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Open-ended formulation of self-consistent field
response theory with the polarizable continuum
model for solvation†

Roberto Di Remigio,* Maarten T. P. Beerepoot, Yann Cornaton,‡ Magnus Ringholm,
Arnfinn Hykkerud Steindal, Kenneth Ruud and Luca Frediani

The study of high-order absorption properties of molecules is a field of growing importance. Quantum-

chemical studies can help design chromophores with desirable characteristics. Given that most experiments

are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in

quantum-chemical studies of these properties. We here present an open-ended formulation of self-

consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model

(PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based

quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108]

and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133,

014106]. Within the PCM approach to solvation, the mutual solute–solvent polarization is represented by

means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute–solvent

boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This

allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to

arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue

analyses of the response functions naturally lead to the identification of excitation energies and transition

moments. We document the implementation of this approach in the Dalton program package using a

recently developed open-ended response code and the PCMSolver libraries and present results for one-,

two-, three-, four- and five-photon absorption processes of three small molecules in solution.

1 Introduction

An important challenge in molecular sciences is the study at
the quantum molecular mechanical level of systems of growing
complexity. The behavior of simple, isolated molecules is in
general well understood, but large systems that include multiple
constituents pose additional problems, both due to their sheer
size and the interaction of the different components. On the
experimental side, the best tools to address such systems are
provided by spectroscopic techniques, in which photons interact
with the system and the response of the system to these perturba-
tions is monitored. Simultaneously, technological improvements

both in the intensity of the photon source and the sensitivity of
detectors allow new experimental techniques to be developed and
applied to complex systems. As a result, methods that used to be
proof-of-principle concepts are today routinely employed to study
increasingly complex systems.

An example of such a class of experiments is multiphoton
absorption (MPA): the simultaneous absorption of several photons.
The effect, originally predicted for two-photon absorption (2PA) by
Göppert-Mayer in 1931,1 is too weak to be detected unless laser
sources are employed. As a consequence, the first measurement
was only made possible in 1961.2 2PA is still not as widespread as
one-photon absorption (1PA), but its use is increasing. In part, this
is due to its different symmetry selection rules that allow exploring
excited states that are dark in 1PA. In addition, 2PA experiments
afford a greater focality than in 1PA, due to their quadratic
dependence on the intensity of the incident radiation. More
recently, higher-order methods such as three-,3 four-4 and five-
photon5 absorption have emerged, although their use is in no
way as widespread as 1PA and 2PA.

The growth in available spectroscopic techniques and their
application to systems of ever increasing complexity calls for a
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corresponding effort on the theoretical side to describe correctly
the underlying molecular phenomena and to tackle the complexity
of the system in a manageable way.

Olsen and Jørgensen have shown how transition moments
between ground and excited states can be calculated from
residues of response functions of a molecule in its ground
state.6 The residues of the linear response function can thus be
used to calculate the strength of transitions in UV/Vis spectro-
scopy (1PA). 2PA and three-photon absorption (3PA) can in turn
be calculated from the residues of the quadratic and cubic
response functions, respectively.6–8 Similarly, four- and five-photon
absorption cross sections (4PA and 5PA) can be calculated from
the corresponding higher-order response functions. The higher the
order of the response functions needed, the more complex the
working equations become, in particular if attention is given to
computational efficiency.

Our group has in the last few years developed an open-ended
formulation of response theory9 and implemented it using
recursive programming techniques,10 enabling the calculation
of response properties to any order at the Hartree–Fock (HF)
and density-functional theory (DFT) levels and limited only by
the degree of generality in connected modules for perturbed
one- and two-electron integrals and exchange-correlation (XC)
contributions.9–11 The approach has recently been extended to
include single residues of response functions.11 Single residues
of these high-order response functions have already been used
by our group to calculate 4PA11 and 5PA12 absorption cross
sections. Arbitrary higher-order processes are also accessible
from this open-ended approach. The open-ended response
formalism is therefore able to address the challenge of the
ever-growing variety of spectroscopic methods available, signifi-
cantly reducing the development effort and the time required to
model new spectroscopic processes for relevant applications.

Several approaches have been developed to tackle large and
complex systems, such as solutions and proteins, in the presence
of external fields. When the phenomenon studied is localized to
a single molecule and its immediate surroundings—as is often
the case for MPA where the majority of the response arises from
a chromophore in the complex—an efficient strategy is to use
focused models that only treat a small portion of the system
(e.g. the chromophore molecule) using quantum mechanical
(QM) methods, whereas the rest (the environment) is treated
classically. A distinction can be drawn between methods keeping
atomistic detail in the classical environment, and those which
disregard it. The former are commonly known as molecular
mechanics (MM) methods, whereas the latter are referred to as
dielectric continuum (DC) methods. Both models have strengths
and weaknesses: MM methods are better suited to describe
specific intermolecular interactions but require configurational
sampling.

In contrast, DC methods are more effective at addressing
long-range interactions.13–15 and are easier to parametrize,
requiring only a handful of macroscopic solvent parameters
(dielectric constant e, refractive index n), and the cavity speci-
fication (atom-specific radii). Both methods can be augmented
with a supermolecular approach (including one or more solvent

molecules in the QM system) to address specific quantum effects.
A three-layer model which combines a description of the specific
effects near the chromophore by an MM part with pre-averaged
long-range effects described by the DC part has also been
reported.16 For details we refer to the relevant literature.16–19

The above mentioned open-ended approach to response
theory has recently been extended to include molecular environ-
ment effects for electric dipole properties through a polarizable
embedding (PE) QM/MM approach.20 In this work, we will
present an open-ended response formalism for the PCM,21 in
its integral equation formalism (IEF) formulation,22 which is the
most versatile DC method available. For details about the PCM,
the reader is referred to two authoritative reviews.13,23 The model
features a molecule-shaped cavity made of interlocking
spheres,24,25 is able to describe a wide variety of environments
due to the generality of the IEF formalism,22,26,27 and can treat
dynamical processes thanks to the nonequilibrium formalism.28,29

All such features are available in the PCMSolver module, an
application programming interface (API) for the PCM.30 Additional
features not yet available in PCMSolver are the treatment of non-
electrostatic terms in the solvation energy,31,32 and the state-specific
formalism.33–36

Crucial aspects of our work are the variational formulation
of the PCM equations37 and the modular approach employed in
the implementation. Both PCMSolver and the open-ended
response code10 are two independent modules which can be
interfaced to any quantum chemistry software. This approach
has several advantages over a non-modular code: modules can
be developed and tested separately, new features can be made
available to several programs at once, avoiding lengthy, tedious
and error-prone multiple implementations, and the master
program can be chosen freely, for instance based on the
availability of different functionality.

The rest of the paper is organized as follows: in Section 2 we
present the theory for the quasienergy formalism in the context
of the PCM. In Section 3 we discuss the details of our modular
implementation. After briefly discussing the computational details
(Section 4), we will present our results on the MPA processes
(up to 5PA) on para-nitroaniline (PNA), para-dinitrobenzene
(PDNB) and methylenecyclopropene (MCP) in Section 5. In
Section 6 we summarize the main conclusions and future
implications of our work.

2 Theory
2.1 Variational formulation of the polarizable
continuum model

The variational formulation of the PCM was first presented by
Lipparini et al. in ref. 37 and is based on the weak approach to
boundary integral equations (BIEs).38 The weak formulation of
partial differential equations (PDEs), boundary value problems
(BVPs) associated BIEs is a well-known tool in mathe-
matics.38–40 Given a partition of Euclidean space R3 into a
closed subdomain C, the cavity, with a sufficiently regular
boundary G = qC, we want to solve the following transmission
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problem for a solvent with a homogeneous, isotropic relative
permittivity e:

r2u(r) = �4pr(r) 8r A C (1a)

er2u(r) = 0 8r e C (1b)

lim
jrj!@Cþ

uðrÞ ¼ lim
jrj!@C�

uðrÞ (1c)

e lim
jrj!@Cþ

@uðrÞ
@n
¼ lim
jrj!@C�

@uðrÞ
@n

(1d)

|u| r C 8x8�1 for 8x8 - N (1e)

where n is the outward-pointing normal vector to the cavity
boundary G. The electrostatic potential u(r) in space is sought,
given the jump conditions for its traces and conormal deriva-
tives across the boundary, eqn (1c) and (1d), respectively, and
the appropriate radiation condition at infinity, eqn (1e). This
can be recast in terms of an integral equation:

R̂eŜs ¼ �R̂1j (2)

with s(s), the apparent surface charge (ASC), representing the
reaction potential arising from solvent polarization and j(s) the
molecular electrostatic potential (MEP). The integral operators

R̂e and R̂1 are given in terms of the components of the

Calderón projector, Ŝ and D̂,38,41 and the identity operator Î:

R̂e ¼ 2p
eþ 1

e� 1

� �
Î� D̂

� �
; R̂1 ¼ lim

e!1
R̂e ¼ 2p� D̂; (3)

such that the operator Ŷ ¼ R̂1
�1R̂eŜ is self-adjoint and posi-

tive definite. The Ŝ and D̂ boundary integral operators are
mappings between Sobolev spaces of fractional order, which
thus are the natural mathematical setting for integral formula-
tions of BVPs.38–40 These are normed spaces, equipped with the
scalar product: ð

G
dsf ðsÞgðsÞ ¼ ð f ; gÞG: (4)

The polarization energy functional:

Upol ¼
1

2
ðs; ŶsÞG þ ðs;jÞG (5)

is strictly convex and has a unique minimum, s0. This is the
unique solution to the IEF-PCM eqn (2):37,42

@Upol

@s
¼ Ŷsþ j ¼ 0 (6)

This allows us to treat the ASC as an additional, independent,
variational density to be optimized. This offers distinct advan-
tages from a theoretical point of view:
� there is no need to invoke a nonlinear coupling in the

Hamiltonian to introduce the classical solute–solvent inter-
action,13,43

� the functional clearly describes a charge distribution
interacting (unfavorably) with itself and (favorably) with its
inducing external field and constitutes the polarization energy
of the medium,37

� a classical analogue of the Hellmann–Feynman theorem
naturally holds for the variational ASC:44

dUpol

dl
¼ @Upol

@l
þ @Upol

@s
@s
@l
¼ @Upol

@l
(7)

Simultaneous optimization algorithms can also be successfully
employed in practical implementations,45 but this is not the main
topic of this work. Finally, let us note that the use of the term weak
formulation of PDEs and BVPs originates from the weaker regularity
requirements that can be imposed on the solution, while still
handling a well-posed problem (in the sense of Hadamard). The
terms ‘‘weak’’ and ‘‘variational’’ formulation are here used inter-
changeably, given that the weak formulation of the PCM satisfies the
hypotheses of both the Lax–Milgram lemma and its variational
corollary.39

2.2 PCM-SCF open-ended response theory

Notation. The PCM equations will be written in the ‘‘complete
basis’’: we will introduce the usual boundary-element method (BEM)
discretization at the very end of the derivation. In other words, we will be
working with the exact integral equation and not with its discretized
counterpart. As a consequence, the apparent surface charge s and the
electrostatic potential j will have a continuous dependence on a ‘‘cavity
surface’’ index s. Whenever a charge-potential product is present, it is to
be interpreted as the surface integral, i.e. the scalar product in the
suitable, infinite-dimensional vector space on the cavity boundary G. The
following shorthand notation will be adopted: sj = (s, j)G. We use
lowercase Latin letters (a, b, c. . .) as a composite index for the perturba-
tion operator and the frequency index (cf. eqn (7)–(16) in ref. 9). The
perturbation strength for a given perturbing one-electron operator A
associated with a frequency oa will thus be written as ea. Perturbation-
strength derivatives will be denoted by lowercase Latin superscripts (a, b,
c. . .) to the differentiated quantities. Finally, a tilde will be used for
quantities that are considered at general field strengths and thus, in
general, are time dependent. As an example, the overlap matrix and its
derivative with respect to ea at general perturbation strength will be S̃
and S̃a, respectively. Equivalently, S and Sa denote the overlap matrix
and its perturbation-strength derivative at zero field strength, respec-
tively. Tr

¼ will denote that the trace of the expression to follow should be

taken. fTrgT¼ will additionally denote that the tracing is followed by time-
averaging over a period T of the collected perturbations.

Our derivation follows closely the one in ref. 9 and the
subsequent developments in ref. 10. The original expressions were
developed for a system considered to be in vacuo, and in order to
incorporate the effects of the PCM, any energy-like term that
appears in these expressions will be augmented by the appropriate
solvent term. The solvent term will be derived according to the
polarization energy functional given in eqn (5) and the classical
Hellmann–Feynman theorem it satisfies, namely eqn (7).

Response functions can be expressed as perturbation-strength
derivatives of the perturbation-strength-differentiated time-
averaged quasienergy Lagrangian evaluated at zero perturbation
strengths. For example, the linear response function can be
written as
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A;Bh ih iob
¼

d ~La ~C; ~k; ~s; t
� �� 	

T

deb







feg¼0

¼ Lab; oa ¼ �ob: (8)

In an atomic orbital-based density matrix parametrization,
the time-averaged quasienergy derivative needed to evaluate
response functions is given as

~Lað ~D; ~s; tÞ ¼fTrgT ~G00;a � ~Sa ~W (9)

where an element of the overlap matrix S̃ is given by

S̃mn = h~wm|~wni, (10)

and where the generalized, energy-weighted density matrix W̃
was introduced and is given by

~W ¼ ~D ~F ~Dþ i

2
_~D ~S ~D� ~D ~S _~D

�
:

�
(11)

This expression for W̃ involves the density matrix D̃, its time-

differentiated analogue _~D and the generalized Kohn–Sham (KS)

matrix ~F given by

~F ¼ ~hþ ~V t þ ~Ggð ~DÞ þ ~Fxc þ ~s~u� i

2
~T: (12)

The expression for ~F includes both vacuum-like and PCM con-
tributions. The vacuum-like contributions are expressed in terms of
the one-electron matrices h̃ and Ṽ t, and the two-electron matrix
G̃g(D̃), which are, respectively, defined in the following way:

~hmn ¼ ~wm �
1

2
r2 �

X
K

ZK

RK � rj j












~wn

* +
; (13a)

~Vt
mn ¼

X
a

exp �ioatð Þea ~wm aj j~wn

 �

; (13b)

~Gg
mnð ~DÞ ¼

X
ab

~Dba ~gmnab � g~gmban
� �

: (13c)

Another part of the vacuum-like contribution is the functional
derivative matrix F̃xc,mn of the XC potential, whose elements are
given by

~Fxc;mn ¼
ð
dx~Omn

@ ~Exc

@rðrÞ






rðrÞ¼~rðr;tÞ

¼
ð
dx~Omn~vxc; (14)

where the integration involves the overlap distribution ~Omn ¼
~w�m~wn and the functional derivative of the XC functional in the

adiabatic approximation. The x variable refers to both spatial
and spin coordinates. The last vacuum-like contribution in
eqn (12) is the anti-Hermitian, time-differentiated overlap
matrix T̃ whose elements are given by

~Tmn ¼ ~wm


 _~wn
 �
� _~wm ~wnj

 �

: (15)

Finally, the PCM contribution ~s~u involves the electrostatic
potential integrals

~jmnðsÞ ¼ ~wm
�1
r� sj j










~wn :

� �
(16)

The first term in eqn (9), ~G00;a, involves the generalized KS

energy ~E as shown in eqn (97) in ref. 9. The free energy term ~G

including PCM effects is produced by additionally considering
solute–solvent interaction terms, so that

~G ¼ ~Eþ 1

2
~sŶ~sþ ~sTrð~u ~DÞ¼Tr ~hþ ~V t þ 1

2
~Ggð ~DÞ � i

2
~T

� �
~D

þ ~Exc½~rð ~DÞ� þ hnuc þ
1

2
~sŶ~sþ ~s~u ~D:

(17)

Due to the implicit time dependence of D̃ and s̃, higher-order
derivatives of the KS generalized energy will require application
of the chain rule. The mn, abc. . . superscript describes how and
to what extent the chain rule was applied for a given term, i.e. the
number of explicit differentiations with respect to the variational
densities, so that

~Gmn;abc ¼ @mþnþ3G

@ DTð Þm@sn@ea@eb@ec

¼ Em;abc þ @mþnþ3Upol

@ DTð Þm@sn@ea@eb@ec
:

(18)

In this notation, the index m denotes the order of differentiation
with respect to the density matrix D, while the index n symbolizes the
order of differentiation with respect to the ASC density s. Differentia-
tion with respect to the density matrix will result in a 2m-rank tensor,
while differentiation with respect to the ASC density will result in a
function of the continuous cavity index s. For higher-order proper-
ties, mixed terms involving both density matrix and ASC density
differentiation may generally occur. In the fixed-cavity approxi-
mation, the cavity is kept frozen at a given molecular geometry.46

Under this simplifying assumption, only the linear interaction term
in the polarization functional eqn (5) will be affected by the move-
ments of the nuclei via the dependence of basis functions on the
molecular geometry. Its perturbation-strength derivative will then be

d

dea
Upol

� 	
T
¼fTrgT ~s~ua ~D; (19)

where the second term only involves derivatives of the electrostatic
potential integrals. We remark that, under the fixed-cavity approxi-
mation, both the density matrix – m – and ASC density –
n – differentiation indices in eqn (18) can only assume the values

0 or 1 in order for the
@mþnþ3Upol

@ DTð Þm@sn@ea@eb@ec
term not to be zero. By

construction, the density matrix dependence in the polarization
functional is at most linear, while, by virtue of the classical
Hellmann–Feynman theorem, eqn (7), the ASC variational

density will also appear at most linearly in ~G00;a.
The free energy term perturbation strength derivative is

given as

~G00;að ~D;~s;tÞ¼ ~E0;aþ~sTr ~ua ~D
� �

¼Tr ~haþ ~V t;aþ1

2
~Gg;að ~DÞþ ~F

Oa

xc �
i

2
~Ta

� �
~Dþhanucþ~s~ua ~D

(20)
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where the matrix ~F
Oa

xc denotes the functional derivative matrix

defined in terms of the perturbed overlap distributions ~Oa,
so that

~FOa

xc;mn ¼
ð
dx~Oa

mnðr; tÞ~vxcðr; tÞ
:

(21)

Response functions can then be obtained by straightforward
differentiation with respect to additional perturbations and
subsequent evaluation at zero perturbation strength, so that

La ¼fTrgT G00;a � SaW (22a)

Lab ¼fTrgT G00;ab þ G10;aDb þ G01;asb � SabW � SaWb (22b)

Labc ¼fTrgTG00;abc þ G10;acDb þ G10;abDc þ G20;aDbDc þ G10;aDbc

þ G11;aDbsc þ G01;acsb þ G01;absc þ G01;asbc

þ G11;asbDc � SabcW � SabW c � SacWb � SaWbc

(22c)

and similarly for higher-order response functions. More
detailed expressions for the derivatives of the generalized KS
free energy are shown in Appendix A. The expressions (22a)–
(22c) adhere to the n + 1 formulation, whereby perturbation-
strength derivatives of the variational densities up to order
n are required in order to assemble response functions of order
n + 1. It is possible to make other formulations of response
theory for which truncation rules for perturbed arguments
between and including the n + 1 and 2n + 1 rules are
possible.9,10,47 This entails the introduction of Lagrange multi-

pliers ~ka and ~fa to take into consideration the idempotency of the
density matrix and the time-dependent SCF (TD-SCF) equations,
respectively, so that the idempotency condition is expressed with
the matrix Ỹ and the TD-SCF condition with the matrix Z̃, where

Ỹ � D̃S̃D̃ � D̃ = 0 (23)

and

~Z � ~F� i

2
~S
d

dt

� �
~D ~S

� ��
¼ 0; (24)

and where the Lagrange multiplier terms are given by

~ka = [D̃aS̃D̃]~, (25)

and

~fa ¼ ~Fa ~D ~S � 1

2

� �
� ~F ~D� i

2
_~S ~D� i ~S _~D

� �
~Sa

� ��
: (26)

The operators [M]~ and [M]" used in the above expressions
were defined in ref. 9. Response properties including PCM
effects can then be calculated from the expression

A;B;C; . . .h ih iobc...
¼ Labc...

k;n ¼
fTrgT

Gabc...
k;n � ðSWÞ

abc...
nW
� SaWð Þbc...

kS ;nW
0

� kaYð Þbc...
kl;nY

0 � faZð Þbc...
kz;nZ

0 ;

(27)

where the subscript integers k and n in the various forms shown
in this expression denote a given choice of truncation rule. The
original expression for systems considered in vacuo contains an
energy term Eabc...

k;n instead of the free energy term Gabc
k,n but is

otherwise unchanged upon solvation, and we will therefore
omit further details here about the derivation leading up to
eqn (27), referring instead to previous work for more informa-
tion and for details about the (k, n) truncation rules that can be
chosen and applied.9,10 We note that the task of evaluating
eqn (27) and obtaining terms needed for this evaluation can be
cast in recursive form, as shown in ref. 10, and we further remark
that these routines can be augmented to enable the calculation of
single residues of response functions.11 However, the methodo-
logical and algorithmic development needed for residues calcula-
tions is not changed by the inclusion of PCM effects, and we will
therefore again refer to previous work9,11 for details.

2.3 Parametrization of the perturbed densities and response
equations

In order to compute response properties from eqn (27), the
various perturbed D, F and S matrices and the derivatives of the
ASC density s that enter into this expression must be obtained.
The perturbed overlap matrices can be directly assembled
from the relevant one-electron integral derivatives, while the
perturbed density and Fock matrices can be obtained from a
procedure that involves solving the appropriate response equa-
tions. The first step in this procedure is to take perturbation-
strength derivatives of the idempotency and TD-SCF conditions of
eqn (23) and (24) and evaluating them at zero perturbation
strength.9,10 The evaluation of the perturbation-strength-
differentiated ASC density introduces an additional response
equation, which is constructed by differentiating the equation
governing the ASC:

Ŷsþ j ¼ 0 (28)

Differentiating eqn (23) and introducing a decomposition of
the density matrix into frequency components leads to

DbN
o SDþDSDbN

o �DbN
o ¼ K ðn�1Þo ; (29)

where bN is the tuple of applied perturbations and o is the sum

of the associated frequencies. The RHS matrix K ðn�1Þo ¼
�ðDSDÞbNo;n�1 contains all terms that contain derivatives of the

density matrix up to order n � 1.
The perturbed density matrix is partitioned into a particular

DbN
P and a homogenous DbN

P term (H/P partition) as

DbN
o ¼ DbN

P þDbN
H : (30)

The former may be evaluated in terms of K(n�1)
o , i.e. lower-order

density matrices and differentiated overlap integrals, so that

DbN
P ¼ PK ðn�1Þo Py �QK ðn�1Þo Qy; (31)

where the projectors P = DS, Q = 1 � P were used. The
homogeneous component is parametrized in terms of the n-
th order response parameters XbN as
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DbN
H ¼ DSXbN � XbNSD ¼ D;XbN

� �
S
: (32)

The governing equations for the perturbed ASC densities are
obtained in analogy with the handling of perturbed density
matrices outlined above. We introduce a decomposition of the
ASC density into frequency components into the perturbation-
strength derivative of eqn (28), so that

ŶsbNo þ TruDbN
o ¼ Fðn�1Þo : (33)

The symbol F(n�1)
o has been introduced in analogy to the

K(n�1)
o matrix, where

Fðn�1Þo ¼Tr�ðuDÞbNo;n�1; (34)

and it contains all terms that depend on lower-order density
matrices and differentiated electrostatic potential integrals, for
which the latter acts as the metric matrix S in the definition of
K(n�1)
o . The term F(n�1)

o always contains at least a first derivative
of the electrostatic potential integrals and is thus zero if the
basis set is independent of the perturbation tuple being con-

sidered. We now introduce the H/P partitioning of sbNo , so that

sbNo ¼ sbNP þ sbNH ; (35)

and apply eqn (30), which leads to a separation of the response
integral equation into the following system of equations:

ŶsbNH þ TruDbN
H ¼ 0 (36a)

ŶsbNP þ TruDbN
P ¼ Fðn�1Þo : (36b)

We note that the particular ASC is nonzero if and only if the
basis set depends on the external perturbation.

We finally turn our attention to the TDSCF equation. The
perturbation-strength differentiated generalized KS matrix is

first separated into its frequency components FbN
o . The H/P

partition introduced for the variational densities will induce a
similar partition into these frequency components:

FbN
o ¼ GKS DbN

H

� �
þ sbNH uþ �F

bN
o : (37)

The two-electron and XC contributions depending on the
homogeneous perturbed density matrix have been collected

in the GKS DbN
H

� �
matrix, while all other contributions are

collected in �F
bN
o . A more detailed discussion of these aspects

can be found in ref. 9 and 10. The parametrization of the
homogeneous part of the perturbed density matrix can be
exploited to conveniently reformulate the perturbed TDSCF
equation, so that

E½2� � obNS
½2�

h i
XbN ¼MbN

RHS; (38)

where the generalized Hessian E[2] and metric S[2] matrices were
introduced and are defined by their transformations on the

response parameters XbN:48,49

E½2�XbN ¼ GKS XbN ;D
� �

S

� �
DS � SDGKS XbN ;D

� �
S

� �
þ F XbN ;D

� �
S
S � S XbN ;D

� �
S
F

þ sbNH uDS � SDusbNH

(39)

S[2]XbN = S[XbN, D]SS. (40)

The generalized Hessian matrix E[2] includes two types of
solvent contributions: implicit terms included in the zeroth-order
Fock matrix, F, and explicit terms, involving the N-th order homo-
genous ASC variational density. The latter are the last two terms in
eqn (39). The theoretical treatment of frequency-dependent proper-
ties in solution within the PCM requires adoption of a nonequili-
brium response framework.13,50 The explicit PCM terms in eqn (39)
are then evaluated using the optical permittivity, defined as the
square of the refractive index of the solvent eN = n2, instead of the
static permittivity es, which is employed to compute the implicit
contributions. In contrast to E[2], the generalized metric matrix S[2] is
unchanged. The right-hand side (RHS) in the response equation only
includes terms that depend on particular contributions up to the
desired order or lower-order perturbed density matrices:

MbN
RHS ¼ ~F� i

2
~S
d

dt

� �
~D ~S

� ��;bN
P

: (41)

2.4 PCM-SCF linear response: comparison with previous
formulations

Derivations of the linear50,51 and nonlinear response functions52,53

for the PCM-SCF model have previously appeared in the litera-
ture. All previous derivations exploit the definition of a solute
Hamiltonian which is nonlinearly coupled to the classical
dielectric continuum.13,43 In such a framework, the solvent
polarization is not treated as an independent, variational
degree of freedom. Solvent contributions to the Hamiltonian
are partitioned based on their order dependence on the density
matrix: zeroth, first (linear) or second (quadratic) order. We
remark that one- and two-electron contributions to the energy
are also linearly and quadratically dependent, respectively, on
the density matrix. Solvent contributions will thus enter into
response theory expressions in much the same way as the
proper one- and two-electron terms do.

A derivation of open-ended response theory for an SCF solute
coupled with a classical description of the solute has already been
presented in the context of the PE MM model.20 There, the above-
mentioned order dependence on the density matrix of solvent
contributions, which arises when a nonlinear Hamiltonian is
invoked, was used to facilitate the identification of the polarization
terms to be included in the open-ended formulation of electric
response properties. That derivation can also be used when the
classical solvent model is implicit, such as the PCM considered in
the present work, and will in this case lead to a specific imple-
mentation strategy, vide infra. However, the converse is also true. As
shown by Lipparini et al.,54 a variational formulation can also be
used for classical polarizable explicit solvation models.
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To the best of our knowledge, the first derivation of the
linear response function exploiting the variational formulation
for a quantum/classical polarizable Hamiltonian was presented
by Lipparini et al. in ref. 19. Our derivation naturally includes
general perturbations, if the fixed-cavity approximation is
assumed, and avoids the use of nonlinear Hamiltonians, repre-
senting a clear theoretical advantage.

An explicit example: first-order, electric response properties.
We here report explicit expressions for the first-order response
equations. The differentiated TDSCF condition of eqn (24)
evaluated at zero perturbation strength is

0 ¼ FbDS þ FDbS
� �� �obSD

bS

þ FDSb
� �� � 1

2
ob SDSb
� ��

:

(42)

Decomposing into frequency components and introducing the
H/P partition for the variational densities yields:

Fb
o ¼ GKS Db

H

� �
þ sbHuþ �F

b

o (43)

where all the contributions not depending on H-type terms are

collected into �F
b

o, so that

�F
b

o ¼ hbo þ Gg;b
o ðDÞ þ Gg Db

P

� �
þ V t;b

o þ �F
b

xc;o �
i

2
Tb

o

þ sbPuþ sub
o;

(44)

where �F
b

xc;o contains derivative terms of the XC matrix that are

independent of the response parameters. We refer to eqn (A26) of
the original paper for its explicit expression.9 Reorganizing eqn (43)
to have all terms dependent on Xb on the left-hand side (LHS) yields

GKS([Xb,D]S)DS � SDGKS([Xb,D]S) + F[Xb,D]SS � S[Xb,D]SF

+ sb
HuDS � SDusb

H � obS[Xb,D]SS = [E[2] � obS[2]]Xb,
(45)

where we recognize the action of the propagator [E[2] � obS[2]]
on the response vector Xb. Finally, the right-hand side Mb

RHS

becomes

Mb
RHS ¼ �F

b

oDS þ FDb
PS þ FDSb

o

h i�
� 1

2
ob SDb

PS þ SDSb
o

� ��
;

(46)

letting us cast the first-order response equations in the
usual form

[E[2] � obS[2]]Xb = Mb
RHS. (47)

Since perturbation-independent basis sets are usually
employed in the calculation of electric response properties,
considerable simplifications arise in all expressions. As an
example, we will illustrate how the equations look when only
electric dipole perturbations are considered, and we will use the
symbol f for such perturbations. First of all, the particular
perturbed variational densities are identically zero:

D f
P = PK(0)

o P† � QK(0)
o Q† = 0 (48)

since K(0)
o =�DS f

oD = 0. Moreover, since F(0)
o =�Tru f

oD = 0, one also
has s f

P = 0. Therefore, only terms including �F
b

o will enter the RHS
and among these, only those involving V t,b

o will be nonzero, so that

[E[2] � ob S[2]]Xb = [V t,b
o ]~. (49)

3 Implementation

The algorithmic realization of the open-ended PCM-SCF response
theory presented requires the solution of the coupled response
equations for the homogeneous density matrix, eqn (38), and ASC,
eqn (36a). Hence, one can envision two possible strategies for a
computer implementation of the open-ended scheme:

Strategy 1 eqn (36a) and (38) are simultaneously solved, in much
the same way as described by Lipparini et al. for the SCF equations.45

A suitable initial guess is provided for both densities and the
appropriate iterative linear equation solvers are employed.55,56

A convergence acceleration scheme might also be exploited.57,58

Strategy 2 given the initial guess for the response para-
meters, the homogenous density matrix is formed and the
perturbed MEP calculated. Eqn (36a) is solved, eventually
allowing the computation of the linear transformation in
eqn (39) and the solution of eqn (38).

The two strategies are of course expected to lead to identical
results. Strategy 1 could be advantageous when large molecular
solutes are considered and might show better convergence
properties, at the expense of a nontrivial extension to both
the quasienergy derivative Lagrangian framework for the effi-
cient elimination of response parameters9,47 and to the corres-
ponding recursive implementation.10,11 The implementation
we present in this work follows Strategy 2. This avoids excessive
modifications to the recursive core of the open-ended response
code and allows a straightforward use of efficient response
parameter elimination schemes.47 The resulting computer code
exploits interfaces between the Dalton program package,59 the
PCMSolver library,30 the implementation of the open-ended,
recursive approach to atomic orbital-based density matrix
response theory10 and the subsequent development of the latter
for the calculation of single residues of response functions.11

The interface to PCMSolver provides an alternative implemen-
tation of PCM capabilities at the SCF level of theory to the one
presented by Cammi et al.60 To test the linear transformations
of the generalized Hessian and metric matrices of eqn (39) and
(40), a non-recursive PCM-SCF linear response code was imple-
mented exploiting the PCMSolver library.30 Further testing for
the linear, quadratic and cubic response functions and corres-
ponding single residues for electric dipole perturbations was
achieved by comparing to previously published, non-recursive
implementations available in Dalton.50–53

4 Computational details
4.1 Molecular structures

The molecules investigated in this work are PNA, PDNB and
MCP, shown in Fig. 1.
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The geometries were optimized in vacuo using Gaussian 09,61 the
B3LYP XC functional62–65 and the cc-pVQZ basis set.66 No constraints
were used on the symmetry during the geometry optimization,
yielding point groups Cs, D2h and C2v for PNA, PDNB and MCP,
respectively. The structures of PDNB (identical to the one used in
ref. 12) and MCP are planar, whereas the structure of PNA (identical
to the one used in ref. 11) is non-planar with a H–N–C–C dihedral
angle of 211. All PCM calculations are done on the vacuum geometry
so that all differences arise from direct solvent effects rather than
from indirect (geometrical) effects. The ESI† contains the molecular
structures used in the calculations, in Dalton input format.

4.2 MPA calculations

The calculations were performed in a development version of the
Dalton program using the open-ended response code of Ringholm
et al.10 One-electron property integrals and their arbitrary-order
derivatives were provided by the Gen1Int library.67 The XC func-
tionals library XCFun68 and the integrator library XCint were used
for the evaluation of the XC terms and their derivatives. Finally, the
PCM functionality was provided by the PCMSolver library.30 The ESI†
contains details about software versions and build toolchain used in
this work. Vertical excitation energies were calculated for the 7 lowest
excited states of the molecules in Fig. 1. MPA transition moments S
were calculated for the same excitations from the residues of the
response functions using the implementation described in ref. 11.
The CAM-B3LYP XC functional69 and the aug-cc-pVDZ basis set66

were chosen based on previous results in ref. 11.
Rotationally averaged transition strengths hdMPAi were cal-

culated from the transition moments S and their complex
conjugates %S as70

d1PA

 �

¼ 1

3

X
a

Sa
�Sa (50)

d2PA

 �

¼ 1

15

X
ab

2Sab
�Sab þ Saa

�Sbbð Þ (51)

d3PA

 �

¼ 1

35

X
abc

2Sabc
�Sabc þ 3Saab

�Sbccð Þ (52)

d4PA

 �

¼ 1

315

X
abcd

8Sabcd
�Sabcd þ 24Saabc

�Sbcdd þ 3Saabb
�Sccddð Þ

(53)

d5PA

 �

¼ 1

693

X
abcde

8Sabcde
�Sabcde þ 40Saabcd

�Sbcdeeð

þ15Saabbc
�ScddeeÞ:

(54)

The dimensionality, in atomic units, of the MPA strengths is
systematically given by11

[hdMPAi] = a0
2M	Eh

2(M�1) (55)

where a0 and Eh are the atomic units for length and energy,
respectively, and M is the number of photons involved. MPA
strengths in atomic units are used throughout unless otherwise
stated.

4.3 PCM details

The calculations of the transition moments were performed in
a range of solvents with different static (es) and dynamic (eN)
relative permittivities: vacuum (es = 1.0, eN = 1.0), n-heptane
(es = 1.92, eN = 1.918), cyclohexane (es = 2.023, eN = 2.028),
tetrachloromethane (es = 2.228, eN = 2.129), benzene (es = 2.247,
eN = 2.244), 1,4-dioxane (es = 2.250, eN = 2.023), toluene
(es = 2.379, eN = 2.232), chloroform (es = 4.90, eN = 2.085),
chlorobenzene (es = 5.621, eN = 2.320), aniline (es = 6.89,
eN = 2.506), tetrahydrofurane (es = 7.58, eN = 1.971), dichloro-
methane (es = 8.93, eN = 2.020), dichloroethane (es = 10.36,
eN = 2.085), acetone (es = 20.7, eN = 1.841), ethanol (es = 24.55,
eN = 1.847), methanol (es = 32.63, eN = 1.758), acetonitrile
(es = 36.64, eN = 1.806), nitromethane (es = 38.20, eN = 1.904),
dimethylsulfoxide (es = 46.7, eN = 2.179), propylene carbonate
(es = 64.96, eN = 2.019) and water (es = 78.39, eN = 1.776). No
local field effects were included in this study.71–76

The molecular cavities were generated from the van der Waals
surface, i.e. from a set of atom-centered, interlocking spheres.
For every molecule this was computed from the Bondi–Mantina
set of van der Waals radii:77,78 1.20 Å for hydrogen, 1.70 Å for
carbon, 1.55 Å for nitrogen and 1.52 Å for oxygen. All radii were
scaled by a factor of 1.2. Cavity generation and discretization was
performed according to the one-point centroid collocation GePol
scheme, deactivating the addition of non-atom-centered
spheres.24,25 Since vacuum geometries are used in all calcula-
tions, the cavity is the same across all solvents.

5 Results

The excitation energies of the lowest electronic excitations
in PNA, PDNB and MCP are shown in Fig. 2 as a function

of the Onsager factor
es � 1

es
, where es is the static relative

permittivity.79

For some states, the excitation energy increases (e.g. 3A0 in
PNA) or decreases (e.g. 1B2u in PDNB) considerably with solvent
polarity, leading to a change in the ordering of the different
excited states. The non-monotonic behavior of the excitation

energy when going from chloroform (es = 4.90,
es � 1

es
¼ 0:80,

eN = 2.085) to chlorobenzene (es = 5.621,
es � 1

es
¼ 0:82, eN = 2.320)

and aniline (es = 6.89,
es � 1

es
¼ 0:85, eN = 2.506) can be explained by

the increase in the optical dielectric constant (eN) in the latter two
solvents. Thus, the occurrence of these discontinuities is an effect

Fig. 1 Molecules investigated in this work: para-nitroaniline (PNA), para-
dinitrobenzene (PDNB) and methylenecyclopropene (MCP).
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of the non-equilibrium formulation of PCM that we employ. The
calculated solvatochromic shifts are smaller than the experimental
ones (see Appendix B), which is likely related to the (deliberate)
omission of indirect solvent effects.

MPA strengths and dominating orbitals for selected excita-
tions in PNA are shown in Fig. 3 and 4. Among the first five
excitations of PNA (thus excluding the 4A00 state), the 2A0 excita-
tion is the strongest excitation in vacuo for 1PA up to 5PA, as has
been observed for 1PA–4PA before.11 This state is also the brightest
in 1PA and 2PA for all solvents examined. The sixth excitation (4A00),
however, is one of the excitations that has a higher strength for
3PA–5PA in the more polar solvents. This illustrates that even
qualitative results are poorly transferable from vacuum to solvent
and from 1PA to MPA.

The discontinuities in the MPA strengths when increasing
the solvent polarity can again be related to the use of the non-
equilibrium formulation of PCM. Whereas the static permittiv-
ity (es) increases monotonously from left to right due to the
choice of the x-axis, the dynamic permittivity (eN) does not. The
discontinuities thus reflect the variation in eN with non-

monotonous behaviours observed for aniline
es � 1

es
¼ 0:85

� �

and dimethylsulfoxide
es � 1

es
¼ 0:98

� �
. This effect is hardly

observable for 1PA, but is pronounced for the higher-order MPA
strengths, and for 3PA and 5PA in particular (Fig. 3).

MPA strengths can be selectively enhanced by an intermedi-
ate state at a defined fraction of the energy of the state in

question.12 The 2PA strength of a state with energy o can be

enhanced if another state has an energy of
o
2

. In the same way,

the 3PA strength can be enhanced if another state has an energy

of
o
3

or
2o
3

. When another state has an energy of
3o
4

, the 4PA

strength (but not the 2PA strength) is selectively enhanced. For

5PA, the most likely resonance condition is another state at
4o
5

.

This resonance enhancement explains the dramatic increase
of the 4PA strength of the 4A00 state in the vacuum calculation.
The excitation energy of the 2A0 excitation happens to be at
0.749 times the excitation energy of the 4A00 excitation (Fig. 2),
giving rise to a resonance condition and enhancement of the
4PA strength. Resonance enhancement also contributes to the
high 3PA strength of the 4A00 in dimethylsulfoxide (es = 46.7,
es � 1

es
¼ 0:98), where the excitation energy of the 2A0 excitation

Fig. 2 Selected excitation energies DE [eV] as a function of the Onsager
factor ((es � 1)/es, where es is the static permittivity) for PNA, PDNB and
MCP. See the ESI† for the plot containing all states included in this study.

Fig. 3 MPA strengths hdMPAi [a.u.] (see eqn (55)) for increasing solvent
polarity for two selected electronic excitations in PNA. See the ESI† for the
plot containing all states included in this study.

Fig. 4 Molecular orbitals involved in the electronic excitations of para-
nitroaniline (PNA) discussed in this work. The 2A0 excitation is dominated by a
HOMO - LUMO transition and the 4A00 excitation is dominated by a HOMO -

LUMO+2 transition. An isosurface value of 0.05 was used to make the plots.
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is 0.678 times the excitation energy of the 4A00 excitation. It is
important to note that our response theory approach breaks
down close to such resonance and the results cannot be
considered quantitatively accurate. To circumvent this diver-
gence in the MPA strengths, damped response theory should be
used,80,81 as reported for 2PA by Kristensen et al.82

The variation of the MPA strengths with solvent polarity clearly
increases with the number of photons. This has also been observed
experimentally, comparing 1PA and 2PA for the same excitation in
PNA.83 The inclusion of solvent effects thus becomes increasingly
important for quantitative MPA calculations with increasing num-
ber of photons. Comparison with experimental cross sections83

indicates that the absolute value of the 2PA cross section is under-
estimated by up to a factor of 2 in the calculations, while the
relative strengths across different solvents are not reproduced in
the calculations (Appendix B). The underestimation of the 2PA
cross sections may be partially caused by the use of TDDFT and can
be related to underestimated difference dipole moments.84,85

Indeed, TDDFT/CAM-B3LYP has been shown to underestimate
difference dipole moments in PNA.84,86,87

We now turn our attention to the centrosymmetric molecule
PDNB. MPA strengths and dominating orbitals for selected
excitations in PDNB are shown in Fig. 5 and 6. The high point
group symmetry determines whether the different excited
states will be allowed for the different one- and multiphoton
absorption processes. The 1B3u excitation is the brightest
excitation for 1PA, 3PA and 5PA among the first seven excitations,
while the B2g excitation is the brightest for 2PA and 4PA. We note

that the intensities of the different odd- or even-order photon
excitation processes follow each other both in vacuum and in the
different solvents. This is due to the fact that the intensity of odd-
and even-order multiphoton absorption processes can be shown
to be proportional to the one- or two-photon absorption cross section,
respectively,12 with exceptions arising due to near-resonances.

As a final example, we have considered MCP: some of its
excited states undergo a sign change in dipole moment across
the solvent polarity scale chosen in this study. The MPA
strengths and dominating orbitals for selected excitations in
MCP are shown in Fig. 7 and 8. The p - p* 2A1 transition has
significant orbital overlap between the occupied and the virtual
orbitals (Fig. 8) and is the only strong transition in 1PA. The 1B2

and 2B2 states, however, are accessible via multi-step processes
and are indeed the strongest states in 2PA/4PA and 3PA/5PA,
respectively. The maximum in the 4PA strength for the 2A1 excita-
tion is due to a resonance with the 1B1 state which is located at

Fig. 5 MPA strengths hdMPAi [a.u.] (see eqn (55)) for increasing solvent
polarity for two selected electronic excitations in PDNB. See the ESI† for
the plot containing all states included in this study.

Fig. 6 Molecular orbitals involved in the electronic excitations of para-
dinitrobenzene (PDNB) discussed in this work. The 1B2g excitation is
dominated by a HOMO�5 - LUMO transition and the 1B3u excitation is
dominated by a HOMO�1 - LUMO transition. An isosurface value of 0.05
was used to make the plots.

Fig. 7 MPA strengths hdMPAi [a.u.] (see eqn (55)) for increasing solvent
polarity for three selected electronic excitations in MCP. See the ESI† for
the plot containing all states included in this study.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
N

ov
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 1
0:

30
:3

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp06814f


376 | Phys. Chem. Chem. Phys., 2017, 19, 366--379 This journal is© the Owner Societies 2017

0.759 times the excitation energy of the 2A1 state for n-heptane

(es = 1.920,
es � 1

es
¼ 0:48).

The kink in the 1PA strength of the 2A1 state between 1,4-

dioxane (es = 2.250,
es � 1

es
¼ 0:56), toluene (es = 2.379,

es � 1

es
¼ 0:58) and chloroform (es = 4.90,

es � 1

es
¼ 0:80) can be

related to the excited-state dipole moment, which changes sign
between 1,4-dioxane and toluene. The excited-state dipole
moment of the 1B2 state also has a different direction in
vacuum than in solvent. We report the relevant plots of the
difference between ground- and excited-state dipole moments
in the ESI.†

The results presented serve as an illustration of the applic-
ability of our implementation. When interpreting the results,
one should bear in mind the limitations of our methodology.
First of all, we have calculated vertical excitation energies and
neglected vibronic effects, which have been demonstrated to
play a role in 2PA.88,89 Secondly, we have not taken into account
the indirect effect of the solvent on the geometry of the
chromophore. Indirect solvent effects can be taken into
account by using PCM also in the geometry optimization, which
has however not been done here, to allow for a comparison of
the direct contribution of the various solvents on the MPA
strength. Thirdly, the implementation of the solvent model
used here does not include explicit local field effects in the
molecular cavity71–76 nor non-electrostatic effects.31,32,90,91

Explicit solute–solvent interactions are also not included, but
can in principle be recovered using a QM cluster model of the
system. Finally, DFT is not likely to give MPA strengths (and, in
general, excited-state properties) of high accuracy, as shown for
2PA using a coupled-cluster benchmark.85 There is a clear need
for benchmarking DFT MPA strengths against methods of
higher accuracy also beyond 2PA.85,92 All these factors are
important if a realistic comparison with experiment is to be
attempted. The recent coupling of our open-ended response
code to a PE QM/MM framework is able to take into account
indirect solvent effects, local field effects and explicit solute–
solvent interactions, albeit by necessity introducing configura-
tional sampling in the computational protocol.20

6 Conclusion

We have presented the theory and implementation for calculat-
ing molecular response properties to arbitrary order in solution

within the framework of the polarizable continuum model. The
theoretical derivation is based on an energy functional where
both the density matrix and the electrostatic polarization in the
medium are treated as variational degrees of freedom. Contrary
to previous work, the quantum/classical polarizable coupling is
not achieved by assuming a nonlinear interaction potential in
the Hamiltonian. We have shown that, in the fixed-cavity
approximation, molecular response functions to arbitrary order
are straightforwardly obtained as higher-order derivatives of the
proposed functional. Moreover, differentiation of the stationarity
conditions naturally leads to the appropriate response equations
determining higher-order perturbed wave function and polariza-
tion parameters. Our implementation relies on modular compo-
nents encapsulating the different tasks required to carry out a
response calculation, in line with previous work by some of
us.10,11 In particular, we added the PCM terms to the workflow by
means of the PCMSolver library,30 in the spirit of the PE
implementation recently presented by Steindal et al.20 We have
illustrated the implementation by calculating MPA strengths for
three small organic molecules. The enhancement of the MPA
strength from vacuum to different solvents increases with the
number of photons involved in the excitation, clearly emphasiz-
ing the importance of including solvent effects in MPA calcula-
tions. Relative intensities between features corresponding to
different electronic excitations in one- or multiphoton absorp-
tion spectra are not necessarily preserved between phenomena
involving different numbers of photons absorbed, which is
partially related to molecular symmetry. We have also described
resonance enhancements in our MPA calculations.

Appendix
A Derivatives of the generalized KS free energy

The generalized KS energy derivatives are given by:

G00,a = E0,a + {sTr(uaD)}T (56a)

G00,ab = E0,ab + {sTr(uabD)}T (56b)

G00,abc = E0,abc + {sTr(uabcD)}T (56c)

G10,aDb = E1,aDb + {sTr(uaDb)}T (56d)

G01,asb = {sb Tr(uaD)}T (56e)

G10,acDb = E1,acDb + {sTr(uacDb)}T (56f)

G10,abDc = E1,abDc + {sTr(uabDc)}T (56g)

G20,aDbDc = E2,aDbDc (56h)

G10,aDbc = E1,aDbc + {sTr(uaDbc)}T (56i)

G11,ascDb= {sc Tr(uaDb)}T (56j)

G01,acsb = {sb Tr(uacD)}T (56k)

G01,absc = {sc Tr(uabD)}T (56l)

G01,asbc = {sbc Tr(uaD)}T (56m)

G11,asbDc = {sb Tr(uaDc)}T (56n)

Fig. 8 Molecular orbitals involved in the electronic excitations of methylene-
cyclopropene (MCP) discussed in this work. The 1B2 excitation is dominated by
a HOMO - LUMO transition, the 2B2 excitation is dominated by a HOMO -

LUMO+2 transition and the 2A1 excitation is dominated by a HOMO -

LUMO+5 transition. An isosurface value of 0.05 was used to make the plots.
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B Comparison with experimental data

Although the paper is essentially methodological, we provide a
short comparison of our results with available experimental data. A
detailed study of the solvatochromic shift of PNA including 2PA
spectra has been presented recently by Wielgus et al.83 For PDNB,
maximum absorption has been observed at 4.75 eV in ethanol.93

For MCP, two values have been reported in the literature: 4.01 eV in
n-pentane and 4.49 eV in methanol.94 In Table 1, we report our
vertical excitation energies (VEEs) together with available experi-
mental results, when the same solvent was available (our calculated
values in n-heptane are however compared to experimental data
obtained in n-hexane for PNA and in n-pentane for MCP).

For PNA, our results are overall qualitatively well correlated
with the experimental absorption maxima. However, the calcula-
tions are more compressed (an overall variation of 0.25 eV
compared to 0.68 eV for the experiments) and water and 1,4-
dioxane are slight outliers. A possible explanation for the range
compression is the lack of indirect solvent effects (vacuum
geometries have been employed throughout, a conscious choice
to isolate the direct effects on the MPA cross sections), whereas
specific solvent effects might explain why water is an outlier.

For MCP, the computed solvent shift (0.22 eV) is also less
pronounced than for the experimental value (0.48 eV) but in good
agreement with previous state-specific multiconfigurational cal-
culations (0.18 eV) reported in ref. 60. For PDNB, we cannot draw
any conclusions from one isolated number and the observed
agreement with experiment is likely to be fortuitous.

2PA strengths for PNA in three solvents were converted
to cross sections for comparison with available experimental
data83 using85

s2PA ¼ 4p2aa05o2

cG
d2PA

 �

; (57)

where a is the fine structure constant, a0 is the bohr radius, c is
the velocity of light, o is the photon energy (i.e. half the excitation
energy) and G is the half-width half-maximum (HWHM) of the
(Lorentzian) broadening function describing homogeneous

broadening. The HWHM for 1,4-dioxane, propylene carbonate
and dimethyl sulfoxide were taken from reported experimental
work (FWHW 4672 cm�1, 4490 cm�1, 4014 cm�1),83 giving G =
0.2897 eV, 0.2783 eV and 0.2488 eV, respectively. The dimension-
ality of the 2PA cross section is cm4 s photon�1 with 1 

10�50 cm4 s photon�1 commonly referred to as 1 GM (Table 2).
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