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A semi-classical approach to the calculation
of highly excited rotational energies for
asymmetric-top molecules

Hanno Schmiedt,a Stephan Schlemmer,a Sergey N. Yurchenko,b

Andrey Yachmenevbc and Per Jensen*d

We report a new semi-classical method to compute highly excited rotational energy levels of an

asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the

ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green’s function approach to

describe the rotational motion, while retaining a quantum mechanical description of the vibrations.

Similar approaches have existed for some time, but the method proposed here has two novel features.

First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are

naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is

employed for the first time to describe the molecular vibrations. In addition, we present a new robust

approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully

quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to

calculating the energies of very highly excited rotational states and it reduces dramatically the

computing time as well as the storage and memory requirements when compared to the fullly

quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical

energies in very good agreement with the available experimental data and the results of fully

quantum-mechanical calculations.

1 Introduction

The majority of theoretical and experimental studies of molecular
properties in highly excited states have focused on probing the
vibrational and electronic contributions to the molecular energy.
Much less is known about molecules at very high rotational
excitation. Several recent theoretical studies have demonstrated
that ultrafast rotating molecules open a new avenue for investigating
chemical reactivity,1,2 low-temperature collisional dynamics,3–6

rotational cooling and trapping,7,8 and other unusual phenomena
occurring for molecules with rotational energies comparable in
size to their chemical bond strengths.

Until recently, excited rotational states of molecules were mostly
populated in experiments by simply increasing the temperature
or using microwave ladder excitation techniques.9,10 Owing, for

example, to limitations of the temperatures that can be reached
in practice, only moderate rotational excitation can be achieved
in this manner. With the advent of the molecular optical
centrifuge,1,11 generated by two powerful counter-rotating ultra-
fast, oppositely chirped laser pulses, it became possible to
prepare and control molecular ensembles at extremely high
rotational excitation, even at low temperatures. The centrifuge
has been successfully implemented to study the infrared spectrum
of CO2 in rotational states of very high energy12,13 ( J E 220).

The quantum-mechanical calculation of the rovibronic energies
of a polyatomic molecule within the Born–Oppenheimer approxi-
mation (see, for example, ref. 14 and references therein) normally
involves the choice of a zero-order model, that is, a simplified
description of the molecule leading to a Hamiltonian whose
eigenvalues and eigenstates are known or easily obtainable.
Historically, the zero-order model of choice has been the
rigidly-rotating/harmonically-vibrating molecule (see, for example,
ref. 15 and references therein) whose rotation is modelled as that
of a rigid rotor, and whose vibration is modelled as that of a
collection of uncoupled harmonic oscillators. Rotation and
vibration are considered as entirely independent, and so the
eigenfunctions of the corresponding zero-order Hamiltonian
are products of well-known rigid-rotor eigenfunctions and
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harmonic-oscillator eigenfunctions.16 These zero-order eigen-
functions are now taken as basis functions in the calculation of
the eigenstates of the actual molecule. That is, the eigen-
functions for the Hamiltonian of the actual molecule are taken
as a (truncated) linear combination of the basis functions. This
‘Ansatz’ converts the Schrödinger equation into a matrix
equation: each molecular energy is given as an eigenvalue of
a matrix representing the Hamiltonian in the chosen basis
set,16 and the corresponding eigenvector contains the expansion
coefficients defining the molecular wavefunction in terms of
the basis functions. In the early days of molecular theory,
perturbation theory represented the only possibility of diagonalizing
the Hamiltonian matrix. The perturbations to the zero-order model
are anharmonicity and rotation-vibration coupling. The ensuing
theoretical results, developed over many years, constitute an
extensive toolbox for the analysis of molecular spectra (again,
see ref. 15 and 16 and references therein). The perturbation-
theory approach runs into problem in the presence of so-called
resonances, when the energy separations between two or more
basis states are comparable in size to the matrix elements
coupling these basis states. With the advent of high-capacity
computers, it became possible to avoid the approximation
inherent in the perturbation theory by simply diagonalizing
the truncated Hamiltonian matrix numerically. This is known
as a variational calculation. Solution of the quantum mechanical
problem by means of variational methods provides – compared
to the results of perturbation theory calculations – a superior
description of molecular energies, in particular for molecules
in highly excited states. The variational methods have been
developed during the last decade so as to provide theoretical
data of a quality that is, at least, close to satisfying the exacting
demands of high-resolution spectroscopy.17–21 They nowadays
make use of zero-order models more sophisticated and physically
satisfactory than the rigidly-rotating/harmonically-vibrating
molecule. As already mentioned, the matrices to be diagonalized
in variational calculations are truncated: the exact solution is only
obtained in the limit of an infinitely large basis set which, in
practice, we must approximate by a finite number of basis
functions. This finite number must be chosen large enough that
the computed eigenvalues are converged so that they do not
change appreciably when more basis functions are included in
the calculation. As described at length in ref. 16, symmetry
arguments can be used to facilitate a variational calculation.
Nevertheless, the principal impediment to variational calculations,
which is most serious for highly excited states, is the substantial
size of the basis set required to obtain converged eigenenergies
and eigenfunctions, and the ensuing sizes of the Hamiltonian
matrices whose diagonalization is often very costly in terms of
computation time and storage capacity. Several methods have
been developed to tackle the problem of large basis sets by
devising appropriate ro-vibrational coordinates,21 employing
non-direct product contraction techniques21–23 and molecular
symmetry,19 using time-dependent basis functions,17,24 or carrying
out the matrix diagonalization with low-storage iterative Lanczos25

or filter26–28 techniques. Notwithstanding these efforts, variational
methods remain extremely expensive in terms of computer

capacity and, so far, they have been rarely applied to the
computation of energies and wavefunctions for highly excited
states of molecules with more than three nuclei. However, a
recent example of such a calculation (for H2O2) is given in
ref. 29. By means of the symmetry arguments mentioned
above,16 it can be rigorously shown that the Hamiltonian
matrix of an isolated molecule is block diagonal in the angular
momentum quantum number J (see, for example, ref. 16) and
the resulting matrix blocks can be diagonalized independently.
This fact can only be exploited with a basis set of eigenfunctions
of the angular-momentum operator J2, and the well-known
symmetric-top-eigenfunctions16 | J,k,mi are normally used.
The Hamiltonian matrix blocks are diagonal in the projection
quantum number m (= �J, �J + 1, . . ., J � 1, J) and the matrix
elements do not depend on m,16 so one can do a single
calculation for, say, m = 0 for a given value of J. However, as
J increases we must take into account increasingly more values
of k (= �J, �J + 1, . . ., J � 1, J); there are 2J + 1 values of k for
J given. Hence, the dimension of a Hamiltonian-matrix block
increases proportionally to 2J + 1 and so, for increasing J, the
matrix dimension will eventually reach a limit at which diagonali-
zation is no longer feasible with the available computers.

With the aim of avoiding the ‘‘high-J-catastrophe’’ just described,
we explore in the present work an alternative approach to the
calculation of energies for highly excited rotational states of
molecules. It is inspired by the fact that at high rotational
excitation, as the rotational angular momentum attains ‘macro-
scopic’ values vastly larger than h� = h/2p (where h is Planck’s
constant), the behavior of the molecule changes from being
quantum mechanical to being classical.30 This is known as the
correspondence principle. Correspondence-principle-inspired,
theoretical descriptions of molecular rotation (sometimes called
semi-classical theory) were developed already in the 1970s and
80s31–33 but, with a few exceptions,33–38 they have faded into
oblivion. In a semi-classical approach, the rotation is described
in terms of classical periodic trajectories on a so-called rotational
energy surface (RES). The RES is a function of classical angular
momentum components ( Jx,Jy,Jz) measured along molecule-fixed
axes xyz (see, for example, ref. 16). The function values are
obtained as molecular rotation-vibration energy values for the
vibrational state under study and for given fixed values of
( Jx,Jy,Jz).

39–41 RES theory has also been developed to take into
account the effect of tunneling between two equivalent rotational
trajectories by including classically forbidden complex periodic
orbits in phase space.36 One of the purposes of the present work is to
review and generalize previous semi-classical RES theory by couching
it in the path integral formalism.42 Another – which is described for
the first time here – is the generation of the RES by in fully quantum
mechanical calculations with the TROVE program.19,21

A central concept of the path integral formalism is the
quantum mechanical propagator which, in its original derivation,
gives the probability of finding a particle, whose position was
given by the coordinate value qi at the time t = 0, with the position
coordinate value qf at a later time t. The propagator can be
expressed as an integral, which conveniently contains the
Lagrangian (or the Hamiltonian) of the underlying physical

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
D

ec
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 1
:2

1:
55

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp05589c


This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 1847--1856 | 1849

system. In very general terms, one can write the propagator
K(qi,q f,t) as:

K qi; qf ; tð Þ ¼
ð
qðtÞ¼qf
qð0Þ¼qi

Dq exp
i

�h

ðt
0

dt 0Lðq; _qÞ
� �

; (1)

where p is the momentum of the particle and L = m
:
q2 � V(q)

represents the Lagrangian with the potential energy function V(q).

The functional measure is defined as Dq¼ lim
N!1

Nm

2pit

� �N=2 QN�1
n¼1

dqn.30

The physical interpretation is rather intuitive: the probability of the
particle getting from qi to qf during the time t is given as an integral
over all possible paths from qi to qf, where each individual path is
weighted by its action, equal to the time integral over the appropriate
Lagrangian function along the path in question. The action attains
its maximum value for the classical path but, in contrast to usual
classical mechanics, the path integral takes into account all other,
less probable paths which makes it a suitable tool for describing
quantum mechanical processes. The strategy of weighting the paths
by their action is the starting point of the semi-classical description.
Since the path integral can also be used in a perturbative context,
one can allow only for ‘‘small’’ fluctuations around the classical path
and hence derive a semi-classical approximation of the propagator.
It is ‘‘the ideal starting point for semiclassical calculations’’ (ref. 43,
p. 262), but is nowadays also used as the fundamental basis of
quantum field theory, which is highly important in many fields of
single particle and many-body physics and chemistry. In the
approach of the present work, we use the density of states – a
physical observable – as the starting point for the discussion of the
semi-classical approximation for the energy levels of the rotating
molecule. The density of states is calculated from the Fourier
transform of the propagator. As the rigorous derivation of the density
of states is beyond the scope of the present work, we refer to
textbooks such as ref. 30 and 43. The density of states exhibits poles
at the quantized energy levels and these poles can be calculated
using the semi-classical RES by identifying certain periodic orbits on
it. These paths are selected by symmetry arguments and can be
calculated by considering the operations of the molecular symmetry
group,16 which can be correlated with motions on the RES.

The resulting, new method describes the effect of tunneling
in a more rigorous and natural way involving a molecular
symmetry group16 analysis; this yields results equivalent to
the original ones from ref. 36. Another novel aspect of the
proposed method is that the underlying RES is obtained quantum
mechanically by means of variational theory as implemented in
computer program TROVE.19,21 This is probably the most
important progress made in the present work. Indeed, it is
not the first time that quantum-mechanically calculated RES’s
have been subjected to classical analysis,44,45 but we make a
further development here in that we describe the tunneling
effects just mentioned. In earlier works, effective Watsonian-
type Hamiltonians or (semi-)classical vibrational models have
been used to determine the RES.33,46,47 The combination of the
high accuracy first-principles quantum mechanical treatment
of the (excited) vibrations by TROVE, and the semi-classical
treatment of the rotation (including the tunneling effects),

makes the method of the present work a versatile tool for the
understanding of ro-vibrational molecular dynamics at high
rotational excitation. This is one of the chief points of the
present work: our calculations directly connect the (quantized)
rotational energies of a single molecule at large rotational speed
to particular, unambiguously defined paths on the vibrationally
averaged RES. This induces a clear understanding of this
high-speed motion, in contrast to pure quantum studies, where
the eigenvalues of a Hamiltonian matrix provide energies
more accurate than those obtained semi-classically, but
where the motions associated with the quantum-mechanical
energies can only be understood (and that only to a certain
extent) by complicated visualizations of the wavefunctions. The
semi-classical approach allows an intuitive and definitive inter-
pretation of the molecular states in terms of quasi-classical
motions.

For the proof-of-principle numerical tests of the present
work we have chosen the SO2 molecule since its energy level
pattern has been characterized to high angular momentum
values ( J r 80), both experimentally48 and in fully quantum-
mechanical, variational calculations.49 For several vibrational
states of SO2, we have calculated semi-classical rotational
energies which show very good accuracy when compared to
experimental data or with the results of full quantum mechanical
calculations. By comparisons with experiment we must take into
account that only the A1 and A2 states of SO2 – with symmetry
group C2v(M)16 – are allowed by nuclear spin statistics, while B1

and B2 rovibrational states are forbidden.16 Our calculations do
not as yet consider spin statistics.

The paper is organized as follows. In Section 2 we formulate
the general semi-classical treatment of molecular rotational
motion using the path integral approach. The calculation of the
RES for a general molecule by means of TROVE is presented in
Section 3. In Section 4 we report semi-classical calculations of
the rotational energies for the SO2 molecule and assess the
accuracy of the results. Section 5 finally provides a summary
and a discussion of the perspectives for future studies.

2 The semi-classical approach

At large angular momentum, we expect the rotational dynamics
to be governed by the classical Euler–Lagrange equations of
motion. Accordingly, a path integral approach – being a versatile
tool for studying classical mechanics – is well suited for solving
these equations. Assuming the actual motion to take the form of
small fluctuations around the classical path, we take the density
of states r(E) to be given by the semi-classical expression long
known as ‘‘Gutzwillers trace formula’’42

rðEÞ � �rðEÞ þ 1

p�h
Re
X
a

TaFae
iSaðEÞ=�h: (2)

Here, we sum over periodic orbits a of the classical system
weighted by the respective action Sa = padqa, the period Ta and a
stability amplitude Fa, which here includes the Maslov index.
The quantity �r(E) is the smooth part of the density of states,
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calculated as the purely classical contribution. For a detailed
mathematical description of the semi-classical approach to
obtaining the density of states in the path-integral formalism,
we refer the reader to ref. 30, 50 and 51.

In rotationally resolved molecular-spectroscopy studies, the
actual energy levels are of principal interest. In the approach of
the present work, they can be determined at the poles of the
oscillatory part of r(E). Furthermore, the energy levels are
labeled by their symmetry species (irreducible representations)
in the appropriate symmetry groups16 of the molecular Hamiltonian.
With the symmetry labels we can obtain, for example, selection rules
for state-to-state transitions. Projecting the density of states in eqn (2)
onto the space of states belonging to one particular irreducible
representation Gm, we obtain the symmetry reduced oscillatory part
of the density of states:52

rosc Emð Þ � 1

p�h

dm

jGjRe
X
a

TaFawm gað ÞeiSa=�h; (3)

where dm is the dimension of Gm, wm the character of the related
matrix representation of the symmetry group element g and
Gj j ¼

P
m

dm
2 denotes the number of elements in the symmetry

group G. Furthermore, the orbits to be summed over are now
periodic in the symmetry reduced phase space and their initial
and final points are related by a symmetry operation ga, which is the
unit element, ensuring the periodicity of the orbit. This unit element
can be composed of numerous symmetry elements.

To include also quantum fluctuations superimposed on the
classical motion, we allow for so-called beam splitting, where
the paths get reflected or transmitted at their classical turning
points in phase space.36,53 The transmitted – and hence classically
forbidden – paths are described in phase space by a Wick-rotation54

to imaginary time so that the momentum becomes complex.
Consequently, the related action is imaginary and produces an
exponential damping factor in the density of states (cf. the
discussion of instantons in double-well potentials in ref. 30).
We introduce the well-known WKB reflection and transmission
amplitudes46,55 r and t for the quantum fluctuations and in
terms of these (see Appendix for their definitions), the oscillatory
part of r(Em) is formally given by:

rosc Emð Þ � � dm

jGjRe
X
a

ffiffiffiffiffiffi
Aa

p
Tawm gað ÞeiSa ; (4)

where Aa ¼
QnðaÞr

i¼1
rij j2

 ! QnðaÞt

j¼1
rj
�� ��2

0
@

1
A describes the product of

n(a)
r reflections and n(a)

t transmission probabilities, characterized
by ri and tj respectively. An appropriate description of the paths,
combined by real (i.e., classically allowed) and tunneling (i.e.,
classically forbidden) segments is made by carefully choosing the
symmetry group elements describing the different segments and
combining them in a sequence corresponding to the sequence of
factors in Aa. Thus, each path is characterized by a sequence of
the type ra�1teiaS, where a is the number of real segments between
the one transmission and the end of the path (cf. eqn (11) in
ref. 46) and the action S is identical for all a. The sum over all

possible combinations of, e.g., the number of real segments
between two transmissions or over the number of transmissions
in total, is initially rather involved but, fortunately, it can be
reduced to a geometric series, and a relatively simple expression
is obtained:

rosc Emð Þ ¼ dm

jGjTr e�iSDymðoÞ � 1m � tDmðtÞ
� ��1

eiSDmðoÞ
n o

(5)

where o and t parametrize the real and tunneling symmetry
elements, respectively, and the Dm are the representation matrices
constituting Gm (1m is the unit element of Gm). The poles, i.e. the
energy levels, are now found by the determinant equation:

det e�iSDymðoÞ � 1m � tDmðtÞ
� �

¼ 0: (6)

Here, o and t describe the symmetry operations parameterizing
the real and tunneling paths, respectively. Equipped with this
equation and the molecular symmetry group, it becomes possible
to find the quantized energies of any well-defined rotational energy
surface. In the following section, we will apply this strategy to
the test molecule SO2 whose energies are well known, both
experimentally and theoretically, up to large values of the
angular momentum quantum number J.

3 The rotational energy surface

For a single vibrational state, the semi-classical approach
initially requires a RES35,36 obtained, as mentioned above, by
replacing the molecule-fixed components of the angular

momentum operator Ĵ = ( Ĵx, Ĵy, Ĵz) by their classical, time-
dependent analogons J = ( Jx, Jy, Jz). This defines a Hamiltonian
function H depending on ( Jx, Jy, Jz) and we make allowance
for quantum mechanics in that we fix the length of J to be
| J|2 = J( J + 1)�h2. This function is then used to calculate the
action SðEÞ ¼

H
pdq of the closed orbits, where p is simply the

solution of H(p,q) = E. The trajectories themselves are found on
the RES and hence it is the fundamental starting point for the
approach described in Section 2 when applied to the rotational
problem.

The RES has been successfully used to explain qualitatively
the emergence of rotational energy clusters for large J quantum
numbers.33 In order to provide proof of principle, in the present
work we focus on a simple molecule with no rotational-energy
clustering. The absence of energy cluster formation requires
that the RES does not change topologically as J increases. We
have found that the sulfur dioxide molecule SO2 satisfies this
requirement and, in addition, its rotation-vibration energy level
pattern is well characterized up to high J values.48,49,56 For these
two reasons, we have chosen to validate our approach by
computing the rotational energies of SO2.

To explain how we calculate the RES, we consider now an initially
general ro-vibrational Hamiltonian for an N-atomic molecule
defined in terms of the 3N � 6 generalized vibrational coordinates
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xk, the conjugate momentum operators p̂k = �ih� q/qxk, and three
angular momentum operators Ĵx, Ĵy, Ĵz

Ĥrv ¼ Ĥvib þ
1

2

X
a;b¼x;y;z

GabðxÞĴaĴb

þ 1

2

X
a¼x;y;z

X3N�6
k¼1

GakðxÞp̂k � p̂kGkaðxÞ
" #

Ĵa:

(7)

Here, Ĥvib denotes the purely vibrational Hamiltonian and includes
the vibrational kinetic energy operator, the Born–Oppenheimer
potential energy function and the pseudo-potential terms (see, for
example, ref. 19 and 21). The remaining two terms (involving
the Ĵa operators) describe the rotational kinetic energy and the
ro-vibrational (Coriolis) coupling, respectively. In eqn (7), the
quantities Gab(x) and Gak(x) are functions of the vibrational
coordinates x � x1,. . .x3N�6. Depending on the definition of x
and the choice of the molecule-fixed Cartesian axes, Gab(x) and
Gak(x) can be evaluated analytically or numerically on a grid20 or as a
power series expansions around a suitable reference structure.19,21

As mentioned above, the rotational energy surface, required
for determining the paths in the semi-classical approach discussed
here, is now defined by replacing in eqn (7) the operators ( Ĵx, Ĵy, Ĵz)
by their classical counterparts ( Jx, Jy, Jz), here defined as

Jx ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ � p2

q
cosf; (8)

Jy ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ � p2

q
sinf; (9)

Jz = �hp, (10)

where, for convenience, we have introduced

p ¼ ð�iÞs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
cos y:

Here, y and f are usual spherical coordinates defining the
direction of J in the molecule-fixed axis system xyz, and s = 0
or 1. A s-value of 0, with Jz being real, corresponds to a real,
classically allowed path, whereas a value of 1, with an imaginary
value of Jz, corresponds to a classically forbidden tunneling
path (see Section 2). Following ref. 33, also in the s = 1
tunneling case we calculate ( Jx

2 + Jy
2)/�h2 as J( J + 1) � p2

[eqn (8) and (9)], in spite of the fact that in this case, this
quantity is larger than J( J + 1).

We make only the replacement ( Ĵx, Ĵy, Ĵz) - ( Jx, Jy, Jz) in Ĥrv;
we do not change Ĥvib. Thus, we obtain a Hamiltonian that
retains in full the quantum mechanical description of the
vibrational motion while it depends parametrically on the two
rotational variables (y, f) and on the angular momentum
quantum number J. To our knowledge, this is the first time
that RESs have been generated for different vibrational states in
a full quantum solution.

We use TROVE to solve the ro-vibrational Schrödinger
equation at fixed values of the parameters y A [0,p], f A [0,2p],
and J. Each of the resulting vibrational eigenvalues E1,. . .En of
the Hamiltonian provides a point on the RES for the vibrational
state in question, i.e. RESi(y,f) = Ei. Following this procedure,

the RESs for several vibrational states and several values of
J may be obtained on a grid of (y, f) coordinates by solving the
vibration-only eigenvalue problem for each grid point. One may
think that the task of finding the RES by repeatedly solving the
eigenvalue problem for thousands of points is quite expensive
and unlikely to be very competitive with the full variational
treatment. This is partly true for low values of J but, as
J increases the steep (2J + 1)3 computational scaling of the full
variational treatment is quickly outstripped by the RES calculation,
which involves the diagonalization of matrices with dimensions
independent of J.

In the present work we employ two methods for solving the
vibrational problem: the Watson-type effective-Hamiltonian
method,57 and the rigorous variational method, as implemented
in the computer program TROVE.19,21 The purpose of considering
the former method is somewhat academic; the values of the
effective-Hamiltonian parameters are normally determined by
least-squares fitting to experimental spectroscopic data, and the
amount of such data available is typically limited to rotational
states at moderate excitation in a few vibrational states. The
extrapolation to high rotational excitation is problematic. On
the contrary, the variational approach TROVE is general and can
be applied to molecules of an arbitrary structure. It relies on the
ab initio or spectroscopically refined potential energy surfaces
and makes no approximative assumptions about the kinetic
energy operator. The effects of anharmonicity and Coriolis
coupling are intrinsically included in a TROVE-generated RES.
For more details about the TROVE approach, the interested
reader is referred to ref. 19 and 21.

4 The semi-classical energies
of the distortable rotor

To our knowledge, Robbins et al.36,46 have provided, more than
twenty-five years ago, the very first example of the semi-classical,
path-integral method discussed here being applied to a molecule.
They treated the rotational dynamics of SF6, described by the
(effective) Hecht Hamiltonian58 with octahedral symmetry. Their
results showed good agreement with energy levels determined in
quantum mechanical calculations. We will first investigate how
the semi-classical method performs when applied with a RES
obtained from a Watson-type effective Hamiltonian, and then
apply it with a TROVE-generated RES.19,21 Our results suggest that
it is generally useful in conjunction with any Hamiltonian
adequate for describing the molecular energy levels. It does
not require the Hamiltonian to depend on the angular momentum
operators in any particular way, in contrast to the approach of
ref. 36 which used the ‘‘Hecht Hamiltonian’’ for SF6. It is not
limited to any power of the perturbation expansion used to obtain
the Watson-type effective Hamiltonian and it can be applied to a
vibrationally averaged RES as done in the TROVE approach. As
already mentioned, our test case is the sulfur dioxide molecule SO2

(see Fig. 1), which is not expected to exhibit rotational-energy
cluster formation, and for which there are extensive data available
for comparison.
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In the absence of rotational energy clusters, the RES for an
asymmetric rotor generally has two extrema corresponding to
two main axes of rotation. These axes give rise to the largest and
smallest moment of inertia, respectively. A radial plot of the
RES shows the extrema explicitly and such plots, compared
with constant-energy spheres, are used to determine the classical
solutions of the Euler–Lagrange equations of motion.59 In parti-
cular, the intersection of the RES with a constant-energy sphere
represents a classical path on which the angular momentum and
the energy are both conserved. This corresponds to the physically
intuitive picture of a rotating body with a main axis of rotation
that precesses around the angular momentum vector (whose
direction and length are conserved, i.e., time-independent). In
the semi-classical approach, we project the RES onto the two
main axes of rotation (cf. Fig. 2). Inspecting the classical paths
corresponding to these two projections, we notice that, depending
on the energy, there is a single axis around which the path is closed.
The projection, in itself, defines a coordinate and a conjugate
momentum. This conjugate momentum is paramount for carrying
out the semi-classical analysis; the action for the path in question is

calculated in terms of the angular momentum along this path. In
particular, for the paths closing around the Jx axis (called Jx

quantization in Table 1), the Jz axis is chosen to define the
momentum p, whereas in the Jz quantization case, Jx = p.

In order to find the poles of the density of states, the
parameterization of the paths in terms of the real and the tunneling
segments is crucial. It depends on the chosen projection axis and is
done using two different rotation operators (cf. Table 1). The two
operations o and t determine the path and hence they define the
periodic orbits. Periodicity is ensured by the use of a combination
of symmetry elements, so that their successive application, as
described in Section 2, defines a path on the RES starting and
ending in the same point. This is shown in Fig. 2, where classical
and tunneling paths are displayed on the (projected) RES. As
stated above, only for one choice of the projection these closed
paths exist and hence, the two choices of (o,t) are mutually
exclusive.

If a symmetry group is specified for the molecule under
study, we follow the strategy of Robbins et al.46 and determine
the poles of the density of states [eqn (4)] by solving eqn (6). For
SO2, the molecular symmetry group16 is the simple, four-element
group

C2v(M) = {E,(12), E*, (12)*} (11)

where16 E is the unit operation, (12) is the interchange of the
two O nuclei, E* is the inversion operation and (12)* = (12)E*.
The C2v(M) group has four irreducible representations A1, A2,
B1 and B2 which are all non-degenerate (see Table A-5 of ref. 16).
Thus, the quantized energy levels E of the asymmetric rotor are
straightforwardly determined as the solutions of

e�iS(E)wm(o) � r(E) � t(E)wm(t) = 0, (12)

where the action S(E), and the reflection and transmission
amplitudes (r(E) and t(E), respectively), are functions of the
energy. For the two different choices of projection axes (x and z)
and the four different symmetry species A1, A2, B1 and B2, we get
distinct quantization rules summarized in Table 1. The table
lists also the so-called equivalent rotations of the elements in
C2v(M). For each group element, the equivalent rotation has the
same effect on the rotational coordinates as the group element
itself (see ref. 16). In Table 1, the equivalent rotations are

Fig. 1 The sulfur dioxide molecule SO2 at equilibrium with the molecule-
fixed axis system xyz attached. The molecule is in the xy plane.

Fig. 2 A schematic phase-space view of the SO2 rotational energy surface.
The RES obtained for a fixed J value is shown as a green surface, while the
red surface represents the constant energy. The real, classically allowed
paths are the intersections of these two surfaces. The separating energy Es

governs the transition from the quantization axis considered here to an
alternative one, since for energies E 4 Es no closed path is possible.

Table 1 Parameterizations of the real and tunneling paths of SO2

obtained for the quantization axes x and z and for the four possible
irreducible representations of C2v(M) (see text). The quantization conditions
obtained from eqn (12) require the listed quantities to vanish for an integral
value of n. Here, d is the phase shift at a classical turning point and S̃ represents
the tunneling action. For exact definitions see appendix and ref. 46

Jx-Quantization Jz-Quantization

o (12)* 8 Rp
x E* 8 Rp

z

t (12) 8 Rp
y (12) 8 Rp

y

A1 d + S � (�1) J tan�1 eS̃ � 2np d + S � (�1) J tan�1 eS̃ � 2np
A2 d + S � (�1) J tan�1 eS̃ � (2n + 1)p d + S � (�1) J tan�1 eS̃ � (2n + 1)p
B1 d + S + (�1) J tan�1 eS̃ � 2np d + S + (�1) J tan�1 eS̃ � (2n + 1)p
B2 d + S + (�1) J tan�1 eS̃ � (2n + 1)p d + S + (�1) J tan�1 eS̃ � 2np
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expressed in terms of operators Rp
a, rotations of 1801 about the

a (= x, y, z) axis (see Fig. 1). Thus, for example, (12)* has the
equivalent rotation Rp

x, a rotation of 1801 about the x axis.
Note that in both projections, the tunneling paths are

described by the same symmetry element (12), producing a
reversal of the main axis of rotation and thus a reversal of the
handedness of the respective rotation. Furthermore, in the case
of zero tunneling probability, doubly degenerate states of
symmetry A1 " B1 or A2 " B2 ensue for the Jx quantization,
whereas for the Jz quantization axis, the degenerate states have
symmetries of A1 " B2 or A2 " B1.

We now apply our method to the asymmetric-top molecule SO2.
The RESs for different vibrational states of SO2 are generated using
two methods, the Watson-type effective Hamiltonian and the
variational approach TROVE. The parameter values of the effective
Hamiltonian have been determined by fitting to experimental
spectroscopic data. In the TROVE calculations we employed an
accurate potential energy surface for the ground electronic state of
SO2, computed ab initio and refined in fittings to experimental
data.49,56 During the course of the present work, new ab initio
potential energy surfaces for the X̃1A1 and C̃1B2 (21A0) electronic
states of SO2 were reported by Kłos et al.60 We prefer to use here
the ground state surface from ref. 49 and 56 since it was optimized
in a least-squares fitting to experimental data and this produces,
in our experience, the highest accuracy.

Following the general treatment discussed above, we implement
our quantization procedure through a step-by-step strategy: (i)
choose a quantization axis, dictated by the energy such as to project
the RES onto a one-dimensional problem H(p,q); (ii) solve H(p,q) = E
for p in order to calculate the action of the real paths (real
solutions) and the tunneling segments (imaginary solutions);
(iii) calculate the left hand side of eqn (12) for various energies;
(iv) locate the energy values for which eqn (12) is satisfied. The
semi-classical results obtained from the RESs generated using
TROVE and the Watson-type, effective Hamiltonian approach
are henceforth referred to as TROVE-RES and Watson-RES,
respectively.

Fig. 3 (left panel) compares J = 40 rotational energy values for
the vibrational ground state of SO2 obtained in a fully quantum-
mechanical TROVE calculation with values resulting from the
semi-classical method of the present work. The right panel of
the figure makes an analogous comparison for the n2 vibrational
state for which, however, no Watson-type effective rotational
Hamiltonian was used. In both cases, the semi-classical results
agree with the fully quantum-mechanical ones to within a few cm�1.
Note that the results presented here include all ro-vibrational
eigenstates, also the ones forbidden by Bose–Einstein statistics.

A detailed inspection of the deviations between the semi-
classical results and the fully quantum-mechanical energies
shows that these are larger for the TROVE-RES than for the
Watson-RES results (Fig. 4). In addition, the deviation pattern
seen in Fig. 4 for the A1 ro-vibrational energies in the vibrational
ground state of SO2 is found to be repeated for the other
symmetry species, and for other vibrational states. A possible,
physical reason for the large deviations of the two models could
be that the TROVE calculation of the RES, being perturbation-
theory-free and involving high-level vibrational wavefunctions
with anharmonicity effects included, is conceptually different
from, and much improved relative to, the approach based on a
Watson-type effective rotational Hamiltonian obtained with
perturbation theory and harmonic-oscillator vibrational basis
functions. We think that particularly this point needs further
investigation; a full understanding of the vibrationally averaged
RES is imperative for the calculation of energy levels by semi-
classical methods, especially when these energy levels are so
highly excited that, for reasons of computer capacity, they
cannot be computed by fully quantum-mechanical methods.
As a first step in this direction, we have calculated, by semi-
classical methods, energy levels from a TROVE-generated RES
for angular momentum quantum numbers of J = 40, 60, and 80.
We present in Fig. 5 the deviations of these values from the full
quantum-mechanical values obtained in complete TROVE
calculations. In order to facilitate the comparison in the different
energy ranges corresponding to the increasing values of J, we show

Fig. 3 Rotational energies of SO2 for J = 40 in the vibrational ground state (left panel) and in the n2 state (center panel), calculated as discussed in the
text. The symmetry species of the states in C2v(M) are indicated. In the right panel, we show also 2n2 levels, where we compare to recent quantum
calculation of ref. 49, where only the Pauli-allowed species of A1 and A2 symmetry were treated. In that comparison, we have subtracted a constant offset
of 10 cm�1 from the semi-classical values. At present, we have no explanation for this offset.
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in the figure the relative deviations, i.e., (ESC � EQM)/EQM, where
ESC and EQM are the semi-classical and quantum-mechanical
energy values, respectively. The results for J = 80 are calculated
only up to energies of 7800 cm�1 above the ground state. For
higher energies and higher J quantum numbers, computer
limitations preclude the quantum-mechanical calculations.
The results in Fig. 5 clearly indicate that the relative deviation
decreases with (i) increasing energy as well as with (ii) increasing
J quantum number. Therefore, we expect semi-classical studies
of even higher J quantum numbers, where the quantum calculations
are unfeasible, to be accurate.

5 Conclusion

In summary, in the present work we have reformulated, in
terms of a path-integral formalism, the semi-classical approach
to determining molecular energy levels for states with large
angular-momentum values. We have combined various, previously
known techniques including Gutzwillers trace formula,42 and
symmetry analysis based on the molecular symmetry group,16

and the isomorphic group of equivalent rotations.16 Furthermore,
we have introduced a new robust approach to generate the
rotational energy surface for vibrationally excited states variationally,
by solving the vibrational Schrödinger problem on a grid of the
angles (y,f) that define the direction of the angular momentum
vector J in the molecule-fixed axis system xyz. Thus the solution of
the vibrational problem is fully quantum-mechanical, only the
highly excited rotational dynamics are treated semi-classically. We
have done calculations generating the rotational energy surface in
the TROVE approach19 and in the perturbation-theory approach
leading to the Watson-type effective rotational Hamiltonian. These
proof-of-principle calculations were done for the SO2 molecule,
which has been studied spectroscopically for a long time and for
which observations have been made for the angular momentum
quantum number J o 70. When compared to energy values
obtained in purely quantum-mechanical calculations, the semi-
classical results are in broad agreement with these, the typical
deviations being a few cm�1 (see Fig. 3 and 4). That is, currently
the semi-classical energy values are not sufficiently accurate to
satisfy the exacting demands of high-resolution molecular spectro-
scopy, but the present work constitutes a first step towards
determining molecular energies at high rotational excitation.
There are two main advantages of our new approach: Firstly, the
computing time for calculating the energies for a given J-value is
largely independent of J; it is mostly dependent on the efficiency of
producing explicit rotational energy surfaces by quantum-
mechanical solution of the vibrational problem. All steps of
quantizing the rotational energy surface are done very efficiently
and the computing time scales only with the range of energy
required for a given RES (see Fig. 6). By contrast, as mentioned
above, the computing time for a given J-value typically scales as
(2J + 1)3 in fully quantum-mechanical, variational calculations of
rotation-vibration energies. Secondly, the rotational energy surface
allows the rotational motion at high excitation to be intuitively
understood: Each quantized energy level corresponds to a trajectory
on the RES which is directly related to the motion in space.

We have already pointed out that at present, our energy
results are not accurate enough to be of use to high-resolution

Fig. 5 Relative deviation (ESC � EQM)/EQM of semi-classical energy levels
ESC calculated using TROVE generated RES for the vibrational ground state
and according full quantum-mechanical energies EQM. The deviation is
shown in percent and the dashed lines represent the mean of this
deviation.

Fig. 4 Absolute deviations (in cm�1) between semiclassical and fully quantum-mechanical TROVE values for the rotational energies in the vibrational
ground state of SO2. Very similar patterns are obtained for other vibrational states. The dashed grey line indicates the change of the quantization axis
inducing near-degeneracy of state pairs (see text).
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molecular spectroscopists, but we hope that future, more
detailed investigations of the vibrationally averaged, TROVE-
generated RES might lead to new insights into the accuracy
achievable by the semi-classical approach. The present work
has shown that at the moment, the semi-classical approach
with a RES generated from a Watson-type effective rotational
Hamiltonian produces energies deviating from their fully
quantum-mechanical counterparts by about 2 cm�1 on the
average. At high J values, where the correspondence principle
is valid, a similar level of agreement is obtained between the
TROVE-RES semi-classical energies and the quantum-mechanical
results (Fig. 4 and 5). This is one of the chief results of the present
work: Using the variational TROVE approach to generate a RES
for further use in a semi-classical analysis of the rotational energy
levels for various vibrational states is possible and produces
energies with a relative deviation from exact quantum calculations
of a few percent. This is – to our knowledge – the first time such a
combined approach of variational principle and semi-classical
analysis has been employed for molecular dynamics.

From a physical point of view, we think that a more
thorough investigation of the interplay between vibrational
states and their respective RESs is the key to describing the
molecular motion at high energy. In the highly excited states
located there, rotation-vibration coupling is very important
since the interaction of a given state with increasingly higher
excited vibrational states has to be taken into account. Since we
have reformulated the theory in terms of Gutzwillers trace
formula,42 another interesting issue would be a semi-classical
treatment of rotational and vibrational degrees of freedom
simultaneously, because Gutzwiller’s formula can be generalized
to higher dimensions. Hence, we think, a comparison to the
methods used, e.g., by Frederick et al.,47 where one bending
vibration has been incorporated with the semi-classical rotation,
would be fruitful. We expect a scheme, analogous to that of

decoupled rotations described in the present work, to be appro-
priate also in this case.
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