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Upon supersonic expansion, formic acid and cyclobutanone (CBU) form a molecular cluster in which
the two constituent molecules, linked by OH---O and CH---O hydrogen bonds, undergo a rapid
interconversion between two equivalent forms. The tunneling motion takes place through the rupture
and reformation of the C—H---O hydrogen bond between the carbonyl oxygen of HCOOH and one of
the two hydrogen atoms of the methylenic group adjacent to the cyclobutanone keto group. From the
microwave spectra, tunneling energy splittings (AEo;) have been determined for the parent (1122.756(3) MHz),
DCOOH- - -CBU (1084.538(1) MHz) and HCOOD: - -CBU (1180.282(4) MHz) isotopic species. From these
splittings, the potential barrier to interconversion has been calculated to be B, = 39.7(5) cm ™. The
tunneling pathway is an asymmetric butterfly-like motion between the two moieties of the adduct, with
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Introduction

A number of complexes of carboxylic acids have been investigated
by high resolution spectroscopy, providing information on the non-
bonding interactions which link the constituent molecules," >’ on
the Ubbelohde effect related to the OH — OD isotopic substitution,
on occasionally occurring conformational equilibria, and - most
noticeably - on the internal dynamics of large amplitude motions.

With respect to internal dynamics, useful information is
obtained when splittings of the rotational transitions, due to
tunneling motions connecting equivalent minima, are observed
in high resolution (typically microwave) spectra. From these
splittings it is generally possible to determine the potential
energy barrier connecting equivalent minima. This kind of
splitting has been measured for internal motions such as: (i)
double proton transfer in dimers of carboxylic acids with a
suitable symmetry;>” (ii) internal rotation of a light symmetric
group (i.e. a CH; group);">"® (iii) inversion of an asymmetric
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a barrier at a configuration in which the ring plane of cyclobutanone is coplanar with formic acid.

group (e.g. a hydroxyl or carboxylic acid) connecting two equiva-
lent minima'"">'*'® or (iv) internal motion of water in hydrated
forms of carboxylic acids.'*™*

Here we report the direct observation in the jet-cooled
spectra of huge rotational splittings arising from a relative
motion of a partner as heavy as cyclobutanone (CBU) with
respect to formic acid (FA) in their 1:1 complex (FA-CBU).
The tunneling pathway and the potential energy function of the
motion have been derived from the experimental values for the
AE,; splittings of some isotopologues, as described below.

Methods

Experimental

Samples of HCOOH, HCOOD, DCOOH and CBU were obtained
commercially (Aldrich) and used without further purification.
The rotational spectra of the FA: - -CBU isotopologues have been
recorded in two different laboratories:

(a) Bologna. Measurements were performed between 6 and
18.5 GHz using a high-Q pulse-excitation Fourier transform
microwave (FTMW) spectrometer described elsewhere,*® based
on the pioneering designs of Flygare®® and Grabow.?® Adducts
were formed by flowing helium (~ 5 atm) through two stainless
steel reservoirs containing, respectively, CBU at room temperature,
and FA (or isotopologues) at 273 K, and running the resulting
gaseous mixture through a pulsed nozzle. Rotational frequencies
were determined after the Fourier transform of 8k-data point
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time domain free induction decays, recorded with 40 ns sampling
intervals. The pulsed molecular beam was introduced along the
axis of a Fabry-Pérot resonator. Consequently, each observed
transition appeared as a Doppler doublet, and the rest frequency
was determined as the arithmetic mean of the frequencies of the
two Doppler components. The accuracy of frequency measure-
ments is estimated to be better than 3 kHz.

(b) valladolid. The rotational spectrum of the parent species
was initially recorded with a broadband direct-digital chirp-
pulse FTMW spectrometer covering the frequency range of
2-8 GHz, which follows Pate’s design.*' In this spectrometer
a 5 ps chirp pulse created using an arbitrary waveform generator is
amplified to 20 W and radiated perpendicular to the propagation
of the jet expansion through a horn antenna. A molecular transient
emission spanning 40 ps is then detected through a second horn,
recorded with a digital oscilloscope and Fourier-transformed to the
frequency domain. Sample preparation was similar to Bologna,
with optimal conditions requiring a backing pressure of ca.
4 atm and neon as the carrier gas. The accuracy of the frequency
measurements is better than 15 kHz.

Computational

Information on the most stable geometries, and conformational and
dissociation energies of the dimer was predicted computationally
using both density functional theory (B3LYP assisted with empirical
dispersion terms using the Grimme D3 scheme) and ab initio
methods (MP2). All calculations used Pople’s 6-311++G(d,p)
basis set and were implemented in the Gaussian 09 program.*?

Results and discussion

To get an initial guess on the shapes and relative energies of the
plausible isomers of FA-CBU, we performed geometry optimizations
comparing the performance of the MP2 and B3LYP-D3 methods.
The two subunits are expected to assume a nearly co-planar
arrangement in the complex. MP2 predictions suggest two
energetically close minima, with the CBU ring slightly distorted
(up or down) from planarity, while the B3LYP-D3 calculation
predicts a single minimum, with the CBU ring nearly planar in
the complex. Actually, the ring puckering of isolated CBU has a
double minimum potential energy function with a small barrier
close to 5 cm™ "' at the planar ring.** In this case the ground
vibrational state lies above the barrier, corresponding to an
effective planar ring. It is well-known that MP2 tends to over-
estimate ring-puckering barriers while B3LYP underestimates
them. In particular, MP2 suggests ring-puckering distortions
when it is not the case (even for benzene). In addition, in
previous investigations of complexes of CBU with water’* and
trifluoromethane,®® MP2 suggested two conformers differing
in the distortion of the CBU ring, but only one was found,
with CBU effectively being planar. For this reason, we followed
the prediction of the B3LYP-D3 calculation. The rotational
constants, the values of the dipole moment components and
the absolute energy for the most stable conformer are reported
in Table 1.
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Table 1 B3LYP-D3/6-311++G(d,p) shape, energy, spectroscopic constants
and dipole moment components of the most stable form of FA---CBU

A/MHz 4120 “

B/MHz 993 ¢ )9
C/MHz 843

Hay Hp, ﬂc/D 3.0, 0.7, 0.7 \\?
Absolute energy/Ey —421.150179 5

The rotational spectrum was first recorded for the parent
species with a chirp-excitation microwave spectrometer in the
frequency range of 2-8 GHz. Unfortunately, the spectrum was
weak and considerably perturbed in that frequency region. We
could reliably assign three transitions, 25, < 191, 303 < 202,
and 404 < 303, split into two component lines associated with
the two inversion sublevels of the vibrational ground state. We
then recorded the 6-18.5 GHz region using the pulse-excitation
microwave spectrometer. We measured 31 u,- and 6 u,-type
transitions, displaying two intra-state tunneling components
split up to 10 MHz. Finally, once good spectral predictions were
iteratively obtained, 6 additional u.-transitions were measured,
with the two components evenly spaced by ca. 2245 MHz. The
latter lines were identified as inter-state transitions, so the
separation between the two components is about the double
of the energy separation of the two inversion sublevels.

All rotational transitions have been satisfactorily fitted using
the following two-state coupled Hamiltonian:

HE + HP
H =
Him

Hinl
. ) ey
HR + HP + AE,

where HY and HY are the rotational terms for the 0 and
1 inversion sub-states, respectively, and H represents the
centrifugal distortion corrections (assuming the same value
for the two inversion sub-states). The coupling term between
the v = 0 and v = 1 states is expressed as:

H™ = F. X (PyPe + PoPy) + Fae X (PaPe + P.P,) (2)

where AE,, is the energy difference between the two sub-states,
and Fy,. and F, are the Coriolis coupling parameters determined
using the reduced axis system of Pickett,*>® which are related to
the off-diagonal elements of the inverse inertial tensor. The
(P.Py + PpP,) Coriolis term was not determinable from the fit,
consistent with an inversion motion through an axis in the ac
inertial plane. Pickett’s SPFIT program was used for the spectral
analysis,”” using the Irepresentation of Waltson’s S reduction.®®
The resulting spectroscopic parameters are shown in the left
column of Table 2.

Additionally, we could assign the spectra of the two mono-
deuterated species DCOOH- - -CBU and HCOOD: - -CBU, using
ca. 99% enriched samples of DCOOH and HCOOD, respectively.
The measured transition frequencies were fitted using the same
procedure described for the parent species. The results of the
fits are reported in the second and third columns of Table 2.
No effects of the hyperfine quadrupole structure of the D atom
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Table 2 Experimental spectroscopic constants of the observed isotopo-
logues of FA..-CBU (Watson's S-reduction, I" representation)

HCOOH-: - -CBU DCOOH- - -CBU HCOOD-: - -CBU

Ao/MHz 4151.912(9) 4139.417(9) 4119.26(1)
A4/MHz 4151.222(9) 4138.707(10) 4118.54(1)
Bo/MHz, 988.452(2) 961.557(2) 983.636(2)
B,/MHz 988.562(2) 961.671(2) 983.745(2)
Co/MHz 843.447(4) 823.406(5) 838.570(5)
C,/MHz 843.683(4) 823.627(5) 838.816(5)
Dy/kHz 0.596(1) 0.565(2) 0.586(1)
Dy/kHz —0.86(4) —1.04(7) —0.91(5)
Dy/kHz 11(1) [11) 11(2)
d,/kHz 0.039(1) 0.037(2) 0.040(1)
d,/kHz —0.016(1) —0.016(5) —0.014(1)
AEq/MHz — 1122.756(3) 1084.538(5) 1180.282(5)
Fpe/MHz 5.2261(2) 4.9179(7) 5.2584(2)
F,./MHz 15.5(5) 16.4(5) 14.0(6)
o“/kHz 5.1 5.2 4.5

N? 84 54 74

“ Uncertainties in parentheses in units of the last digit. ® Values in
brackets have been held fixed at the values of the parent species. © Root-
mean-square deviation of the fit. ¥ Number of transitions in the fit.

(I = 1) have been satisfactorily resolved. All the measured
transition frequencies are given in the ESIt (Tables S1-S3).

Using the isotopic data, we report the Kraitchman substitution
coordinates® of the two hydrogen atoms of the FA unit (H5 and
H4) in Table 3. The atom numbering and the principal inertial
axes system of the complex are shown in Fig. 1. The derived atomic
positions are in good agreement with the theoretical values.

The B3LYP-D3/6-311++G(d,p) structures of the two equivalent
energy minima and the transition state on the potential energy
surface connecting the two minima (see Fig. 2 and the following
paragraph) are reported in the ESIf (Tables S4 and S5). Adjusting
the theoretical values of the structural parameters 7o6-0p, /£ 0O602C1
and / 0602-C103 from 2.7475 A, 111.0° and —2.2° to 2.7800 A,
109° and 0.4°, respectively, let us obtain an effective structure
reproducing the experimental rotational constants within a
few MHz. The bond lengths of the two hydrogen bonds corres-
ponding to this geometry are: ros_ps = 1.790 A and 703516 =
2.464 A, respectively. These values are also shown in Fig. 1, and
are in line with the values for “‘conventional” O-H- - -O and weak
C-H- - -O hydrogen bonds.

The three determined splittings AE,, are related to the height
B, of the potential barrier connecting the two equivalent minima

Table 3 Substitution (rs), equilibrium (re, B3LYP-D3/6-311++G(d,p)) and
effective (rg) atomic coordinates of the two substituted hydrogen atoms in
the principal axes system of the parent species of FA---CBU

Ts Te rot
H4 |al/A 1.584(2)" 1.4549 1.4991
|b|/A 0.989(3) 1.0365 1.0635
|c|/A 0.06(5) 0.1812 0.1806
H5 |al/A 3.7785(8) 3.7924 3.7720
|b|/A 0.579(6) 0.5712 0.6365
|c|/A 0.22(2) 0.0682 0.1247

“ Calculated from the partial 7, structure (see the text). * Uncertainties
in parenthesis in units of the last digit.
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Fig. 1 Principal inertial axes and atom numbering of the observed dimer
of FA---.CBU. The bond lengths of the two hydrogen bonds are also given.

-29.7 0 29.7 T/°

Fig. 2 The tunneling motion in FA-CBU is due to the internal rotation

around the C706-02C1 (1) dihedral angle, accompanied by structural
relaxation of some other parameters.

depicted in Fig. 2, and to the specific pathway of the tunnelling
motion. As expected, AE,;(DCOOH.:--CBU) = 1084.538 MHz is
smaller than AE,;(HCOOH---CBU) = 1122.756 MHz, because
the reduced mass of the motion is higher for DCOOH- - -CBU.
However, unexpectedly, AEy;(HCOOD: --CBU) = 1180.282 MHz
is larger than the value of the parent species. This is probably
related to the Ubbelohde effect,*® often observed in the complexes
of carboxylic acids,®** and related to the change in the bond length
of the O-H-: - -O hydrogen bond upon H — D substitution.

For this reason, we relied only on the former two AE,; values
to calculate the potential energy surface of the intermolecular
motion. According to the theoretical calculations, B, is a function
of the dihedral angle C706-02C1 (t), which is the main para-
meter describing the relative motion of the two subunits.
However, other structural parameters undergo considerable
changes as a function of 7, influencing the reduced mass of
the motion. The latter depends not only on t with respect to the
rigid moieties, but also on the dynamic structural relaxation
which takes place during the complex’s large amplitude motion.

Meyer’s flexible model*’ is especially suitable to determine
potential energy surfaces from rotational and vibrational
experimental data. As justified by the theoretical predictions,
we describe the large amplitude motion along the dihedral

This journal is © the Owner Societies 2017
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angle 7 with any structural relaxations in other co-ordinates of
the dimer constrained into a one-dimensional function of .
The double minimum potential can then be parameterized and
described using the following function:

V(1) = By[1 — (t/70), 3)

where the barrier B, at 7 = 0° and the equilibrium value of the
inversion angle 7, (see Fig. 2) are the two parameters required.
Being limited to two experimental splittings, we fixed 7, at
its B3LYP-D3/6-311++G(d,p) estimate (29.7°). Guided by the
theoretical structural differences between the potential energy
minimum (t = 1,) and the top of the potential energy barrier
(r = 0°), we accounted for three structural parameters as a
function of the dihedral angle 7 as given in the following
expressions (see Fig. 1 for labelling):

/. C8C7-0602/° = 12.0-(1/1,) (4)
£ 0602-C103/° = —2.2-(t/1,) (5)
£ C70602/° = 126.7 — 3-(t/70)* (6)

However, when using these structural constraints in Meyer’s
one-dimensional flexible model, the ratio AEy,(HCOOH- - -CBU)/
AEy(DCOOH- - -CBU) was very close to 1 rather than 1.035. To
be able to reproduce the right ratio, we had to modify the
relaxation parameter of the 0602-C103 dihedral angle from
—2.2° to +10°. In this way the ratio and values of the two
experimental splittings were satisfactorily reproduced at a barrier
B, ~ 39.7 cm ™. The results of the flexible model calculations are
summarized in Table 4.

In the flexible model calculations, the 7 coordinate has been
probed in the +60° range and solved into 41 mesh points.*'
Going back to the HCOOD:- - -CBU isotopologue, a barrier of
about 1 em™ " lower is suitable to reproduce the AE,; splitting
adhering to the parametrization used for the two former iso-
topologues. Using this model, the experimental ratios Fu./Fpc
are also reproduced using the Eckart axis system of Pickett and
Strauss.*?

The positive value (+10°) of the relaxation parameter for
0602-C103 suggests that the tunneling is due to an asym-
metric butterfly motion of the two moieties with respect to each
other, with the displacement with respect to the planarity of the
06 atom being much smaller that that of the C8 atom.

Table 4 Results of the flexible model calculations

Tunneling splittings Obs. Calc.
AEy,(HCOOH. - -CBU)/MHz 1122.8 1119.8
AE,,(DCOOH. - -CBU)/MHz 1084.5 1079.6
Potential energy parameters

B, =39.7(5) cm™* 7o = 29.7°

Structural relaxation parameters

£ C8C7-0602/° = 12.0-(t/1o)
£.0602-C103/° = 10-(1/7,)
/. C70602/° = 126.7-3.0-(t/1,)”
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The dissociation energy of the complex, Ep, has been
calculated at the MP2 and B3LYP-D3 levels to be 40.7 k] mol "
and 47.9 k] mol *, respectively. In order to obtain a comparable
experimental estimate, it is necessary to approximate Ep, from
the centrifugal distortion parameter D; within the so-called
pseudo diatomic approximation*® combined with a Lennard-
Jones type potential.** This approximation is valid when the
intermolecular stretching motion leading to the dimer disso-
ciation is almost parallel to the a-axis of the complex. In the
present case such a procedure leads to an Ep, value of 9.7 k] mol %,
which is plausibly an underestimated value. While the theoretical
values are not necessarily correct, the large discrepancy with the
pseudodiatomic model results indicates that this model probably
fails in this case, both because of the non-co-linearity of the
dissociative stretching mode with the g-axis and the fact that Dy
contains contributions from other vibrational motions.

Conclusion

The experimental observation of large tunneling splittings for
three isotopologues of the adduct FA- - -CBU allowed describing
the inversion pathway and the potential energy surface along
the C706-02C1 dihedral angle. This is one of the first times that
the relative motion of two relatively large molecules constituting
a heterodimer is characterized quantitatively from the tunnelling
splitting measured in the complex’s rotational spectrum. The two
subunits are linked through a conventional O-H:--O hydrogen
bond, which acts as a fulcrum for a butterfly-like motion that lets
the O3 oxygen alternate between a C-H---O contact (or weak
hydrogen bond) with the hydrogen atoms H15 or H16, corres-
ponding to the two equivalent minima.
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