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Space charge storage in composites:
thermodynamics
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Contacts of two phases, which allow for synergistic dissociative storage of a component in two space

charge zones (“job-sharing storage”), are considered from the viewpoint of point defect thermodynamics.

The respective relations between charge and component activity (chemical potential of the component)

are derived, or — for more complex cases — the recipes for their derivation are given. These relations

describe — according to different experimental conditions — the connection between mass storage and
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outer partial pressure or between mass storage and the cell voltage in a coulometric titration cell. They
also reflect theoretical charge/discharge curves in battery cells when job-sharing storage predominates,
and thus are also significant for supercapacitors. In addition to explicitly worked-out cases, it is pointed

out how more general situations, such as simultaneous storage in bulk and in boundaries, specific

rsc.li/pccp

1. Introduction

Uptake of components by homogeneous mixed ionic-electronic
conductors is thermodynamically well understood. Classical
examples are oxygen or hydrogen storage in oxides and silver
storage in silver chalcogenides. ™!

In such cases one refers to stoichiometric changes, corres-
ponding to changes in ionic and electronic concentrations upon
variation of the chemical potential of the components. Such
chemical potentials can be tuned by varying the respective partial
pressures (¢f. Po, variation over binary oxides) in the gas phase
or by varying the activities electrochemically (¢f. coulometric
titration). The latter technique uses an electrochemical cell, which is
equivalent to a battery cell. Thus, the single-phase storage of e.g. Li in
a Li-battery electrode is an equivalent problem. Notwithstanding
the enormous interest in such systems, treatments of electrode
storage in terms of charge carrier thermodynamics are rather
rare even for simple bulk systems.'>™*>

Recently, a job-sharing storage mechanism has been
proposed that exploits the defect chemistry in space charge
zones at interfaces.’*'®'” The effect culminates if a composite
of two phases is considered none of which can store Li (i.e. both
Li" and e7) individually, but which enables storage by the fact
that one phase stores Li* (but not e ) while the other stores e~
(but not Li*). Examples are Li,O:Ru or LiF:Ni.’® The Li,O:Ru
composite has been shown to also dissociatively store hydrogen
(presumably as H" and H™)." A recent application to a compo-
site of graphite and the superionic conductor RbAg,I5s clearly
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adsorption or size effects, are to be treated.

demonstrates, in addition to storing Ag, the possibility of
realizing Ag deficiency by forming vacancies (RbAg,Is side)
and holes (graphite side).>° Moreover, compositional changes
in the latter composites turned out to be enormously fast, even
if conventional dual phase transport is negligible. Mass storage
in composites or in grain boundary containing systems has been
referred to in ref. 21-28. Such effects also play an important
role in the field of supercapacitor research where the storage
phenomena are rather implicitly addressed.>* > Here we will
outline an exact and comprehensive treatment of hetero-
geneous storage thermodynamics in terms of charge carrier
chemistry of the phases involved.

A thermodynamic description in terms of defect chemistry
has been given in ref. 13 and 18 in the context of Li-based
batteries for large effects and by assuming Li" to be introduced
on vacant interstitial sites (V;) of an ionic conductor (phase o)
forming a lithium interstitial (Li{ ) while excess electrons (e’) are
accommodated in an adjacent electronic conductor (phase ().
Here and in the following text, all point defects are described
in Kroger-Vink notations, in which the subscript refers to
the lattice site that the species occupies and the superscript
refers to the effective charge (* stands for +1 and ' for —1).
Not only can a Li excess be introduced in such a job-sharing
way, namely

Li+ Vi(a) = Lif (o) +'(B), (1)

but also synergistic Li-removal via vacancy (V{;) and hole (h*)
formation is possible:

Livi(2) = Vi (o) + h*(B) + Li. )
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In the equilibrium case both equations are generally coupled
and active simultaneously.

The present contribution addresses both these cases and
describes excess stoichiometry in composites quantitatively for
various defect chemical situations. Most elegantly and precisely,
the M-content (M = Li, Ag, etc.) in a single- or multi-phase
sample can be varied electrochemically via the coulometric
titration cell

M|M" electrolyte|sample|current collector.

The left part of the cell provides (removes) M" while the electrons
come from (leave to) the current collector side. Both fluxes being
opposite in direction but equal in magnitude constitute the
M-variation in the sample. So we can also state that it is the
goal of the present paper to derive the coulometric titration curve
for a composite which shows interfacial storage. The full analysis
of such equilibrium charge-voltage curves reveals the dependence
of stoichiometry as a function of component potential (partial
pressure or activity of the component) as well as a function of
temperature and doping content. Naturally such relationships
also describe the equilibrium composition of a composite if the
outer M-partial pressure is varied or if the composite is used as the
electrode in a battery cell.

The results are not only important for transport and storage
in heterogeneous systems but also for reaction kinetics and
catalysis, where often the presence of heterointerfaces results
in unusual kinetics.

2. Defect thermodynamics of bulk
storage

Before introducing storage in composite systems, let us
briefly summarize the well-understood treatment for bulk
systems.>®%3* As an example we use a metal halide M'X~
which exhibits ionic disorder in the form of Frenkel disorder
of the M-sublattice (¢f. ref. 13). The ionic disorder of M'X~
is characterized by

My + Vi = M} + Viy (3)

denoting (in Kréger-Vink notation) the disorder of regular M*
in terms of occupying a vacant interstitial site (V;), thus forming
an interstitial defect (M) and leaving a vacancy (V},). Unlike
in eqn (1) and (2), here all particles reside in the same phase.

The fundamental electronic disorder is the band-band reaction
(excitation of a regular electron to form an excess electron (e) in
the conduction band and leaving a hole (h*) in the valence band):

Nil = ¢’ +h". (4)

Given these two equilibria, it suffices to describe the stoichio-
metric variability by

M+ V=M +¢. (5)
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Eqn (5) states that M can be externally added by varying the
M-activity, e.g. chemically by varying the partial pressure of the
gas phase, or electrochemically by coulometrically titrating
the mixed conductors. The formation of a deficiency, according to

My = Vi +h* + M, (6)

is followed by coupling eqn (3) with eqn (4). The readers should
not confuse the structure element My, with M. The former
stands for the M ion on the regular lattice site (e.g. Ag" in AgCl),
and the latter for the neutral component M (e.g. Ag).

We will first assume dilute conditions such that ideal mass action
laws can be assumed (Boltzmann conditions: defect activities =
defect concentration) and the activities/concentrations of regular
structure elements (V;,My) can be considered to be constant.
(As far as the deeper connection between building element
thermodynamics and structure element statistics is concerned,
the interested reader is referred to ref. 12.) Hence, we deal with
the three mass action laws, according to eqn (3)-(5)

K¢ = cicy (7-1)

Kg = ¢qCp (7-2)

Ky = 94 (7-3)
am

For conciseness, we used c;, ¢, ¢, and ¢, for the concentrations
of M?, V,, €/, and h*. Note that ay refers to the metal activity in
the phase under consideration, not to the activity in the counter
electrode.

This set of equations is to be complemented by the electro-
neutrality equation

CiteCp=0Cyt ey (8)

(i.e. total positive charge = total negative charge).

Fig. 1 shows in a double-logarithmic plot the defect concen-
trations as a function of M-activity. At high ay, (N-regime, green in
Fig. 1) ¢; and ¢, dominate (¢; ~ ¢,), at low ay (P-regime, blue in
Fig. 1) ¢, and ¢, dominate (¢, & ), and around ay* at which the
exact stoichiometric composition (Dalton-composition) is realized
(Iregime, yellow in Fig. 1), usually ionic disorder prevails (¢; & ¢).
(For the discussion of storage in doped materials, cf. ref. 14.)

More precisely one obtains

Iregime: ¢ = ¢, = /Kp (9-1)

o = B _ Ku (9-2)
T, T VR™
. K K
N regime: ¢ = c_F ey = C—B = v/ Kmvam (9-3)
v p
. Kp KpKg 1
p Do =Ea . DB L (94
regime: ¢y o p - K i (9-4)

When we refer to ¢, ¢,, ¢, and ¢, as mole fractions, ¢; — ¢, = ¢, — ¢
is the “non-stoichiometry” ¢ in pure M;.;X. If we refer to volume
concentrations, as we will do in the following, the difference
¢ — ¢ = ¢, — ¢p gives the storage in terms of volume

This journal is © the Owner Societies 2017
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Fig. 1 Defect chemistry of an intrinsically ionically disordered compound MX (e.g. AgCl), redrawn from ref. 13. The intrinsic point (g = 0) is characterized
by ¢ = ¢y and ¢, = ¢;. In | regime (yellow), g = Flc, — ¢p) = Flci — ¢,) = 0; P regime (blue), g = —Fc, = —Fc,; and N regime (green), g = Fc, = Fc;.

concentration, which is proportional to the partial (molar)
excess charge density g, due to cations, with the Faraday constant
F being the proportionality factor:

9+ q-
- = Ci — Cy = Cn —

L (10)
Note that g, counts - in charge units — the amount of excess
M" over the intrinsic point (¢f. Fig. 1), while g_ refers analo-
gously to the excess amount of electrons. The local net charge
g+ — g— (oc(ci — ¢,) — (cn — ¢p)) is always zero owing to neutral M
being introduced.f Consequently we use for the partial excess
charge the term g (=¢+ = ¢q_) for reasons of symmetry. Later
when we deal with the storage in boundary zones, we will use
the term Q when referring to the net charge in the composites;
moreover, unlike g, Q will refer to an integral and area-related
value (see Section 3).
In the N-regime (¢; » ¢, and ¢, > cp), we have

(11)

1
%% ¢ = cn =V Kmvam o< an2

The relations for the P-regime are analogously given by
eqn (9-4) and (10).

+ The situation is different in doped materials or materials with a large fraction of
frozen native defects as (¢; — ¢,) — (¢, — ¢p) is not zero but equal to a constant. In
these cases, the definition of M-excess is not unambiguous.'® But the particularly
relevant questions concerning variations or total stoichiometric change (cf
battery capacity) are unaffected, since dg. = dg_ = dg when defined as above.

This journal is © the Owner Societies 2017

In the I-regime (¢; = ¢,), we obtain

Fe (U)o (%)

The activity at the intrinsic point, where 6 = 0 = g/F, follows as

(12)

. VKgKp

aM = ———

o (13)

with the help of which we can write eqn (12) more concisely as

§:¢ET%(W>1- (14)

am am*

Using the chemical potential of M (uy(ay) = sy + RTIn ay and
thus pv(am = am™) = um™*) one can rewrite eqn (14) as

q v v

—=2v/K, h(————. 15

7 v/ Kg sin ( T ) (15)
This well-known equation describes the characteristic

S-shaped curves in the representation g (or J) vs. reversible cell

1 . . .
VOltage E (Z _F (HM — MM reference electrode)) 83 with an inflection

point at g (or ) = 0. Fig. 2 shows experimental titration curves
for silver chalcogenides."®*® They can be well-described by
eqn (15).
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Fig. 2 Coulometric titration curves for silver chalcogenides, with data
taken from ref. 21 and 35. The curves exhibit a characteristic S-shape with
the inflection point at 6 = 0. The positive d-values represent silver excess

(Agi' +e’) and the negative represent silver deficiency (vgg + h'). Note

that the nonstoichiometry of Ag,S (158 °C) refers to the top x-axis and
Ag,Se (105 °C) and Ag,Te (97 °C) refer to the bottom x-axis.

3. Defect thermodynamics of storage
at heterojunctions

3.1 Master example: weakly disordered ionic conductor/
weakly disordered semiconductor contact

Now let us turn to space charge storage at abrupt junctions. For
simplicity, we refer to a pure job-sharing situation forM =M" + e~
in which M" is only stored in phase o and e~ in phase B. As
shown in Fig. 3, we assume first that o is a pure, weakly

Charge carrier concentration

X, <

00 > Xg
Phase

Fig. 3 Schematic of a weakly disordered ionic conductor (phase a)/weakly
disordered semiconductor (phase B) junction. For phase o, M? and Vj, refer
to interstitial ions and vacancies; for phase B, € and h® refer to excess
electrons and electron holes. The separation distance in between the two
phases is denoted as s. Unlike classic bulk storage, here the stoichiometric
variation only occurs in the space charge zones of the interface.

Phase a
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disordered ionic conductor with negligible electronic carrier
concentrations and f is a pure wide band-gap semiconductor
with no ionic defects. Bulk quantities are referred to by using
the index oo. We denote the total interfacially stored excess
charge per area by Q. Assuming pure material and charge
carrier equilibrium, the storage in the space charge zones gives
rise to Gouy-Chapman layers.

In doing so, we have assumed semi-infinite conditions
(i.e. the thickness of the space charge layer is large compared
to the screening length).

The charge stored in the space charge zone (¢f. AppendixI) is

given by
o° —5FAPs

ZJ Fzjcj(x)dx| =, |2RTeeg choo (e RT  — 1)7
0 j

QI =

J

(16)

A¢ (=¢o — ¢ ) is the electrical potential difference between
the outmost layer of o (or B) and the bulk; j labels the ionic or
electronic point defects; ¢ is the relative permittivity, &, the
vacuum permittivity, and z; the charge number of species j.
R and T have their usual meanings. Note that, unlike g defined
in bulk storage as partial excess charge per volume, Q is the
total net charge per area.

Eqn (16) is rather general as it directly derives from the integra-
tion of the Poisson-Boltzmann equation, which assumes charge
carrier equilibrium, dilute conditions, semi-infinite boundary
conditions, and the absence of time-dependent magnetic fields.x

If we refer to two carriers with the same absolute charge
(z+ = —z_ = z) and hence the same bulk concentration ¢, one
can simplify to

—zFA¢ +zFA$
Q = %4 /2RTegpco (e RT +e RT _2)

which, as a binomial expression, can be rewritten as

(17)

+zFAP —zFA
V2RTeeyco (e IRT —¢ 2RT ), hence
. zFA}
Q = 2+/2RT¢gycy sinh (W) . (18)

The derivative

dzgoo delivers the space charge capacitance as
zZFAP,
2RT

known and have been frequently employed in electrochemistry.*®

Obtaining the activity dependence of A¢ ., is a central problem
of this paper. Realizing that in space charge zones with the space
charge potential A¢.,, the electrochemical potential of a mobile
carrier j is constant and hence dilute charge carriers redistribute

according to
. 0) —exp (*ZjFAQﬁOO)’
RT

# Another imprecision of the Poisson-Boltzmann equation stems from strictly
equating ¢’s in the electrochemical potential and in the Poisson equation.**~*

being proportional to cosh( ) These equations are well-

(19)

This journal is © the Owner Societies 2017
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a simple relation between Q and the respective carrier concentra-
tions can be obtained. For example, if one assumes z; = 1 for phase
a, one obtains the corresponding total storage as (¢f. eqn (18))

Q, = \/ZRTaO(a()(\/ci(xa =0) —e(xy = 0)>7

and similarly for phase B,
Qp = /2RTepeg <\/cn (xB = 0) — \/cp (xﬁ = O)) (21)

Eqn (20) and (21) explicitly show that the total integral charge is
determined by the defect concentrations at the outmost layer.
In order to connect Q with the M activity, it is straightforward to
consider the heterogeneous incorporation reaction

M = M? (o) + ¢/ (B).

(20)

(22)

Eqn (22) describes the accommodation of the component M by
incorporation of M ions into interstitial sites of phase a while
simultaneously the electrons are injected into the conduction
band of phase B. The coupling to other defects is realized by
taking account of internal equilibria. The equilibria are described
by the balance of the electrochemical potentials of the species
involved. For eqn (22) this reads

it = e (2) + i (B) (23)

where i; is the electrochemical potential of species j. As the space
charge profiles can be parameterized by the bulk properties
(x = o0) and the properties of the outmost layer (x = 0), it is most
straightforward to apply eqn (22) and (23) directly to the two
outmost, adjacent positions x,, = 0 and xp = 0 of the two phases in
contact, yielding

¢i(xq = 0)cp (xﬁ = O)

am
—F(¢,(xs = 0) - =0
= Kﬁ‘f X exp <¢) (x R)T S )> (24)
_ K
- Ko(at, B)

Unlike for homogeneous incorporation, the heterogeneous con-
stant K3} is to be complemented by the electrical potential drop
between the two sites under consideration. (K3} also takes care of
possibly different concentration measures for different carriers
and different phases.) For the readers who are interested in more
details, please see Appendix II.

The respective electrical potential drop across the interface
(Ado = ¢u(xy = 0) — ¢p(xp = 0)) can be assumed to be linear.
% = ;—lv%(xu =0)= ;—‘;v%(xﬁ - 0),
where s is the width of the charge-free zone (Fig. 3), and &, &,
and ¢, are the relative permittivities in phase o, phase B, and in
the charge-free zone. The relations follow from global electro-
neutrality, i.e. the equality of the total charges stored in phases

o and B (Q, and Qpg),

The slope is given by

Q=0Q,=Qs (25)

This journal is © the Owner Societies 2017
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and the fact that the charge density in between x, =0 and xg =0
is zero (¢f Poisson’s equation, also ref. 33 and 40). Strictly
speaking, the absence of a slope change means zero charge
density exactly at that point too. The non-trivial question
of reconciling the continuous space charge picture with the

A
discrete boundary situation is taken up again later. As Ady is
s
given by i, one obtains
8u580
FsQ
o,B)=c¢ —_— 26
(e p) = oo %) (6)

where «, is short for the reciprocal of the exponential factor on
the right hand side of eqn (24).

Let us first consider the simplest situation characterized by
M-excess via interstitials and excess electrons and negligible
concentration of counter defects. This situation was already
treated in ref. 13. It then follows from eqn (20) and (21) by
neglecting the second term in the bracket and from
eqn (25), that

26460 RTci(xy =0) = \/28BSORTcn (xB = 0). (27)
By substituting eqn (27) into (24), one finds
ay o« Q" exp(yQ) (28)
Fs
withn:4andy:W.

Note that the power law exponent n is characteristic of the
contact problem. Since two phases are in contact, the defect-
chemical variability is greater than that for usual bulk problems.
Later we will inspect various combinations.

If Debye length > s and Q are not so large that we still can
set exp(yQ) ~ 1 in eqn (28), a simple power law

ay oc Q* (29)

is obtained. This power law is very different from the
power laws obtained for dissociative bulk storage: for a bulk
defect situation characterized by M! and e’, we would
have ay oc ¢* (¢f eqn (11) and N-regime in Fig. 1). Eqn (29)
is also very different from neutral storage (Mi) - be it in
bulk or at the interface - for which an exponent of 1 would
be valid.

On the other hand, if Q is substantial and thus the expo-
nential term in eqn (28) predominates (ay oc exp(yQ)), the cell

RT
voltage E (: const. — ya In aM> is linearly related to Q. A usual

capacitor law is hence fulfilled referring to the rigid part of the
potential drop (cf. electrostatic capacitor), while the prevalence
of the power law term reflects the diffuse part of the profile
(¢f. chemical capacitor). In ref. 18 extensive application of eqn (28)
has been made for explaining the excess capacitances in the
Ru:Li,O and LiF:Ni composites.

Now let us address the master example at a more general
level, by also including the counter carriers, i.e. vacancies
in o and electron holes in B (see Fig. 3). Here the charge Q
is determined by [ (ci(xs) — ¢v(xs))dx, or equivalently by

Phys. Chem. Chem. Phys., 2017, 19, 6379-6396 | 6383
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Jo (en(xp) — ¢p(xp))dxp. Incorporating global electro-neutrality
(25) with the three mass action laws (i.e. (7-1), (7-2) and (24)),
one can express Q in terms of ¢i(x, = 0) (¢f (20) and (21)) as

K¢
ci(xq =0)

Q= \/zaa{ioRT<\/Ci(xa =0) -

Ky Khci(xs =0
= 28B30RT IMBm — B¢ (:;oc )1»0(0(, B)
v (¥ = 0)xo(a, B) KoPan

(30)

where K% and Kb are the ionic and electronic mass action
constants in phases o and f, respectively.

Solving eqn (30) for ay and expressing ci(x, = 0) by Q,
one finds

(Q + \/Q2 + SgaSORT\/K_%>2 (Q + \/QZ + 88[}80RT\/K7§>2

am =
64K§fsusﬁ(soRT)2

FsQ
X efapéo RT .

(31)

At the point of zero storage (Q = 0), which here coincides with
the stoichiometric point of the composite, the corresponding
activity ay* takes a value that is isomorphic to the stoichio-
metric value ay* derived for the bulk problem (eqn (13)):

| ko g B
am® :a—ifggé. (32)
Ku
Note that in eqn (13) the three mass action constants referred to
the same phase while in eqn (32) they refer to different phases.
Furthermore, eqn (31) reveals three storage regimes:
(i) Intrinsically dominated regime: when the storage is marginal

(Q* < 8e4&0RT \/KF and Q* < SSgsoRT\/;g) and the exponential
term is unity, ay is essentially dominated by the intrinsic properties
of the constituting phases (ay; = constant).

(ii) Diffuse layer dominated regime: when Q prevails in
comparison with the intrinsic terms in eqn (31) but is still
low enough for the exponential term to be essentially unity, the
power law function (ay oc Q%) is reproduced.

(iii) Rigid layer dominated regime: when substantial storage
leads to the predominance of the exponential term, the capa-
citor law (ay oc exp(yQ)) follows.

It is worth mentioning that eqn (31) holds not only for excess
but also for deficiency. In the latter case, analogous relations
are obtained (with the power n of the power law in eqn (28)
being negative). A more detailed discussion of the interfacial
defect chemistry will be given in Section 4.1.

The intrinsic terms can dominate also for substantial
charging, namely when the intrinsic disorder is very large.
Then a usual capacitor law is obtained. Such characteristics
are to be used for RbAg,I5/C, where n = 0.2° Yet at this point
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we are outside weak disorder and must refer to the upcoming
section.

3.2 Contacts involving high disorder

3.2a General remarks. The complexity of a contact situation
is naturally high, even though we only refer to semi-infinite
conditions, because the defect regimes on both sides can be very
different. The situation is additionally complicated in cases of
high disorder as realized in superionic conductors or metals.

The first complication comes from the fact that energetic
and entropic activity coefficients need to be taken into account
in the mass action law. We will not consider detailed expres-
sions for the activity coefficients, as this would be specific and
out of the scope of this paper. It suffices here to state that, for
moderate disorder, such corrections change the ay(Q) func-
tionality. Only if the variation of the activity coefficient with Q is
comparatively small, does the ay(Q) relation derived for dilute
conditions serve well. More details are given in Appendix III. In
the extreme case of very high disorder, such corrections become
independent of Q and the functionality is well maintained.§

The second complication is met when the Debye length is
equal to or smaller than the lattice size. In this case, the space
charge layer should be described by a single layer model rather
than by a Gouy-Chapman profile. Already at bulk defect con-
centrations of 1%., Gouy-Chapman profiles shrink to single
layers (for ¢ = 10, molar volume = 10 cm® mole ™, Debye length
results as 3 A at 25 °C). Note that such situations cannot be
analytically approached via Gouy-Chapman functions by nulli-
fying the Debye-length. This is due to the incompatibility of
continuous and discrete considerations under such conditions.

For large storage, the relation Q « /c¢(x = 0) holds for Gouy-
Chapman profiles regardless of Debye length, while the relation
Q oc ¢(x = 0) follows in the single layer situations. Therefore, we
need to consider both situations (extended profile and single
layer) separately.

In view of this complexity, we will only investigate some
characteristic subcases from the treatment of which it should
become clear how to treat related problems. Whenever the bulk
concentration is of relevance in the ay(Q) relation, the I-regime
(¢f Fig. 1) is the simplest because here bulk concentrations
are not affected by storage. That is why we mostly address the
I-regime whereas N- (and P-) regimes will only be briefly
considered in Section 3.3.

Before we start with these considerations, it is important to
discuss the consequences of the discreteness of the charge
distribution in greater detail. The continuous solution simply
applies only if Debye length > s. Otherwise, the variation of the
profile on a width of s is substantial, which contradicts s being

§ For a highly disordered conductor, the activity coefficient deviates distinctly
from unity but becomes rather insensitive with respect to stoichiometric varia-
tions (that are now negligible compared to the intrinsic level). This is analogous
to yttria-stabilized zirconia bulk with a high doping level of 8%, in which the
oxygen partial pressure dependence of the electronic concentrations still follows
the predictions derived from the dilute situation. In this example, the activity
coefficient for oxygen vacancies is very different from unity but constant with
regard to oxygen partial pressure.”’
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atomistic. Before the space charge zone degenerates to a single
layer, two questions arise. The comparison of the analytical and
discrete treatment shows that the price to be paid for not taking
account of the discreteness is to introduce an additional rigid
capacitor explicitly.*® This is not the only price to be paid. It can
be anticipated that the boundary values of a Gouy Chapman
profile obtained by fitting them to the experimental values of
capacitance or total charge do not coincide with true values of
outmost layers at the real contact. Even if the charge is smeared
around a lattice plane, it will not coincide with the integrated
profile in that zone. Such questions will be investigated in a
forthcoming paper. Here it suffices to state that these differ-
ences are small for large Debye length and/or small space
charge potentials. Most importantly, the fact that in the above
considerations the charge was calculated via a Gouy-Chapman
profile, but the interaction equilibrium assumed a discrete
separation of the layers containing excess charge and counter
charge, respectively, does not lead to severe implications as
regards the validity of the functionality as represented by
eqn (28).

3.2b Weakly disordered ionic conductor/heavily disor-
dered electronic conductor contact. Let us first consider the
interfacial storage situation that arises at a contact between a
weakly disordered ionic conductor and a heavily disordered
electronic conductor (Fig. 4). Simplistically, we might address
this situation in phase B by starting out from eqn (31) and
increasing K} to high values. In this way, we would refer to the
narrow band gap semiconductors or to semi-metals. Yet, there
are important modifications to be done.

Due to energetic interactions and configurational effects,
activity coefficients have to be introduced. The former, includ-
ing electron-electron repulsion or electron-electron attraction,
are formally expressed by the modification of the rigid band
model. The latter involve Fermi-Dirac corrections. For details
concerning interaction and exhaustibility effects, the reader is
referred to ref. 33 and 42.

While these effects may be roughly negligible at not too high
concentrations, an effect that will occur already in phase f at
surprisingly low concentrations (1%, ¢f. Section 3.2a) is the
collapse of a Gouy-Chapman layer to a single layer. If this is the

S
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o
X, < 00 > X,

Phase a Phase

Fig. 4 Schematic of interfacial storage at a weakly disordered ionic con-
ductor (phase o)/heavily disordered electronic conductor (phase ) junction.
The space charge zone in phase B is a single layer with thickness Zg.
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case and as long as neglecting the activity coefficients is
tolerable (c¢f Appendix III) one finds

2
(Q'+\/Qz4-8&ﬁ0R7\/K¥) (Q-%\/Qzﬁ—4UﬁP)2K£)

amv =
1625 FKiP 60 RT

FsQ
X eSiBS()RT

(33)

where /g is the space charge thickness in phase B.
In eqn (33) we used the fact that in the single layer model
on the electron conductor side Q oc Ag(cn(xg = 0) — cp(xg = 0))

rather than Q « <\/cn (xp=0) — \/cp (xp = 0)), which would

be valid for Gouy-Chapman profiles and lead to eqn (31).
Eqn (33) differs from eqn (31) in terms of the power connected
with the electron conductor side. If Q is large compared to the
intrinsic carrier concentration we again obtain a power law for
the pre-exponential term of eqn (28) but with n = 3 instead of
4. Nonetheless in such cases the exponential term might
predominate. If Kf is so high that the excess charge does
not substantially alter the intrinsic situation (K — max.,
whereby the maximum value is determined by the effective
density of states), the second term in the numerator is

independent of Q (ie. Q+ \/Q2+4(},ﬁF)2Kg is a constant

when 4(2gF)’Kh > Q7). Then again eqn (28) is obtained but
with n = 2.

The relation characterized by n = 3 will become rather inaccurate
if activity coefficients become important and in particular if
they are very sensitive with respect to Q (cf Section 3.2a
and Appendix III). Then a numerical treatment is necessary.
The case characterized by n = 2 is not severely influenced by
such effects as far as the functionality is concerned. Here the
electronic concentration will be simply constant, and so will the
activity coefficients.

In other words, we find eqn (28) to be rather accurately fulfilled
not only for the dilute situation but also for the extremely high
concentration range, in particular, when referring to a real
metal. In a metal, the excess electrons are not chemically
different from the regular ones in the partially filled band
being present in an exceeding number (in the simplest model
fie- = pie-(T = 0) o concentration®?).*3

3.2c Heavily disordered ion conductor/weakly disordered
semiconductor contact. The situation in which now the high
disorder is on the ionic conductor side is realized if Kg
approaches high values (K¥ — max, whereby the maximum
is determined by the total number of interstitial and regular
sites) (Fig. 5). The treatment can be kept short, as one faces
symmetry to the previous case. Also here interaction effects
occur, but now in terms of ion-ion repulsion and interstitial-
vacancy attraction. The analogue to the exhaustion of quantum
states is the exhaustion of crystallographic sites (c°). The
configurational treatment is similar but simpler as the density
of states is very sharp, so that we could directly formulate
adjusted mass action laws by replacing ¢; by ci/(¢f — ¢;),”>***
while in the electronic case the density of states should
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Fig. 5 Schematic of interfacial storage at a highly disordered ionic conductor
(phase «)/weakly disordered electronic conductor (phase B) junction. The
space charge zone in phase o is a single layer with thickness 4.

be taken into account. Again at roughly 1%o, Gouy-Chapman
layers collapse to single layers. As this happens already
at concentrations where ¢; is distinctly different from cf,
entropic complication effects within the single layer are not
necessarily significant. To a lesser degree this may also be true
for interactions. Again, we will restrict to cases for which either
the concentration is not so high such that neglecting the
activity coefficients is tolerable or the concentration is so
high that the activity coefficients are constant with respect
to storage.

The latter case is fulfilled in superionic conductors which in
certain respects form the ionic equivalent to a metal.***

The first case is, according to eqn (33), described by

2
(0 /@ -arss) (Q <o s sarr )

162, FKPegeo RT

av =

FsQ
X etapeo RT

(34)
where /1, is the space charge thickness in the superionic
conductor. We obviously obtain the analogous relations and
obtain equations of the form of eqn (33) with n = 3 in the case of
not too high ionic charge carrier concentrations. For superionic
conductors, we obtain a power law with n = 2 (intrinsically
dominated).

3.2d Heavily disordered ion conductor/heavily disordered
semiconductor contact. A relevant special case is the contact
where both phases show very high carrier concentration,
namely the case of the contact of a superionic conductor with
an inert metal (Fig. 6): n is then obviously zero. Such a case was
experimentally found in ref. 20. The storage addresses the rigid
double layer only whereby concentration variations can be
neglected.

The result is
_B5Q

sopeo RT

ay < Qe (35)

A more general expression will be given later in Table 1. In
other words, a simple capacitor law arises. More generally when
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Fig. 6 Schematic of interfacial storage at a heavily disordered ion conductor
(phase a)/heavily disordered semiconductor (phase B) junction. The thicknesses
of the space charge layers are respectively denoted as 4, and Ag.

two phases are in contact for which a single layer situation
is met on both sides, a power law with n = 2 is expected if
neglecting the activity coefficients is tolerable (not the case
treated here), and a power law with n = 0 for the case treated
here. In between, deviations from eqn (28) occur.

3.3 More complex defect chemical situations

So far we have assumed two defect-chemically mutually
inert materials, an ion conductor and an electronic conductor,
both of which are pure. More complex cases do not only
become very complicated, but also become specific. Therefore,
in the present paper we only indicate characteristic points and,
for the sake of simplicity, only refer to weakly disordered
conductors.

If the ion conductor is not a pure Frenkel disordered
material but a pure Schottky disordered material, the variations
are rather trivial. A high complexity arises if various carriers are
present at similar concentrations.

Another issue arises if we allow for impure situations. For a
doped Frenkel disordered material, the bulk concentration is
now given by the dopant concentration rather than by /K.
Apart from the different temperature dependence, the solutions
are analogous.

A more complex behavior is met if phase o is a mixed
conductor with ionic and electronic carriers (M; and e’). This
type of contact shown in Fig. 7 is a usual situation in batteries
because the electrodes have to conduct both ions and electrons.
For phase P the treatment is the same as given in Section 3.1
while for phase o we have to consider both bulk and space
charge storage. As far as the storage in bulk is concerned,
one refers to the N-regime characterized by c¢j(x, = o0) =
en(xy = 00) = VamKm (¢f. Fig. 1). The storage in the space
charge zone is determined by (\/ci(xy =0) —/cn(xs =0)).
The solution ay(Q) is complicated because now both ¢;(x, = o0)
and ¢(x, = 0) depend on metal activity, but it can be given
analytically.”® The detailed discussion is out of the scope of the
present paper.

When during storage several regimes are traversed, a decon-
volution like for bulk defect chemistry would be an appropriate

This journal is © the Owner Societies 2017
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Table 1 Summary of metal activity (am) dependence on storage (Q) for different interfaces (neglecting the activity coefficients)

oc Q%9 (neglect of intrinsic

efapéo RT

ay o« Q%e’? (neglect of intrinsic
contributions for o and p)

\‘ndﬁcoRT

ay oc Q% (for a as above and
dominance of the intrinsic
term in B)

ay oc Q’¢’? (same conditions
as the previous case but o < f)

o RT ay o« Q%e? (same conditions

as the previous case but o — )

ay oc Q%? (neglect of intrinsic
contributions in o and B)

o Ole’? intrinsi
[ R [ . N2 p ay oc Q'e’™ (neglect of intrinsic
<Q +y @ +4(%F) KF) (Q /@ 4 (4 F) KB) 50 contribution in one phase; dominance

of intrinsic term in the other phase)

ay oc Q%’? (dominance of intrinsic
terms in both phases)

whereby V,, is the volume of phase o and A,g the contact area.

2
2
+1/@ + 86,80 RT /KE)  Q+1/Q* + 8epso R/ K av o Q'e
<Q ? fat F (Q ¢ #e0 B 50 contributions)
am = af. . (a 2
64Ky ex6p(60RT)
2
(Q + 1/Q% + 8e4&)RT 4 /K%) <Q +4/0Q> + 4(/1[3F)2Kg> FsQ
avm = B
1673 FK P e,e0 RT
2
<Q—+\/02474UQEUZK%> <Q%\/Qz48ﬂﬁnR7K/K§> 0
am =
M 16/, FK P epeo RT
o
M; x
7 av = sopéo RT
Y M 47,5 K F?
s
> |«

Charge carrier concentration

Phase a Phase

Fig. 7 Schematic of interfacial storage at a mixed ionic-electronic conductor
(phase a)/weakly disordered semiconductor (phase ) junction. Besides being
stored in space charge layers, the component M is also accommodated in bulk
of phase o. This situation is typical for battery electrodes.

approach (c¢f. Brouwer’s procedure in ref. 49). A comprehensive
study has to take both bulk and interfacial defect chemistry
into account.

Speaking about a mixed conductor, a major qualitative
difference consists then in the fact that a coulometric titration
changes both space charge (Q) and bulk composition (g). The
overall added M-amount (Moyeran) is given by

MoveranF = Voq + AaBQ (36)

This journal is © the Owner Societies 2017

Referring to the storage per volume, we have

M.
overallF = 9.9 + (QDSC) Q (37)

v Jsc
where ¢, is the volume fraction of the phase a, ¢gc the volume
fraction of the space charge zone, and Asc the effective space
charge layer thickness. Eqn (37) indicates that the contribution
from the interfacial storage rises when the size decreases.
The effect becomes substantial particularly for mesoscopic
mixed conductors.

As for the activity dependence, we follow the example in
Fig. 7 and neglect counter carriers. For x,(a,p) = 1, the depen-
dence of Q on ay is less steep than for g, and space charge
storage becomes, even though it is increasing, less relevant
when compared to storage in the bulk of the same phase if
ay increases.'® This tendency is even stronger if xq(o,B) > 1 or
if the bulk is in the I-regime. The same statement is true
symmetrically for deficiency if ay is replaced by 1/ay.

The most general contact is the contact of two mixed
conductors for which we have to reckon with various bulk
defect regimes, for which then space charge and bulk storage
can take place and for which space charge effects are present
even at the stoichiometric point.>® The latter is a consequence
of carrier redistribution, which e.g. occurs in the extreme
cases of p-n junctions®® (electron redistribution at the
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semiconductor contact) or i-v junctions®' (ion redistribution at
the contact of two ion conductors). A charge at the intrinsic
point does not only occur at the contact of two mixed con-
ductors where we expect carrier injection from one side to the
other side, but also if there is specific adsorption, characterized
by a one-sided M" redistribution.>>

3.4 Storage involving specific adsorption

Let us treat this case in greater detail and thus allow for a non-
zero charge carrier density in between x, = 0 and xg = 0
(see Fig. 8). Specific adsorption has been widely discussed in
liquid electrochemistry, and has been addressed, in the field of
solid state electrochemistry, as the most important feature in
the case of composite electrolytes.’®>* As for this “adsorbed”
charge (M3,), a specific u° value is vital, the effect cannot be
addressed by the above relations. Rather one has to either
introduce a second heterogeneous incorporation equilibrium
condition or more elegantly couple an adsorption equilibrium
in the form of

My + Vag = M3y + Vi (38)

In view of the Frenkel equilibrium in the ionic conductor (cf:
eqn (3)), an equivalent description may use

M? + Vag = M3, + Vi (39)

The latter procedure has the advantage of directly showing
that it is possible for the concentration of M}, (i.e. Q,q) to be
independent of metal activity. This is the case we will restrict to
in the following (a more comprehensive treatment is in pre-
paration). We assume adsorption at a site which is at a distance
Ax; from x, = 0 (Fig. 8(b)).

One notices a two-fold effect:

(1) The total stored charge is influenced by Q,4, which we
assume to be a positive constant. A well-known example is the
interface of LiI and Al,0,.°*>* As Li ions are adsorbed on the
surface of Al,0j3, lithium ion vacancies have to be formed in
the space charge layers because of global electro-neutrality.
Different from the previous cases without adsorption, there is
now a non-zero (negative) space charge at the stoichiometric
point (Q = 0) (i.e. Qs¢ = Q — Qaq = —Qaq)- This Lil:Al,03
composite is a good example but does not offer the possibility
of storing excess Li. Considering the extremely low electronic
concentration in Lil, stoichiometric variations are negligible.
Such a storage - even though also very small - has been
demonstrated for AgCl:Al,O; and led to Kroger-Vink diagrams
of space charge zones.>* A related example considering specific
adsorption at the metal/ionic conductor has been shown in
ref. 40.

Returning to our master example of the contact of a weakly
disordered semiconductor and a weakly disordered ion con-
ductor, in the case of constant specific adsorption, the charge
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Fig. 8 (a) Schematic of interfacial storage at a junction with ion adsorp-
tion between x, = 0 and xg = 0. (b) The adsorbed charges locate at the
position Ax; from x, = 0, so the electrical fields within the zones Ax; and
Ax, are different.

conservation is thus slightly different from eqn (30) and
requires taking Q,q into account:

Ky

Qua + \/230<30RT<\/Ci(xoc =0) - m) = +/2epeoRT

o ay\/[Kff,lB B KEC,‘ (xo.=0) (0, B)
ci(xa = 0)xco(o, B) Koy O
) M M

(40)

(2) As shown in Fig. 8(b), the potential profile in the separation
distance s is no longer linear, but a composite of two lines with

A A
slope Ay in the zone Ax; and slope A, in the zone Ax,. The

A)Cl A)Cz
slope change is determined by Q.4 according to Gauss’s law.
Hence,

Ap +Ad, _ Q  AnQu

am =

6388 | Phys. Chem. Chem. Phys., 2017, 19, 6379-6396

64K e, e (e0 RT)

41
S 8&[580 58@580 ( )
with the solution given by
) 2
((Q - Qad) + \/(Q - Qad)2 + 8gOﬁgORT\/ Kl:-z) (Q + \/Q2 + 88[580RT \V KBﬁ) F (50 Ax1Quq
eﬁ(%fm) (42)
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In eqn (42), Q is the charge on the semiconductor side compen-
sating for both the adsorbed charge and the space charge on the
ionic conductor side. As already mentioned, the adsorbed charge
is assumed to be independent of a,,. Note that a large Q,q4 lowers
the n-value when compared to the adsorption-free situation. For
small storage (Q < Qaq), if Qaa dominates 8¢, RT /K, the first
term in the numerator of eqn (42) becomes a constant and thus
an n-value of 2 will be obtained. For large storage (Q >» Q,q), we
come back to the adsorption-free case characterized by an
n-value of 4. Eqn (42) will be exploited in Section 4.2 to highlight
interfacial storage involving adsorption.

3.5 Storage of compounds

The power of the concept of job-sharing storage shows the possibility
of storing not only a component (M'/e”) but also compounds. In
ref. 19, it was shown that the contact of Li,O/Ru has the ability to
store H,, presumably in the form of H'(Li,O)/H (Ru). In ref. 55 it
was briefly discussed that a composite consisting of Li,O and CaF,
should be able to store LiF as Li‘(Li,O)/F (CaF,).

Independent of any practical relevance and deeper insight, the
sheer possibility of such phenomena demonstrates the generality
of the job-sharing concept beyond the supercapacitive approach.
Analogous effects might be important for catalysts where such
splitting effects are possible at interfaces such as the catalyst/gas
phase or the catalyst/support. While such dissociation phenomena
(¢f spill-over reaction) are part of the discussion in the catalyst
community, a pertinent description in terms of defect chemistry
still seems to be lacking.

4. Discussion of the stoichiometric
variation

4.1 Defect chemistry and interfacial storage without
adsorption

After having discussed the solutions for space charge storage at
different heterojunctions, this section highlights aspects of
general significance as regards stoichiometric variations in the
space charge zones. This can be done approximately indepen-
dent of the contact situation as the ay; — Q relations look
functionally rather similar in that always a relationship of the
form ay oc Q" exp(yQ) - in the following termed as the standard
form - is valid as long as interaction and exhaustibility effects
are either small (low disorder) or invariant (very high disorder).
Table 1 summarizes various situations.

This statement is also true if we apply fully discrete calcula-
tions instead of a continuous approach. (Note that in order to
avoid confusion we used the term “single layer model” if we refer
to the situation where all the charges are concentrated there and a
“fully discrete model” when the whole profile is discretized.)

In order to connect with the standard form we calculate
parameter n’, which is defined as n’ = d(Inay, — yQ)/dIn Q.9

€ In the case of constant adsorption, the definition of n’ has to be extended by
replacing yQ with y(Q — %Qad). (¢f. Fig. 14).
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Fig. 9 Comparison of continuous and fully discrete models for a weakly
disordered ionic conductor/weakly disordered semiconductor junction
(cf. Fig. 3). The continuous model is based on egn (31), and the discrete
model follows the procedure used in ref. 40. For the continuous model, as
we will describe later in detail, the n’ value monotonically increases from 0
and saturates at 4. The discrete model behaves the same at small storage,
but the n’ value drops at some point and saturates at 2. The discrepancy
obviously occurs because at large storage the major fraction of charges is
accommodated in the first lattice layer. The detailed calculation for this
example shows that for the red curve about 90% of the total charge is
concentrated in the first layer where n’ = 2 and about 10% where n’ = 4.
Note that the Debye lengths for both phases, since they only depend
on the bulk concentrations, do not change with Q or am. Input parameters:
Kt = KE = Kﬁ‘f =10"? mol> m~¢, ey =63=6,3=55=3 A, lattice parameter =
3A T=2300K.

The comparison with the standard form shows that ' = n + In Qdn/
dIn Q + dInA/dIn Q, where A denotes the prefactor to Q" expyQ. If a
power law pre-exponential is valid, ie. the standard form is realized
with a constant n-value, the last two terms disappear and n’ becomes
identical to n and hence constant with Q. In other words, the validity
of the standard form requires a flat #’ vs. In Q relation (but note that
this is a necessary but not a sufficient condition, i.e. there may be flat
regions where n’ = constant # n).

The discrete calculations show that the Gouy-Chapman
approach loses its validity for very high storage, even when
referring to small bulk concentrations. Fig. 9 depicts the
transition from a Gouy-Chapman type of situation to a single
layer situation, as reflected by reduction of the above defined
n'-value. In the example studied in Fig. 9, the region character-
ized by n’ = 2 (single layer) corresponds to a situation where
90% of the total charge is concentrated in the first layer. This
value may be used to formally cut off the continuous model
if very high storage is met. Note that the relation of the outmost
layer concentration and ay, stays invariant. The detailed
discussion is out of the scope of this presentation.

Let us analyze the defect chemistry for our master example,
i.e. weakly disordered ion conductor/weakly disordered semi-
conductor junction in the absence of specific adsorption
(¢f Fig. 3). In addition, we ignore the collapse of the Gouy-
Chapman layer to a single layer and assume strict validity of
eqn (28). In the same way as bulk concentrations, the interfacial
concentrations are, at a given temperature and impurity
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Fig. 10 Interfacial defect chemistry of an ionic conductor/semiconductor contact. For both excess and deficiency, the storage follows three regimes:
intrinsically dominated, diffuse-layer dominated, and rigid-layer dominated. (a) Charge carrier concentration at outmost layers versus metal activity (am).
On the x-axis, au(Q = 0) = am™. Interstitial and vacancy ions refer to phase o and electrons and holes refer to phase p. (b) Dependence of the n’ value on
the metal activity. It becomes £4 when the storage enters the diffuse layer dominated regime. The fine structure in terms of the plateau at n’ = 2 in the
intrinsic regime occurs when K% and K are very different. (c) The electrostatic potential drop over the charge free zone. It increases when the storage
enters the rigid layer dominated regime. (d) Schematic of different storage regimes by taking M excess as an example: (1) intrinsically dominated. All four
type defects are non-negligible. Even though the total particle number on the ion conductor side is less than on the electronic conductor side, the net
charges on both sides should be equal. (2) Diffuse-layer dominated. The stored charge is great enough to allow for neglecting the counter defects
(cf. (a)). Voltage variation is mirrored by charge distribution in the two diffuse layers and A¢y is still negligible. (3) Rigid-layer dominated. The A¢qo-value is
substantial and voltage variation affects charge variation (cf. (c)). Note that the Debye length, determined by the bulk defect concentration, does not
change. Input parameters: K = 107> mol> m~®, KB = 107° mol® m™5, K¥f = 107 ° mol® m™®, ¢, = ¢ = ¢,5 = 10, s = 3 A, T = 300 K.
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content, only a function of the component activity once
the contact has been established. As in Section 3.1 we concen-
trate on pure systems, equilibrium and dilute conditions. The
position dependence is determined by the Gouy-Chapman
profiles and then parameterized by bulk and outmost boundary
concentrations. Hence, the discussion of the latter suffices. For
the master example, Fig. 10a plots the outmost layer concen-
tration for different charge carriers as a function of component
activity. At first glance one notices surprising similarity to the
classic Brouwer diagrams of bulk defect chemistry (cf Fig. 1).
The reason is as follows: if differences in the dielectric constant
are small and the rigid potential drop is negligible, the cou-
pling of the two counter carriers in the outmost layers is similar
to the coupling of the two majority carriers in the bulk problem.
In the bulk the coupling is given by local electroneutrality (cf.
Section 2). At the boundary it is the global electroneutrality

which links (as Q o \/ci(xy = 0) and Q o 1/ cn(xp = 0)) these
boundary values as e.g. ¢;(x,, = 0) = cy(x = 0) with the consequence
that power laws are obtained. For our example, we derive that
ci(x, = 0) and cy(xp = 0) are proportional to /an, which is identical
to the bulk form in the N-regime for ¢;., = ¢, .. As interface and
bulk problems may refer to different majority carriers and since
at interfaces two phases are involved, the exponents might sub-
stantially differ between bulk and boundary. This was already so in
the above case when we considered the stored charge (cf Fig. 10)
instead of concentration: Q oc ay'* but g oc ay*

Let us discuss the different regimes in Fig. 10a. Near the
stoichiometric point the concentration of added charge is
marginal compared to the intrinsic concentration, so the defect
chemistry at the interface is mainly determined by the intrinsic
properties of the constituting phases, as illustrated in Fig. 10d-1.
Unlike the other two regimes we will refer to in the following, all
four charge carriers have to been taken into account. On deviating
from the intrinsic situation, the n’ parameter in Fig. 10b changes
monotonically from 0 (at Q = 0) to +4, where the positive sign
refers to M excess and the negative one to M deficiency. This
symmetrical behavior is reflected by the symmetric functionality
of eqn (31).

In the power law regimes, the counter defects have become
negligible and the storage characteristics are determined by
the majority carrier in the diffuse layer (Fig. 10d-2). Fig. 10a
shows that in this regime c;(x, = 0) ~ c¢y(xg = 0) for excess and
(x4 = 0) & cp(xp = 0) for deficiency. The n’ parameter remains
at £4 as Q dominates the constant term in the brackets of
eqn (31) but the exponential term is still negligible.

The storage enters the rigid-layer dominated regime when a
significant amount of charge has accumulated in the space
charge layer. Notwithstanding that c;(x, = 0) = cx(xp = 0) is still
valid, the electrostatic potential drop A¢, substantially rises in
this regime (see Fig. 10a and c). This characteristic electrostatic-
capacitor feature is most different from bulk defect chemistry
and has been widely discussed in supercapacitors.

Fig. 11 plots the ay(Q) function in the form In ay; vs. Q, which -
as the y-axis reflects the cell voltage of the titration cell - is
equivalent to a titration curve for the job-sharing mechanism.
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Fig. 11 The metal activity versus non-stoichiometry for a job-sharing mecha-
nism. When using pure M as a reference electrode (am = 1) in a battery cell,
Inawm is proportional to the cell voltage. Apart from the stoichiometric point, a
positive Q refers to excess (M /¢/) and negative to deficiency (V},/h*).
The three storage modes represent different interfacial defect chemistry
situations. Input parameters: K = 107> mol®> m™% K§ = 107° mol®> m~,
Kif =107 mol® m®, &, = ep = &5 = 10, s = 3 A, T = 300 K.

Also here the various regimes are obvious. At high storage
(large |+Q|) the just discussed rigid-layer dominated regime
is in the form of a linear feature, i.e. a typical capacitor law with

Fs .
a slope y| =———=). In between these extreme regions,
e4poRT

Fig. 11 displays the transition to the intrinsic situation via
traversing the diffuse layer dominated regimes (characterized
by power laws). Fig. 12 indicates how sensitively these regime
zones depend on the ionic and electronic disorders, i.e. on K¢
and/or K. In fact the slope at Q = 0 is directly determined by
these mass action parameters (see Appendix IV).

Fig. 13 shows experimental results for LiF/Ni, Li,O/Ru, and
RbAg,I5/C, as given in ref. 18 and 20. Note that the cell voltage

In am
2
=
=

High K¢ k£

Low K& K&

0 Q

Fig. 12 The metal activity versus non-stoichiometry for different degrees of
intrinsic disorder. The potential jump at the stoichiometric point reduces with
increasing disorder constant. The curves are parallel-shifted in order to make the
am™ values coincide. Input parameters: black curve (K% = K§ = 107" mol> m~©),
blue curve (K¥ = KE = 10° mol> m™©), red curve (K¥ = K§ = 10” mol> m~9),
K =10° mol® m™6, &, = 5 = e, = 10, s = 3 A, T = 300 K.
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Fig. 13 The dependence of Q on ap for different composites. (a) E vs. normalized Q. The normalized Q is calculated by relating it to the total capacity.
The linear dependence suggests that Li,O:Ru and RbAgyls:C exhibit rigid-layer dominated characteristics. Note that for RbAgyls:C, deficiency (excess) is
marked as open (filled) diamonds. (b) £ vs. In|[Normalized Q|. Unlike the other two composites, the linearity of LiF:Ni in the double logarithmic plot shows a

diffuse layer dominated characteristic.

(v-axis) reflects In ay;. In the representation In ay; vs. Q linearity
suggests an exponential dependence, while for Inay vs. InQ
linearity means a power law. For LiF/Ni a power law has been
found, corresponding to the characterization given in ref. 18. In
the case of Li,O/Ru, a power law is found to be only marginally
fulfilled (namely only for small storage) while owing to large
storage the rigid-layer term is not negligible. Here the full
eqn (28) provided a good fit.'® Exponential behavior completely
dominates the case of RbAg,I5/C, where the situation is essen-
tially determined by the intrinsic defect chemistry.”® Note that
the above contacts Li,O/Ru and LiF/Ni are not only relevant as
far as interfacial storage in conversion reactions is concerned in
which they form the end products,”®>” but they can also be
viewed as representatives of the contacts of passivation layers
(solid electrolyte interface (SEI) between the electrolyte and
the current collector®®>?) in lithium batteries with current
collecting phases (typically carbon).

4.2 Defect chemistry and interfacial storage with strong
adsorption

If we assume the adsorbed charge (Q.q) to be large
(Qua > 8e460RT\/KE) and express the numerical solution in
the entire range in terms of the above-defined n’ parameter, the
plot given in Fig. 14 is obtained. In the case of adsorption, the
point of zero charge on the semiconductor side (point 1) is
different from the point (point 2) at which the charge in the
space charge zone on the ionic conductor side disappears.
Point 1 corresponds to an inflection point separating power
law regimes with n’ = +2 from each other (see inset of Fig. 14).
(In the adsorption-free case, n’ = +4.) As here the charge in the
semiconductor is zero and the space charge in the ionic
conductor is compensated by a constant and large adsorbed charge,
the result resembles the result obtained for an adsorption-free
situation in which the charge in the ionic conductor is compen-
sated by a rather concentrated charge in the electronic conductor.

6392 | Phys. Chem. Chem. Phys., 2017, 19, 6379-6396

Inay(Q =0)

Inay ——

Fig. 14 The dependence of the n’ parameter on lnay for the case with
specific adsorption. As the electroneutrality has to take the adsorbed ion into
account, the stoichiometric point (Q = 0, point 1) refers to the situation where
the vacancies compensate the adsorbed charge (cf. also inset). At point 2
(Q = Q). the vacancies are filled, leading to another zero charge point where
adsorbed ions are compensated by the electrons on phase B. For substantial
storage (regime A for deficiency and regime B for excess), the adsorption is
negligible and the situations are similar to the cases without adsorption. Input
parameters: K¢ = 107° mol> m~®, KB = 107° mol> m~%, K = 1076 mol®? m5,
Qu=10°Cm 2 e, =ep=6,=105=2A Axg=1A T=300K

At point 2, n’ strives towards large values which simply
means that Q becomes rather independent of ay, since it is
compensated by the constant adsorbed charge. It is worth
mentioning that it is the space charge on the ionic conductor
side that becomes ay-independent at point 1.

4.3 Size variation

At this point, it is conceptually highly revealing to go to the
subnano-limit by letting the grain sizes of the composite approach
the atomistic limit (see Fig. 15b).> Owing to the increased
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Fig. 15 Schematic of (a) a composite of macroscopic job-sharing phases, (b) the mesoscopic situation, and (c) an artificial, homogeneous mixed

conductor. For simplicity an ordered arrangement is shown; in particular in Fig. 15c the carrier distribution is to be randomized.

homogeneity (see Fig. 15c), the exponential term in eqn (28)
eventually becomes unity. Simultaneously, as a consequence of
the flat profiles, Q oc ¢(x = 0) rather than « +/c¢(x = 0) is obtained
and the exponent 7 of the power law in eqn (28) changes to 2. As
expected this is the same relation that one obtains for a chemical
capacitor for a homogeneous intercalation process (see eqn (7-3)).
(Note that the distribution in Fig. 15c has to be dilute and at
random for these considerations to apply.) Not only is this
thought experimentally insightful, it is of major relevance
for possible future mesoscopic electrode composites. At a very
general level, the sequence given in Fig. 15 is a conceptual
example of a transition from a semi-infinite to a finite, and,
from a finite to a mesoscopic and eventually artificially homo-
geneous situation.®

5. Conclusions and outlook

Using simple defect-chemical and electrostatic arguments, this
paper presents a rather systematic treatment of the thermo-
dynamics of job-sharing storage at interfaces of ionic and
electronic contacts. We are convinced that these considerations
are of no less significance than classic bulk considerations at
least if it comes to nano-sized systems. Even if one concentrates
on single boundaries, the carrier concentrations at boundaries
are of great importance, e.g. for a relevant discussion of transfer
resistances. The treatment is also expected to form the basis
of supercapacitors based on solid phases. Irrespective of the
practical significance for the fields of energy and chemical
reactions, the thermodynamic considerations may be used to
differentiate between various mechanistic situations. They also
show the major adjusting screws for controlling such interfacial
storage phenomena.

The treatment is hoped to pave the way for important
generalizations:

(i) Combination of bulk and space charge storage is impor-
tant if mixed conductors are considered rather than ionic and
electronic conductors.

(ii) Generally, defect redistribution and doping can also
occur if stoichiometric phases are contacted. Here the effects
of storage are particularly delicate.

This journal is © the Owner Societies 2017

(iii) Size variations do not only show elegantly the connec-
tion between electrostatic and chemical capacitance, they
should be of specific significance for future artificial electrodes.

(iv) Discretization offers insight into the precision of the
core-space charge picture and more generally into the validity
of continuous approaches and of the implantation of capacitive
elements.

All the points will be subject of future more detailed
considerations.

Appendix |

In the space charge region, the electrostatic potential (¢)
and the local charge density (p) are correlated by Poisson’s
equation:
Vi = Z Zj¢j- (A1)
For dilute considerations, the local charge carrier concentration
is given by the Boltzmann distribution
—ziF(p—d)
Cj = CjocC RT . (AZ)
The physical parameters have the meaning given in the main
text. Combining eqn (A1) and (A2) yields

Vi = _%;Z/‘%e RT . (A3)
dé B 2¢ f df d(]5
By abbreviating —- ix =/, can be rewritten as - dx  dpdx
j; / and eqn (A3) as
F Z2F(¢—¢o)
[ R T

With the boundary condition f(x = o) = 0, one obtains

2RTZ%O( =il %)_1)“ (45)

/1=
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The total charge (Q) is found by integrating the local charge

&2¢ df F
BT d T I

density from x = 0 to x = . As

one obtains

o =

—zjF($o—¢o0)
_ 1)’

Z J Fzjcj(x)dx| = | 2RTeg Z Cjoo (e RT
0 J

J

(46)

i.e. eqn (16) of the main text. See also advanced textbooks of
electrochemistry, e.g. ref. 38 and 39.
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The figure above is the equilibrium picture at the job-sharing
contact of a weakly disordered ion conductor and a weakly
disordered electronic conductor. The constancy of the poten-
tials given at the bottom throughout the phases assumes that
there are, at a low level, electronic carriers in phase o and M
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interstitials in phase B. (Note that Vuy, = 0 follows from
Viige = 0 = Viig).

The electrochemical equilibrium of the M incorporation
reaction is given by

Hm = /]M: + lae’ (A7)

As eqn (A6) shows that the total charge (Q) is related to the
concentration at the outmost layer, we specifically refer the
electrochemical potentials of M; and e’ to the outmost positions,
ie. fuye(xy =0) and fiy(xp=0). For dilute considerations,

eqn (A7) can be rewritten as
1 + RTInay = e + RT In¢i(xy = 0) + Fep,,(xy = 0) + 1
4+ RTInc,(xg =0) — FqSB(xB =0)
(A8)

where 1f is the standard potential of species j.
Rearranging eqn (A8) yields eqn (24) in the main text:
¢i(xy = 0)cp (xﬁ = 0)
am

—F(q&d(xa = 0) = dy(xp = 0))

= K% x exp T

0 _ 0 0
1y — 1y — 1%
with KF = exp <R7]Le> .

Appendix llI

A typical concentration above which we obtain a single layer
model is 0.1 M. Table 2 provides data for ionic activity coefficients
in aqueous solutions. The increase from 0.1 M to 0.2 M corre-
sponds to a relative concentration increase of 100% whereupon
the activity coefficient only changes by about 10%. Under such
circumstances the dilute relation ay(Q) can roughly be used with
a different proportionality constant. Unfortunately data on
activity coefficients in concentrated situations for ionic solids
are very scarce. If the cube root model is taken that is proved
worthwhile for silver halides,’"°* Pbl,,%* and SrTiO;,** not only
the activity coefficients but also their variations appear to
be severe. A similar conclusion can be drawn from ref. 65
reporting activity coefficients for Debye-Hiickel interactions.
This suggests that the range of validity of the dilute ay(Q)
relation for a highly disordered situation is very small. (Note the
enormous difference in the dielectric constants for water (~ 80)

Table 2 Activity coefficients of TICL in different salt solutions®®

Total salt

concentration ~ With KNO;  With KCI  With HCl  With TINO;
0.1 0.742 0.715 0.718 0.686

0.2 0.676 0.613 0.630 0.546

The unit of concentration is the mole number of (TICl + salt) in
1000 g H,0.
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and for ionic solids, e.g. NaCl (~6).) On the other hand, the
above models are not expected to be valid for high concentra-
tions. Various other effects such as a higher degree of two-
dimensionality of defect interaction in the single layer case,
additional repulsion effects as well as site exhaustion effects
will counteract the long-range defect-defect interaction and the
activity coefficients might change less steeply. At the present
stage of research not much more can be safely stated.

Appendix IV

Eqn (31) in the main text, ie.

(Q + \/QZ + 88a80RT\/7<T§>2 <Q+ \/Qz + 88ﬁ80RT\/K7BB>2

64K§4ﬁsasﬁ (8oRT)*

aMm =

FsQ
ebapéo RT

can be simplified to

(e+ve@+a) (o veia)

G

2
am = e’?. (A9)

The slope of the curves in Fig. 12 is thus given by

dln av 2 i 2 +y (Al())
o Voe+a Ve+a o

Near the stoichiometric point (Q = 0) the slope is determined
by 7 and the two parameters C; and C,, which refer to K and KB,
As y is rather invariant, we only discuss the variation of K%, KB
For low K% and K}, the slope at Q = 0 is a very large value while for
high k¥ and KB the slope is equal to y. This tendency has been
shown in Fig. 12.
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