three benzene-like solutes in the work of Maroncelli and
coworkers19 will be employed, with three different absolute
changes in charge. The excitation (uncharged to charged state),
as well as the deexcitation (charged to uncharged state) of these
solutes will be calculated, reflecting the different nature of
change in charge distribution occuring in natural chromophores.
For example, Coumarin 153 increases its dipole moment upon
excitation,34 whereas the chromophore 1-methyl-6-oxyquinolinium
betaine decreases its dipole moment upon excitation.9,35 As solvents
we investigated water, acetonitrile and methanol. The Stokes shift
in methanol shows only a small inertial component, in contrast to
water and acetonitrile. The inertial dynamics is connected to the
validity of linear response approximations,31 so that comparison
of solvation dynamics in methanol to other solvents will be
especially instructive. Acetonitrile shows a unspecific interaction
to solutes and cannot take part in hydrogen bonds, which both
water and methanol do. Furthermore, water has shown to be
unspecific to the nature of the solute when calculating the Stokes
shift relaxation function, as for example described by Ernsting
and coworkers,36 whereas in methanol S(t) of different solutes
differs significantly. This study therefore sheds light on a broader
variety of systems than has been done before, using the excitation
and deexcitation of nine different solutes in three solvents, thus
calculating both non-equilibrium and equilibrium simulations in
54 systems.

2 Theory

This section gives a short overview on the approximations
involved in linear response theory on the ground and excited
state energy surface, as well as in Gaussian statistics, as applied
in solvation dynamics. For a more detailed description the
reader is referred to the literature.30,37,38 Generally, the energy
of the system can be written as the Hamiltonian corresponding
to the ground state, Hg, as well as a perturbation that is turned
on at the moment of excitation:37–39

H(t) = Hg + y(t)[He � Hg] (4)

y(t) corresponds to the Heaviside step function, and He to the
Hamiltonian of the excited state. The fluorescence energy
DU is then

DU = He � Hg. (5)
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In this work, only the partial charge distribution is assumed to
change upon excitation, so that the change in energy is purely
of electrostatic nature, namely the Coulomb interaction energy
between solute and solvent. However, the discussion of conven-
tional linear response, as well as Gaussian statistics applies
likewise for other properties of the system, as for example the
van der Waals energy which is needed to describe nonpolar
solvation dynamics involving changes in solute size. It should be
noted that the fluorescence energy is actually made up of a time-
dependent term resulting from solvent rearrangement and a con-
stant term from the difference of the ground and excited state in
vacuum. As the constant term does not contribute to the time-
evolution of the wavelength, it is neglected in this work.

2.1 Linear-response approximation on the unperturbed
energy surface

If the Hamiltonian that characterizes the solute–solvent inter-
actions is assumed to change linearly with respect to a perturbation,
then the relaxation of this energy in presence of the perturbation
can be described via the regression of the spontaneous fluctuations
around their equilibrium value.40,41 Using eqn (4), the time depen-
dence of the nonequilibrium energy gap can be calculated as

DUh ineðtÞ ¼
Ð
DUðtÞe

�Hg

kBT dG
Ð
e
�Hg

kBT dG

(6)

where kB is Boltzmann’s constant, T the temperature and G the
phase space coordinates and momenta. If only perturbations up to
the linear term are taken into account, the Stokes shift relaxation
function S(t) can be approximated as

SðtÞ ’
dDUð0ÞdDUðtÞh ig

dDUð0Þ2h ig
¼ CgðtÞ (7)

where dDU is defined as

dDU(t) = DU(t) � hDUig (8)

and h� � �i denotes a mean value. The linear-response theory on the
ground state energy surface describes correctly the initial form
and width of the energy distribution of the nonequilibrium event,
which resemble the distribution in the ground state. However, the
dynamics of the process which actually take place on the excited
state surface are assumed to be equal to the ground-state
dynamics corrected to first order in perturbation.37 This is only
valid for small perturbations on a scale of kBT.

2.2 Linear-response approximation on the perturbed energy
surface

Eqn (6) can be rewritten using the relation

e
�Hg

kBT ¼ e
�He
kBT � e

DU
kBT (9)

as done by Hynes and coworkers30 to give

DUh ineðtÞ ¼
Ð
DUðtÞe

DU
kBTe

�He
kBT dG

Ð
e
DU
kBTe

�He
kBT dG

: (10)

Using the relation dDU(t) = DU(t) � hDUie and rearrangement
gives

DUh ineðtÞ � DUh ie¼
dDUðtÞe

dDU
kBT

� �
e

e
dDU
kBT

� �
e

(11)

By linearizing the term via exp(dDU/kBT) C 1 + dDU/kBT
(which, again, is only valid for small fluctuations), it can be
shown30,37–39 that

SðtÞ ’ dDUð0ÞdDUðtÞh ie
dDUð0Þ2h ie

¼ CeðtÞ (12)

The linear response theory on the perturbed state energy surface
hence describes the excited state dynamics via the use of the time-
correlation function of the energy fluctuations in the excited state.
However, it comes at the cost of using a energy distribution not
representative for the starting configurations of the excitation
process.

It should be kept in mind that linear response theory
furthermore states not only S(t) C Ce(t), but also Ce(t) = Cg(t)
if conventional linear response holds, so that the frequently
occurring differences between Cg(t) and Ce(t) are sometimes
viewed as a breakdown of linear response theory.37

2.3 Gaussian statistics

A different approach is the assumption that the energy fluctua-
tions obey Gaussian statistics. It can then be shown that
S(t) C Ce(t), similar to linear response on the excited state
energy surface, but on a different mathematical background.
Namely, eqn (11) can be rewritten if DU(t) is assumed to be a
Gaussian random variable,37,38 so that the numerator equals

dDUðtÞe
dDU
kBT

� �
e

¼
X1
0

1

n!

1

kBT

� �n

dDUð0ÞndDUðtÞh ie (13)

The higher order correlation functions which are treated as zero
in conventional linear response now add up to the observed
overall shift and all show the same timescale. Using Wick’s
theorem42 one can verify that even-numbered higher order
correlation functions are zero, whereas odd ones are multiples
of hdDU(0)dDU(t)ie:

dDUð0Þ2nþ1dDUðtÞ
� �

e
¼ ð2nþ 1Þ!

n!2n
dDUð0ÞdDUðtÞh ie� dDUð0Þ2

� �n
e

(14)

and the absolute Stokes shift DDU = DU(0) � DU(N) equals

DDU ’ 1

kBT
dDUð0Þ2
� �

e
(15)

as derived by Laird and Thompson.37,38 If eqn (14) holds true
(and even-numbered higher order correlation functions are
zero), Gaussian statistics apply and the response is linear
even for large perturbations, as it is not necessary to assume
dDU/kBT { 1. The assumption of Gaussian statistics is therefore a
less severe one than in conventional linear response theory.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

pr
il 

20
17

. D
ow

nl
oa

de
d 

on
 8

/1
/2

02
5 

8:
39

:2
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp08575j


This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 10940--10950 | 10943

3 Methods

All simulation were conducted using the program package
CHARMM.43 The forcefields (partial charges, equilibrium
distances and angles, as well as Lennard-Jones parameters)
for the artificial benzene solutes were taken from Maroncelli
and coworkers19 and made flexible via inclusion of force field
parameters obtained from PARAMCHEM44,45 which is based on
the CHARMM General Force Field (CGenFF).46 The solute (and
the solvent) was allowed to rotate and translate freely, as well as
vibrate where bonds involving hydrogen atoms were held fixed
using the SHAKE algorithm. Upon excitation of the ground
state (S0) only the partial charges change, creating different
multipole moments depending on the charge distribution:
dipole (Sm), quadrupole (SQ) and octupole (SO). The different
states are depicted in Fig. 1.

One solute molecule and either 2000 molecules of water
(SPC/E47,48), 1000 molecules of acetonitrile (parameters from
CHARMM36 General Force Field46) or methanol (parameters
from OPLS-AA forcefield49) were packed into cubic boxes using
PACKMOL.50 A subsequent 300 ps long NpT run at 1 bar and
300 K was conducted to obtain the correct box lengths for each
system, summarized in Table 1. All trajectories were calculated
using a Nosé–Hoover thermostat,51,52 and the velocity-Verlet
integrator. 500 starting configurations for the non-equilibrium
simulations were obtained from a long NVT run at elevated
temperature. Each of those starting configurations was equili-
brated for 500 ps using an NVT ensemble at 300 K. Then, the

solute was excited by an instantaneous change of the partial
charge distribution without further change of other parameters.
The system was monitored for 50 ps (NVT, 300 K) and the
coordinates saved. A time step of 1 fs was used. For the
respective equilibrium simulations, the system was equilibrated
for 500 ps and afterwards monitored for 5 ns, using a NVT
ensemble at 300 K and a time step of 2 fs. All simulations were
carried out using periodic boundary conditions with the particle
mesh Ewald method to calculate electrostatic interactions (grid
size 1 Å, cubic splines of order 6, a k of 0.41 Å�1) and a energy
cutoff of 11 Å for van-der-Waals interactions. The resulting
trajectories were analyzed using a self-written program based
on MDAnalysis.53

4 Results and discussion
4.1 Comparison of equilibrium and nonequilibrium
relaxation functions

The correlation functions Cg(t) and Ce(t), as well as the Stokes
shift relaxation function S(t) are plotted for all 54 system in Fig. 2.

To avoid confusion between the terms ‘‘ground’’ and ‘‘excited’’
state when handling both the excitation and the deexcitation
of the benzene-like solute, the nomenclature is chosen as
follows: SQ’0(t) refers to the relaxation function after excitation
from the nonpolar benzene S0 to the quadrupolar state SQ, as
also graphically shown in Fig. 1. The corresponding ground
state correlation function Cg(t) is then CQ’0(t), whereas C0’Q(t)
is the excited state correlation function Ce(t) to this system. The
functions for the dipolar state Sm and the octupolar state SO

are named accordingly. As evident from Fig. 2, the different
solvents lead to a different shape and timescale of S(t), as well
as a differently good fit to the respective correlation functions.
In acetonitrile, ground and excited state correlation functions
for both the forward and reverse reaction for all nine solutes
equal each other almost perfectly. Furthermore, S(t) of both
forward and reverse reaction is well described using either of
the correlation functions. A different picture arises for water
and methanol. In both solvents, for large charge changes (here
50% and 100%) only the respective excited state correlation
functions yield a good fit to the Stokes shift relaxation function,
e.g. C0’O(t) = SO’0(t) but CO’0(t) a SO’0(t) for the full charge
difference of the octupolar solute in water. This trend can be
seen throughout all systems: whenever Cg(t) a Ce(t), the
correlation function Ce(t) describes S(t) better. However, for
about ten of the 54 systems none of the two correlation
functions describes the time-dependence of the Stokes shift
accurately, as can for example be seen for the excitation and

Fig. 1 Charge distributions of the ground state S0 and the dipole (Sm),
quadrupole (SQ) and octupole (SO) moment excited states, using changes
in charge of 1, 0.5 or 0.2e at the denoted (colored) carbon atoms. In the
ground state, each carbon atoms carries a charge of +0.135e, each
hydrogen atom of �0.135e.

Table 1 Box lengths of cubic simulation boxes of benzene (BZ) in water
(SPCE), acetonitrile (ACN) or methanol (MeOH), as well as number of
trajectories for the nonequilibrium (NEQ) and equilibrium (EQ) simulation

Content Box length NEQ EQ

2000 SPCE + 1 BZ 39.19 Å 500 � 50 ps 1 � 5000 ps
1000 ACN + 1 BZ 44.22 Å 500 � 50 ps 1 � 5000 ps
1000 MeOH + 1 BZ 41.95 Å 500 � 50 ps 1 � 5000 ps
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deexcitation of the dipolar solute in methanol using the largest
charge difference. In these systems, the solvation response
cannot by described using neither linear response, nor Gaussian
statistics.

Some additional information can also be drawn from Fig. 2:
first, the forward reaction (creation of multipole moments) is
(if at all) slower than the backward reaction (destruction of
multipole moments). Second, if the solvation dynamics of
multipole creation and destruction differ, using Cg(t) for
the multipole creation reaction is always too fast, whereas
using Cg(t) for the backward reaction is always too slow. If this
is a universal finding it should also occur for real chromo-
phores like 1-methyl-6-oxyquinolinium betaine (1MQ) which
lowers its dipole moment upon excitation (corresponding to
S0’m(t)), as well as Coumarin 153 (C153) which strengthens its
dipole moment upon excitation (corresponding to Sm’0(t)).
Calculating Cg(t) for these systems should then yield qualita-
tively different results, as for one system the correlation func-
tion should lead to a too slow response, whereas in the other to
a too fast response. Preliminary calculations for 1MQ in water,
methanol and the ionic liquid 1-ethyl-3-methylimidazolium
trifluoromethanesulfonate already revealed that Cg(t) is indeed
much slower than S(t), but will be the topic of a different

publication. Third, the solvent around solutes showing a quadru-
polar moment tends to relax faster than for a dipolar moment,
which is in accordance to reported findings in the literature.20

The trend for octupolar moments is not as clear. Fourth, solutes
undergoing a large change in charge distribution tend to relax
slower than those undergoing only minor changes in charge.

Coming back to the validity of linear response in these
systems, from Fig. 2 we deduce that the applicability of linear
response theories and even Gaussian statistics depends on the
combination of the order of multipolar moment in the solute,
as well as the size of the change in partial charges, the direction
of change and the nature of the solvent itself. To reveal the
circumstances where linear response theories fails, the magni-
tude of the overall Stokes shift, the shape and time evolution of
the energy gap distribution, as well as the solvent structure are
calculated in the following.

As pointed out in Sections 2.1 and 2.2, linear response
theory is formally only valid for small perturbations, namely
if DDU is small on a scale of kBT. Table 2 shows DDU in
multiples of kBT, so that the applicability of this approximation
can be assesed. The dipolar change in charge distribution
shows the largest absolute Stokes shift, where even the smallest
change in charge leads to a shift larger than kBT. Higher multipolar

Fig. 2 Nonequilibrium and equilibrium Stokes shift relaxation function after excitation (continuous line) from the benzene ground state to the dipole
(red, shifted by 2), quadrupole (green, shifted by 1) and octupole moment (blue) excited states, as well as deexcitation (dashed line) in water (a–c),
acetonitrile (d–f) and methanol (g–i) using different charge distributions (100%, 50% and 20% charge change as depicted in Fig. 1).
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moments lead to smaller absolute shifts, where the 20% charge
change already falls in a linear regime due to the small
perturbation. Interestingly, these observations hold true for
all solvents, namely water, acetonitrile and methanol, although
the validity of linear response theory as inferred from Fig. 2
strongly depends on the nature of the solvent. It should be
noted, too, that in the nonequilibrium simulations, the magnitude
of change in the forward and the reverse reaction is nearly the
same. In the equilibrium case, however, the absolute shifts for the
forward reactions are (more or less) good estimates of the non-
equilibrium events, but the shifts of the backward reactions are in
some cases largely overestimated in water and methanol. Such a
discrepancy is obtained if the equilibrium fluctuations in ground
and excited state are rather different. This effect is especially
pronounced in water and methanol. From inspection of Table 2
it can therefore be deduced that higher multipolar moments in the
solute lead to smaller perturbations and that in water and methanol
the energy fluctuations in ground and excited state do not corre-
spond well to each other. These observations indicate that conven-
tional linear response theory might fail, especially for large dipolar
or quadrupolar charge changes in water or methanol. However, no
conclusion can be drawn on whether the relation Ce(t) = S(t) still
holds true for such systems because Gaussian statistics apply. The
next chapter is therefore solely concerned with the (Gaussian)
distribution of the interaction energies, both stationary in the case
of equilibrium simulations, and time-dependent as seen in non-
equilibrium simulations.

4.2 Time-evolution of the spectral width

The Gaussian function

1

s
ffiffiffiffiffiffi
2p
p e

�ðx�mÞ
2

2s2 (16)

describes the energy gap histogram with m ¼ DUðtÞ and the
standard deviation s = W(t) where W(t) is obtained using

WðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DU2ðtÞ � DUðtÞ

	 
2r
(17)

Fig. 3 shows the equilibrium energy gap distribution in ground
and excited state of the dipolar, quadrupolar and octupolar state

of the solute (100% charge change) in water. The distributions are
perfectly Gaussian, but the respective widths change upon excita-
tion or deexcitation, as can be seen for example when comparing
the nonpolar and the octupolar state (blue curves). However,
the Gaussian character of the distributions is diminished for
some of the 50% and 20% quadrupolar and octupolar states,
as the distribution becomes slightly asymmetric (not shown).
This deviation from Gaussian distribution of the energy gap is
explained later on.

Table 3 lists the widths of all 54 systems. In water and
methanol, the distribution broadens upon excitation of the
nonpolar benzene ground state to the dipolar, quadrupolar or
octupolar state, and in some cases (SO 100%) even doubles
its width. The 100% and 50% charge changes in water and
methanol inflict large changes in the width, therefore implying
nonstationary statistics, whereas for 20% charge change the
width changes only marginally. In acetonitrile in contrast, the
distribution becomes slightly narrower upon excitation or does
not change at all. Here, stationary Gaussian statistics apply.
It should be noted that higher multipole moments, as well as
smaller charge changes lead to narrower energy distributions in
all solvents. Interestingly, the results from Tables 2 and 3 do

Table 2 Absolute Stokes shift of the non-equilibrium and equilibrium simulations of the excitation of benzene. Values in brackets refer to the respective
reverse reactions, i.e. the deexcitation

System

Nonequilibrium DDU/(kBT) Equilibrium DDU/(kBT)

H2O ACN MeOH H2O ACN MeOH

Sm 100% 183.7 (183.7) 90.6 (92.1) 142.5 (140.6) 198.4 (241.5) 108.8 (86.2) 112.8 (159.0)
50% 45.8 (46.0) 25.2 (24.9) 36.6 (36.2) 49.6 (60.4) 27.2 (21.5) 28.2 (39.8)
20% 7.6 (7.8) 4.1 (4.0) 4.8 (4.6) 7.9 (9.7) 4.4 (3.4) 4.5 (6.4)

SQ 100% 103.8 (103.1) 35.8 (35.4) 76.8 (76.5) 48.4 (107.6) 33.9 (32.4) 32.0 (104.3)
50% 20.1 (20.3) 8.8 (8.6) 10.4 (10.3) 12.1 (26.9) 8.5 (8.1) 8.0 (26.1)
20% 2.1 (2.1) 1.4 (1.2) 1.3 (1.3) 1.9 (4.3) 1.4 (1.3) 1.3 (4.2)

SO 100% 28.8 (29.1) 9.1 (8.9) 13.0 (13.0) 14.2 (66.3) 9.9 (8.4) 8.9 (25.3)
50% 4.6 (4.5) 2.5 (2.4) 2.5 (2.3) 3.5 (16.6) 2.5 (2.1) 2.2 (6.3)
20% 0.6 (0.6) 0.4 (0.3) 0.4 (0.4) 0.6 (2.7) 0.4 (0.3) 0.4 (1.0)

Fig. 3 Equilibrium energy gap distributions of benzene in ground and
excited (Sm 100%, SQ 100% and SO 100%) state in water. Continuous lines
represent the fitted Gaussian functions.
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not correspond well to each other in some systems. If the energy
gap distribution is purely Gaussian, then the width of the distribu-
tion determines the magnitude of the overall Stokes shift:54,55

DDU ¼ W2

kBT
(18)

which can be directly derived from eqn (15) and the definition of
the width in eqn (17). Deviations larger than 10% of W compared
to the value calculated via eqn (18) are printed in italic in Table 3.
The deviations only occur in the quadrupolar and octupolar
excited states of the benzol solute and indicate a to some extent
non-Gaussian distribution. However, in all those systems Fig. 2

Table 3 Width W of the equilibrium energy gap distributions according to eqn (17) in ground (g) and excited (e) states in water, acetonitrile and
methanol, as well as the absolute and percentage increase/decrease D between the width in ground and excited state. Italic values indicate a deviation
larger than 20% from the expected value via eqn (18)

System

Wwater/(kBT) Wacetonitrile/(kBT) Wmethanol/(kBT)

g e D g e D g e D

Sm 100% 14.2 15.6 1.4 (+10%) 10.4 9.3 �1.1 (�11%) 10.6 12.6 1.9 (+18%)
50% 7.1 6.8 �0.3 (�4%) 5.2 5.0 �0.2 (�4%) 5.3 6.4 1.1 (+21%)
20% 2.8 2.9 0.0 (+1%) 2.1 2.1 0.0 (�0%) 2.1 2.4 0.3 (+12%)

SQ 100% 6.9 10.4 3.5 (+50%) 5.8 5.7 �0.1 (�2%) 5.7 10.2 4.5 (+80%)
50% 3.5 5.7 2.2 (+64%) 2.9 2.9 0.0 (+1%) 2.8 4.0 1.1 (+40%)
20% 1.4 1.6 0.2 (+14%) 1.2 1.2 0.0 (+1%) 1.1 1.2 0.1 (+5%)

SO 100% 3.8 8.1 4.4 (+117%) 3.1 2.9 �0.2 (�8%) 3.0 5.0 2.0 (+69%)
50% 1.9 2.4 0.5 (+29%) 1.6 1.5 �0.0 (�2%) 1.5 1.7 0.2 (+12%)
20% 0.8 0.8 0.0 (+4%) 0.6 0.6 0.0 (+1%) 0.6 0.6 0.0 (+2%)

Fig. 4 Evolution of the width W(t) in the nonequilibrium (NEQ) simulations, after excitation (continuous line) from the benzene ground state to the
dipole (red), quadrupole (green) and octupole moment (blue) excited states, as well as deexcitation (dashed line) in water (a–c), acetonitrile (d–f) and
methanol (g–i) using different charge distributions. Note the different energy scales for 100% (first row), 50% (second row) and 20% (third row) charge
changes. The curves are smoothed slightly using cubic splines for reasons of clarity. The respective widths in the equilibrium (EQ) simulations are also
depicted as circles at the edges of the figure.
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yields S(t) = Ce(t), which strictly spoken should only apply for purely
Gaussian distributions. The implications of this finding will
be discussed later on. For now, let us return to the problem of
a changing distribution width from ground to excited state.
A comparison between Table 3 and Fig. 2 reveals that the implica-
tion of stationary Gaussian statistics, namely that S(t) = Ce(t), holds
also for some of the systems with huge changes in W, for example
for SO ’ S0 100% in water. The mere presence of large width
changes, which inherently invokes nonstationary statistics,
therefore surprisingly does not nullify the Gaussian statistics
approximation. However, although the change in width itself
does not correlate with the agreement of the respective S(t) and
Ce(t) curves, the time evolution of the energy distribution does,
as will be explained in the following.

The validity of Gaussian statistics therefore does not depend
on the extent of non-stationarity because of absolute changes in
width between ground and excited state, but on the way this
change in width is achieved. The time evolution can be directly
calculated via eqn (17) using nonequilibrium trajectories and is
depicted in Fig. 4. The circles at the beginning and end of each
figure denote the equilibrium values from Table 3. The good
agreement to the nonequilibrium data (continuous and dashed
lines) validates the correct sampling of initial configurations
used to start each nonequilibrium trajectory, as well as full

convergence after 50 ps. A closer look at the evolution of the
width after excitation or deexcitation shows that in some
systems the width changes smoothly from the initial to the
final value (even for large differences between the final and
initial width), whereas in others a large intermediate broadening
is observed (in water: 100% Sm excitation and deexcitation,
100% SQ deexcitation; in methanol: 100% Sm excitation and
deexcitation, 100% SQ excitation and deexcitation, as well as
50% Sm excitation and deexcitation). Comparison of Fig. 4 and
Fig. 2 shows that for all system showing such an intermediate
broadening, the nonequilibrium response S(t) cannot be
described using the excited state correlation function. Gaussian
statistics therefore seems to fail not because of large changes in
the width of the energy distribution upon a change in state, but
because of the peculiar evolution of the width with time,
namely whenever a intermediate broadening to widths larger
than both final and initial values is observed. It should also be
noted that in all systems showing differences in width between
ground and excited state, the width changes faster to its final
value for the deexcitation than for the excitation of the solute,
which is consistent with Fig. 2, where upon deexcitation faster
solvation dynamics can be observed. Obviously, the creation
of structure (upon excitation) is slower than the destruction of
structure (upon deexcitation).

Fig. 5 Higher order correlation functions Cn
e, where Cn

e ¼
dDUð0ÞndDUðtÞh ie
an dDUð0Þnþ1h ie

and a1 = 1, a2 = 1.6 and a3 = 3 according to eqn (14) after rearrangement.
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4.3 Higher order correlation functions

The validity of the Gaussian statistics assumption is often
validated by showing that even-numbered higher order correlation
functions of the excited state are zero, whereas odd-numbered ones
are multiples of Ce(t) as evident from eqn (14). We therefore
calculated the second and third correlation function of the excita-
tion events in water, acetonitrile and methanol. Fig. 5 shows the
deviation from each of the second order correlation functions to
zero (light shaded areas), as well as the deviation from the third
order correlation function (divided by three according to eqn (14))
to Ce(t). For most of the systems the relation holds true, although
some minor deviation in Ce

2(t) can be found in some methanol
and water systems. However, the results do not correlate with the
respective fits of the nonequilibrium response functions to Ce(t) in
Fig. 2. Rather they only display that conventional linear response
theory on the excited state surface does not hold, as this would
set all higher order correlation functions to zero. What can be seen,
however, is that most of the systems showing a non-Gaussian
energy distribution (italic values in Table 3), also have deviations
from the expected higher order correlation functions.

4.4 Solvent structure

We already mentioned that large differences in Cg(t) and Ce(t),
as well as in the absolute shifts calculated from these correlation
functions can be the result of large differences in solvent structure
upon change in solute state. Fig. 6 shows the radial distribution
functions g000(r) obtained from equilibrium simulations. In water
and methanol, the excitation inflicts large structure changes for
the dipolar and quadrupolar state, invoking large scale solvent
translation towards the solvent for 100% and some of the 50%
charge changes. The octupolar state only requires minor struc-
tural reordering for 100% charge change. In acetonitrile, however,
no diffusion towards the solute is observed, but only a narrowing
of the respective peaks in the radial distribution functions.
Comparison to Fig. 2 shows that indeed Cg(t) a Ce(t) correlates
with differences in g000(r) in ground and excited state, so that the

equilibrium fluctuations in one state cannot reflect the dynamics
in another state. As a result we conclude that whenever the solvent
structure differs between ground and excited state, Cg(t) cannot be
used to describe the true relaxation function S(t).

5 Conclusion

We have examined the validity of linear response approximations
and Gaussian statistics for the solvation dynamics of nine
benzene-like solutes showing strong, intermediate or low dipole,
quadrupole or octupole moments in water, acetonitrile and
methanol. Although some references claim that linear response
theories should hold for solvents having a large inertial compo-
nent of the relaxation function,31,38 e.g. water and acetonitrile,
we observed failures of linear response and even Gaussian
statistics for some solutes in water. The failure occurs whenever
a intermediate broadening of the width of the energy gap
distribution is observed. Such a nonstationarity, namely that
the width of the Gaussian energy distribution changes with
time, is thought to be at the root of breakdown of linear-
response approximations.38,56 However, we refined this picture
further, and found that not the absolute change in width, but
the peculiarities of its time evolution determine whether or not
linear-response approximations fail in a system, at least for the
small polyatomic solutes studied. Together with the fact that
the correlation functions in ground and excited state differ if
the solvent structure in the two states differs, we have come up
with the following recommendation on how to choose the
correct working procedure in a specific system. Firstly, if the
solvent structure is assumed to not change upon excitation,
which can be calculated via radial distribution functions in
both states, conventional linear response theory stating Cg(t) =
Ce(t) = S(t) should be valid, so that either ground or excited state
correlation functions can be used to approximate the solvation
response function S(t). Otherwise, Cg(t) should not be used
and we have to determine whether Gaussian statistics, and

Fig. 6 Radial distribution function g000(r) of S0, Sm, SQ and SO using charge changes of 100%, 50% and 20% in (a) water, (b) acetonitrile and (c) methanol.
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therefore Ce(t) = S(t) applies. This can be done via calculation
of a few nonequilibrium simulations and monitoring of the
spectral width. If no intermediate broadening occurs where the
width is larger than both its final and initial value, one can use
the excited state correlation function Ce(t) to approximate S(t).
The absolute change in width (and therefore the actual non-
stationarity) does not influence the validity of Ce(t) = S(t) (at
least in the 54 systems in this study). If intermediate broadening
occurs, the time-dependent Stokes shift cannot be described
using correlation functions and one has to calculate the response
functions using only nonequilibrium simulations. It should be
mentioned, too, that if using Cg(t) without testing its validity one
should never try to compare response functions of different
systems, as Cg(t) is slower than S(t) in some systems, here for
solutes lowering their multipole moment upon excitation, but
faster for other systems, here solutes enlarging their multipole
moment. A comparison of different chromophores that possibly
undergo different changes in charge distribution might therefore
lead to qualitatively wrong results. Quite generally, we do not
recommend to use Cg(t) at all, as the calculation of Ce(t) is not
computationally more expensive and always leads to a better fit to
S(t) than Cg(t) (if Cg(t) and Ce(t) differ) given that accurate excited
state force fields exist for the solute of interest. We also want
to stress the fact that other observables of a simulation, as for
example differences in DDU from ground and excited state
trajectories, the magnitude of the absolute Stokes shift, differences
in actual and expected width via DDU, absolute width changes or
higher order correlation functions do not correlate sufficiently with
the fit of Cg(t) or Ce(t) to S(t), so that they cannot be used to predict
whether linear response approximations hold.

To sum up, the validity of linear response theories depends on
peculiarities of the solvent, the size and multipolar order of change
in charge distribution, as well as the direction of change. Protic
solvents such as water and methanol tend to create different
structures in ground and excited state, especially for large changes
in charge distribution, so that linear response theory on the
unperturbed energy surface usually fails. The multipolar moment
of the solute also plays an important role, as dipolar and quadru-
polar solutes showed to be especially prone to linear response
failures. Also, the direction of change proved to influence the shape
of the relaxation function, as well as the validity of the Gaussian
statistics assumption, as intermediate spectral broadening may
occur differently or even not at all in the forward or reverse reaction.
For all investigated system we found that whenever intermediate
broadening of the width of the (mostly) Gaussian energy gap
distribution occurs, linear response approximations seem to fail.
Further studies need to be conducted to verify this finding for other
systems. A study on the validity of linear response of the chromo-
phores 1-methyl-6-oxyquinolinium betaine and Coumarin 153,
which are comparable to the excitation and the deexcitation of
the Sm solute in this study, in different solvents is already planned.
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51 S. Nosé, J. Chem. Phys., 1984, 81, 511.
52 W. G. Hoover, Phys. Rev. A: At., Mol., Opt. Phys., 1985, 31, 1695.
53 N. Michaud-Agrawal, E. J. Denning, T. B. Woolf and

O. Beckstein, J. Comput. Chem., 2011, 32, 2319.
54 T. Li, J. Phys. Chem. B, 2014, 118, 12952.
55 M. D. Stephens, J. G. Saven and S. L. Skinner, J. Chem. Phys.,

1997, 106, 2129.
56 P. L. Geissler and D. Chandler, J. Chem. Phys., 2000, 113,

9759.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

pr
il 

20
17

. D
ow

nl
oa

de
d 

on
 8

/1
/2

02
5 

8:
39

:2
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp08575j



