Open Access Article. Published on 01 November 2017. Downloaded on 2/12/2026 6:58:51 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

ChemComm

W) Check for updates ‘

Cite this: Chem. Commun., 2017,
53, 12278

Received 7th August 2017,
Accepted 15th September 2017

DOI: 10.1039/c7cc06175g

rsc.li/chemcomm

Ruthenium(i) tris(bipyridyl) protein surface mimetics are used in an
array format to sense and discriminate proteins including thera-
peutically relevant targets, hDM2 and MCL-1, using linear discrimi-
nant analysis (LDA).

The sensing and detection of proteins represents an ongoing
challenge in life sciences research. The ability to detect the
presence or absence of a disease relevant protein and/or changes
in protein levels in response to environmental stimuli are key
objectives in healthcare diagnostics and proteomic approaches
to understanding signalling pathways.'™ Whilst antibodies
and related reagents have proven enormously powerful in this
regard,”® synthetic reagents are attractive in terms of their
stability and cost-effective preparation. However, the identifi-
cation of synthetic molecules that recognise their targets with
high affinity and selectivity is challenging. Within the broad
supramolecular chemistry community, considerable emphasis
has been placed on the exploitation of synthetic molecules in
an array format, using their composite response to achieve
sensing in a manner that reproduces the process by which smell is
distinguished.”™ Porphyrins,"*'* peptidomimetic libraries,">'®
nanoparticles’”® and multifunctional small molecules®®* have
all been used for protein sensing. In the current manuscript we
demonstrate for the first time that protein surface mimetics®
based on a ruthenium(u) tris(bipyridyl) scaffold can be exploited in
an array format to sense and discriminate proteins through solvent
exposed surface recognition. Crucially, using linear discriminant
analyses (LDA) we show that sensing is enhanced when the
ruthenium(u) tris(chelates) are employed alongside a second
fluorescent reporter, that the discriminatory power of such
arrays can be dominated by the response of a single protein
analyte, and finally that the approach can be used to sense the
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structurally similar proteins ADM2 and MCL-1 (similar MW,
pI and protein-binding interfaces), both of which are important
anticancer targets.>*>

We and others recently described a family of highly function-
alised ruthenium(u) tris(bipyridyl) co-ordination complexes
that act as high affinity and selective ligands for protein
surfaces.”>® These cell penetrant® protein surface mimetics
have been shown to recognise cytochrome ¢ (cyt ¢) with high
affinity through enthalpically and entropically favourable electro-
static interactions,*® to inhibit the protein-protein interactions
of cyt ¢,*® to selectively destabilize the protein target,®" and, to
exhibit affinity for the protein target in a manner dependent on
the geometry at the metal centre.”®

Using a series of eight of these ruthenium(u) complexes
(1-8, Fig. 1a) we initially constructed a sensing array to attempt
the discrimination of six proteins (lysozyme, a-chymotrypsin
(o-ChT), horse cyt ¢, papain, RNAse A and bovine serum albumin
(BSA)), selected to provide a diversity of shape, size and surface
charge (Fig. 1b). The array produced a fingerprint luminescence
response (Fig. 2a, b and see ESI,T Fig. S1) allowing us to perform
statistical analyses to interpret the data. Discriminant analysis
(DA) has been widely used in the literature to reduce the dimen-
sionality of array data,® using matrix techniques to calculate
combinations of the original data which describe the maximum
between class variation while keeping the within class variation at
a minimum. Despite the pronounced luminescence response of
the array, in this configuration only cyt ¢ could be discriminated
from the other proteins using 2D (not shown) or 3D LDA (Fig. 3a)
whilst the remaining proteins occupied a similar region in the
LDA plots.

To improve the discriminatory power of the array we added a
second fluorescent reporter molecule, specifically a fluorescein
labelled BCL-2 family BH3 sequence (a NOXA-B variant) similar
to those we have used®® in studies on constrained peptides. In
such a configuration, the speciation of the array is such that the
interactome is considerably more complex with the possibility
for interaction between both sensing fluorophores, and, poten-
tially different responses to the analyte with the fluorophores
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Fig. 1 Structures used in this work (a) ruthenium(u) tris(bipyridyl) co-
ordination complexes 1-8 (b) X-ray crystal structures with molecular
weights (MW) and isoelectric points (pl) of the proteins; lysozyme (PDB
ID: 1LYZ), a-chymotrypsin (a-ChT) (PDB ID: 4CHA), horse cyt ¢ (IHRC),
papain (PDB ID: 9PAP), RNAse A (PDB ID: 5RSA), bovine serum albumin
(BSA) (PDB ID: 3V03), hDM2 (PDB ID: 4GH7) and MCL-1 (PDB ID: 5C3F)
(electrostatic potential is shown with basic (blue) and acidic (red) regions).

alone or in combination, (a more detailed explanation for the
sensing mechanisms and diagram is given in the ESI, T Fig. S2).
Given the proximity of the emission maxima for fluorescein and
the MLCT luminescence of the Ru**(bpy); core and the signifi-
cantly greater quantum yield of the former, we tested different
concentrations of the two sensing elements to establish
conditions at which both could be observed in a standard
emission spectrum (see ESI,T Fig. S3). This established working
conditions of 2.5 uM Ru**(bpy); surface mimetic, 0.5 pM FITC-
NOXA and 10 pM protein as optimal for further array studies.
An array with six different proteins was performed, and the
luminescence of the Ru**(bpy), surface mimetics and the FITC-
NOXA B peptide recorded and compared to that without
the protein present. This gave rise to differential responses
(see ESI,t Fig. S4) from the Ru**(bpy); surface mimetics and
FITC-NOXA B peptide, resulting in a fingerprint-like response
(Fig. 2c and d). Subtly different responses were obtained after
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Fig. 2 Fingerprint luminescence responses for the six different proteins
on incubation for 2 and 20 h, (a and b) with Ruz*(bpy)3 surface mimetics
1-8 alone, monitoring Ru*(bpy)s MLCT, Jem = 630 nM; (c and d) with
Ru®*(bpy)s surface mimetics 1-8 and FITC-NOXA-B peptide, monitoring
RuZ*(bpy)s MLCT, Zem = 630 nM; (e and f) with Ru* (bpy)s surface mimetics
1-8 and FITC-NOXA B peptide monitoring fluorescein emission, lem =
530 NM (Jexe = 467 nm, 5 mM sodium phosphate, pH 7.5, 2.5 uM Ru(bpy)s
surface mimetics 1-8, 0.5 uM FITC-NOXA-B peptide and 10 uM protein,
readings using fixed filters).

2 and 20 h incubation and these were exploited in subsequent
LDA analyses.

Considering only 2 discriminants which define the most
between class variation, the proteins cluster for the 2 h, 20 h and
combined 2 and 20 h data sets (see ESLt Fig. S5). In all three
cases cyt ¢ always appears as a distinct separate cluster. After
2 hours the BSA cluster is defined and after 20 hours the RNAse
A cluster is defined, in combination discrimination of both these
proteins is achieved however significant overlap between o-ChT
and lysozyme, and, papain and lysozyme was observed. To
separate these protein clusters further, 3D LDA was used, assign-
ing the 3rd linear discriminant (F3) as the z axis. The 3D LDA,
again, shows the clearly defined clusters and provides separation
for all proteins (Fig. 3b). In comparison to the original Ru*>*(bpy);
array where only discrimination of cyt ¢ could be achieved
(Fig. 3a), addition of the second fluorophore, allowed for much
better discrimination. Using the 3D LDA it is possible to plot
confidence ellipsoids, in order to graphically represent the
confidence with which it is possible to discriminate the different
proteins. At the 95% confidence level (Fig. 3c) the confidence
ellipsoids are clearly distinct but have some overlap meaning the
analytes are not fully discriminated. However, at the 80% con-
fidence level (Fig. 3d), the ellipsoids are distinct from each other,
showing significant discrimination at this level. Future studies
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Fig. 3 LDA analyses of Ru(bpy)s surface mimetic 1-6 array (a) LDA of
Ru2*(bpy)s complex array with six target proteins fails to achieve clustering
of the analytes (each panel represents a different orientation of the data to
aid visualization), (b) LDA of Ru®*(bpy)s surface mimetic array in the
presence of FITC-NOXA B, combining 2 hour and 20 hour incubation
data allows separation of all six proteins into distinct clusters (c) 95%
confidence ellipsoids for the data shown in (b) and (d) 80% confidence
ellipsoids for the data shown in (b), (conditions as given in Fig. 2).

will focus on the use of a more diverse set of Ru>*(bpy); surface
mimetics and the acquisition of additional replicates, to build
on these preliminary results; these are anticipated to narrow the
clustering of the data.

Having had success in discriminating commercially avail-
able proteins, more therapeutically interesting proteins were
added to the array, namely MCL-1 and ZDM2, noting the NOXA-B
peptide is a known to bind MCL-1 (at low nM K4 and detected
using fluorescence anisotropy/not intensity as is the case here).
3D LDA was performed with the data obtained for all the
proteins, again showing clearly defined clusters for each protein,
however there was considerable overlap of the clusters for some
proteins, with all the data for 5 of the proteins (BSA, o-ChT,
papain, RNAse A and lysozyme) existing on a straight line parallel
to the z (F3) axis (see ESL 1 Fig. S6). Using other discriminants
(the fourth and fifth discriminants) to replace the first, second or
both discriminants, still did not separate these clusters. From
these LDA analyses, cyt ¢ was consistently well separated from the
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Fig. 4 LDA analyses of Ru?*(bpy)s surface mimetic 1-8 array (a) LDA of
Ru?*(bpy)s complex array with eight target proteins achieves clustering of
the analytes (each panel represents a different orientation of the data to aid
visualization), (b) 80% confidence ellipsoids for the data shown in (a),
(conditions as given in Fig. 2).

remaining proteins; implying that the discrimination of cyt ¢
from the other analytes dominates in the LDA. We therefore
hypothesised that it might be possible to discriminate the
remaining proteins if the cyt ¢ data were removed from the
analysis. Indeed upon removing this data it was observed that
the clusters were more effectively separated. Considering the
80% confidence ellipsoids (Fig. 4b, see ESI,t Fig. S7 for 95%
confidence ellipsoids) these data cluster MCL-1 and ADM2 as
distinct from the other proteins, but partially overlapping each
other. The ellipsoids for both of these proteins are quite large
whereas the remaining protein confidence ellipsoids are much
smaller but show some overlap at both the 80% and 95% con-
fidence levels. This possibly reflects the similar charge, shape and
molecular weight of the two targets (Fig. 1b).

In conclusion, the current article establishes the proof-of-
concept that ruthenium(u) tris(bipyridyl) protein surface mimetics
can be used for protein sensing and discrimination using an array
based approach, notably for therapeutically important protein
targets such as ADM2 and MCL-1. Our results underscore
potential limitations of the approach more generally in discri-
minating proteins, firstly in that a single fluorescent reporter
may not prove sufficient and secondly in that an ascendant
analyte may limit overall discriminatory resolution (as observed
for cyt ¢ with the expanded set of proteins). In the former case,
addition of a second (fluorescent) receptor component leads to
improved resolution and may be an advantageous alternative
to the synthesis of sensors bearing multiple responsive
units,®?"33> whilst in the latter case discriminatory power
can be restored by removal of the outlying analyte. Our own
future studies will centre on developing a greater diversity of
function within the ruthenium(u) tris(bipyridyl) protein surface
mimetics and using derivatives with brighter luminescence so
as to allow the selective discrimination and identification of
closely related protein targets at lower concentrations. This will
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be a key step in establishing the potential of this approach for
protein detection in complex fluids (e.g. serum) and diagnosis.
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