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Exploring biomolecular energy landscapes
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The potential energy landscape perspective provides both a conceptual and a computational framework

for predicting, understanding and designing molecular properties. In this Feature Article, we highlight

some recent advances that greatly facilitate structure prediction and analysis of global thermodynamics

and kinetics in proteins and nucleic acids. The geometry optimisation procedures, on which these

calculations are based, can be accelerated significantly using local rigidification of selected degrees of

freedom, and through implementations on graphics processing units. Results of progressive local rigidification

are first summarised for trpzip1, including a systematic analysis of the heat capacity and rearrangement rates.

Benchmarks for all the essential optimisation procedures are then provided for a variety of proteins.

Applications are then illustrated from a study of how mutation affects the energy landscape for a coiled-

coil protein, and for transitions in helix morphology for a DNA duplex. Both systems exhibit an intrinsically

multifunnel landscape, with the potential to act as biomolecular switches.

1 Introduction

The structure–function paradigm continues to play a central
role in advancing our understanding of molecular biology.
With the advent of modern spectroscopy and computer simula-
tion techniques, it is now possible to study biomolecules at very
fine spatial and temporal resolutions to obtain new insight into
the structure–function relationship. It is becoming increasingly
clear that evolution has endowed biomolecules with a certain

degree of flexibility, which allows them to not only adopt stable
structures, but also switch between different conformations
over a hierarchy of timescales, to perform different functions.1,2

These results highlight the importance of a dynamical perspec-
tive. The notion that biomolecules are ‘static sculptures’ is not
sufficient to describe their impressive functional capabilities.3

A deeper understanding of the intimate connections between
structure, dynamics and function at the molecular level is
therefore necessary. In this Feature Article we illustrate how these
connections can be addressed in the framework of potential
energy landscape theory.4

There are actually two aspects to the protein folding problem,
which have been extensively discussed in previous reviews.5–9

The first one concerns structure prediction: given an amino
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acid sequence, what three-dimensional structures will a bio-
molecule populate at thermodynamic equilibrium to fulfil a
certain biological function? The second aspect concerns folding
mechanisms and kinetics, which describe how the system
achieves its functional three-dimensional structure from a
relatively unstructured configuration by navigating along folding
routes on the underlying landscape, or switches between differ-
ent metastable conformations that dominate the equilibrium.
Many evolved proteins conform to the ‘principle of minimum
frustration’, corresponding to landscapes where kinetic traps are
absent, and fold on physiological timescales. This scenario led to
the funnel hypothesis, that the native state lies at the bottom of
a relatively smooth free energy landscape.5,6 However, some
proteins have evolved to exhibit multifunctional character, with
an underlying multifunnelled landscape, which can be tuned

via mutations,10 ligand-binding,11,12 or even subtle changes in
environmental conditions.13 An analogous situation exists for
nucleic acids, especially RNA.14,15 Although protein and RNA
folding share several common features, significant differences
arise due to the polyelectrolyte nature of RNA. Furthermore, due
to the lower stability gap between native and non-native states,
structure prediction as well as studies of folding mechanisms
and kinetics become even more challenging for RNA.16,17

Various experiments18–20 and numerical simulations21–23

have succeeded in extracting specific features of biomolecular
energy landscapes. Nonetheless, determining the global topo-
graphy of the landscape, and predicting or interpreting emergent
properties have proved more difficult. In this context, single
molecule pulling experiments are an attractive approach.24–26

Recently, several studies27,28 have employed non-equilibrium
pulling experiments to reconstruct landscape profiles, using an
extended version of Jarzynski’s equality29 suggested by Szabo
and Hummer.30,31 The specific challenges encountered in
computational studies of biomolecular structure and pathways
are determined by the complexity of the underlying potential
energy landscape. Most biological systems exhibit relatively large
barriers between alternative competing morphologies, leading to
broken ergodicity. In such situations, brute-force simulations
have limited applicability, because the equivalence between time
and ensemble averages breaks down over short timescales.
Hence, the development of enhanced sampling techniques is
essential. Many of these techniques primarily aim at predicting
thermodynamic properties, and exploit multiple coupled simu-
lations at different temperatures32–34 or energies,35 predefined
reaction coordinates,36–38 or hypersurface deformations39–42 to
improve conformational sampling. Obtaining kinetic infor-
mation, and identifying key intermediates along the multitude
of folding pathways, is more difficult. Although techniques
based on systematic sampling of reactive trajectories, such as
transition path sampling,43,44 transition interface sampling,45
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milestoning,46,47 and forward flux sampling,48 can provide
kinetic and mechanistic insight, they can be computationally
intensive.

The construction of kinetic transition networks provides a
complementary way to study biomolecular energy landscapes.49–51

We have actively developed methods based on the potential
energy landscape perspective, which provides a convenient
framework for building and analysing transition networks.4,50

In this approach, the landscape is coarse-grained into a set of
interconnected stationary points [minima (M) and transition
states (TS)]. This simplification is particularly attractive because
stationary points can be located using geometry optimisation,
largely independent of energy barriers. The global thermo-
dynamics is dictated by the configuration space associated with
the potential energy minima. The connections between differ-
ent regions of the landscape are defined in terms of M–TS–M
triples, which encode the kinetics.4 Observable properties are
extracted from the databases of stationary points using established
tools of statistical mechanics and unimolecular rate theory.52–55

It is also possible to analyse the landscape in terms of selected
order parameters and lumping schemes to identify states or
ensembles, commensurate with the experimental definition.56

Methods that employ explicit dynamics to construct transi-
tion networks, mainly in the context of Markov State Models
(MSM),49,51,57 are again complementary to methodology based
on geometry optimisation.

The potential energy landscape approach has been used to
study a range of biomolecular processes. Recent applications
include folding of RNA hairpins,58 the origin of heterogeneity
in the intrinsically disordered PUMA peptide,59 ring puckering
in collagen,60 the effect of mutation on the influenza A virus,61

and the transformation of the landscape for a model protein by
a static pulling force.62 The purpose of the present contribution
is to briefly summarise the potential energy landscape frame-
work, and discuss recent advances that have made new applica-
tions possible.

Biological systems of practical interest can often exceed
100 000 atoms in size. The number of degrees of freedom poses
a serious challenge to current simulation techniques, and even
for a biomolecule of moderate size with around 1000 atoms,
attaining true equilibrium is time consuming. To circumvent
this problem, a common approach is to coarse grain the atomistic
representation of the molecule.63–65 However, such reductionist
schemes may not be able to represent key dynamical features,
and can result in an artificially smooth landscape. Here we
present two strategies within the potential energy landscape
perspective that have proved effective in structure prediction, and
obtaining thermodynamic and kinetic insight at the all-atom
level. In Section 3, we review the key findings of a general local
rigid body approach from a recent study of the trpzip1 peptide.
On the technological side, implementing geometry optimisation
routines for GPU hardware has proved effective, as summarised
in Section 4. We then discuss two recent case studies involving
biological conformational switches. The first example analyses
how mutations reshape the underlying landscape of a coiled-coil
protein, and the second case study shows how the potential

energy landscape framework can be used to probe transitions
between different helical morphologies of a DNA duplex. Both
examples exhibit multifunnel energy landscapes, which we
associate with intrinsic multifunctional behaviour.59

2 Methods

The potential energy landscape is characterised by stationary
points: local minima and transition states. A stationary point is
a local minimum if all the non-zero normal mode frequencies
are real, whereas transition states are classified geometrically as
stationary points with one imaginary normal mode frequency.66

In the following sections we provide a brief summary of the
approaches employed to locate stationary points and construct
kinetic transition networks; specifically, basin-hopping global
optimisation67–70 and discrete path sampling.71–73 We then explain
how the free energy surface may be computed from the underlying
potential energy landscape using the superposition approach.4,74

Lastly, we discuss the use of disconnectivity graphs75–78 to visualise
the landscape. The more recent developments, in terms of local
rigidification and implementation of geometry optimisation tech-
niques on GPU hardware, are described in more detail in the
following sections.

2.1 Structure prediction by basin-hopping global
optimisation

The basin-hopping global optimisation procedure67,68 has been
successfully applied to a wide range of systems, spanning atomic
clusters,68 glass formers,79 and biomolecules.80 This method
employs a hypersurface deformation, but does not change the
global minimum of the potential energy surface (PES). Each
configuration on the PES can be represented by a 3N-dimensional
vector X, where N is the number of atoms and the energy
corresponding to X is given by E(X). The energy obtained by a
minimisation starting from X is written as min{E(X)}. In the
present work energy minimisation was achieved using the
limited-memory BFGS (L-BFGS)81,82 algorithm, which is well-
suited for large-scale problems, since the user is able to control
the amount of storage required. The PES is the union of the
‘basins of attraction’83,84 of all the local minima. This procedure
effectively removes all downhill barriers between connected
minima. Basin-hopping global optimisation has been imple-
mented in the GMIN program,85 which is available for use under
the GNU General Public License.

2.2 Kinetic transition networks from discrete path sampling

In discrete path sampling71–73 (DPS) the aim is to determine the
kinetics of a system from a collection of transition path-
ways, connecting reactant (e.g. a denatured configuration)
and product (e.g. the native structure) states. A discrete path
is defined as a sequence of local minima on the potential
energy surface (PES) and the transition states that directly
connect them.

We start by constructing an initial path from the reactant (A)
to the product (B).86–88 Transition state candidates are first
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located using the doubly-nudged elastic band (DNEB) procedure.86

A double-ended interpolation between A and B produces an
intermediate set of images [X1, X2. . .XM], where Xi represents the
Cartesian coordinates of the ith image. Next, harmonic springs are
used to connect equivalent atoms in adjacent images, resulting in
a spring potential. Components of the spring gradient and the
gradient of the true potential are then utilised in the derivation of
the elastic band gradient. This gradient prevents interference of
the spring potential (which affects convergence of images) and the
true potential (which affects the spacing of images) and gives the
band its ‘nudging’ properties.89 The complete set of images is
then relaxed by L-BFGS minimisation, using a weak convergence
condition, which focuses on the local maxima.86

Approximate transition states (the images corresponding to
maxima in the DNEB energy profile) are then converged more
tightly by hybrid eigenvector-following (HEF).90,91 This is a single-
ended procedure for locating transition states, where a single
starting configuration is considered.90,91 In contrast, for double-
ended procedures, such as the DNEB method, two initial endpoint
geometries are needed. In HEF, only one Hessian eigenvector
(emin) and the corresponding eigenvalue (lmin) are used for uphill
searches and a minimisation procedure, such as the L-BFGS
algorithm, is used for optimisation in all other directions.91 The
smallest non-zero eigenvalue can be found using the Rayleigh–Ritz

ratio lðxÞ ¼ xtHx

x2
, where x represents a small perturbation in the

current geometry. To avoid explicit computation of the Hessian (H),
l(x) is estimated from the numerical second derivative of the
energy. Through successive iterations, tightly converged transition
states are characterised. These transition states are then connected
to minima by following approximate steepest-descent paths
parallel and antiparallel to the eigenvector corresponding to
the unique negative eigenvalue.

The minima and transition states found during DNEB/HEF
searches form a database of stationary points. Recall that the goal is
to find a connected path between the reactant (A) and product (B).
Before each new DNEB/HEF cycle, a metric is needed to determine
which minima in the database are most appropriate for subsequent
connection attempts. A modified version92 of Dijkstra’s algo-
rithm,93 which selects pairs based on a minimised Euclidean
distance metric, is used for this purpose. In a database of stationary
points the total set of minima can be described using a complete
graph G(M,D); where the nodes M represent minima and the edges
D represent the transition states. The edge weight w(x,y) between
arbitrary minima x and y is set to zero if the minima are connected
by a single transition state. If the number of connection attempts
between minima x and y reaches the maximum value (set by the
user), the edge-weight becomes infinite. Otherwise, w(x,y) is
expressed as a function of the Euclidean distance. At the beginning
of each DNEB/HEF cycle, pairs of minima for connection attempts
are prioritised based on these weights. This process is repeated
until there are no missing connections along the path.

The doubly-nudged elastic band procedure, hybrid eigenvector-
following, and the shortest path algorithm are implemented in
the OPTIM code.94 Parallel OPTIM runs are organised by the
PATHSAMPLE program.95

2.3 Optimisation of stationary point databases

The initial path found between reactant and product states is
usually long with many high barriers, particularly for states
distant in configuration space. The objective is then to grow the
stationary point database and locate kinetically relevant paths.
At any point, the fastest path (B ’ A) is taken as the one
making the largest contribution to the steady-state rate con-
stant, kSS

BA, which can be defined as a sum over all discrete paths
with the steady-state approximation for intervening minima.71,72

Once the fastest path is identified, it can then be used in various
ways to search for new paths.

The SHORTCUT scheme96,97 chooses pairs of minima from the
current ‘fastest’ path that are separated by a minimum number of
transition states (steps) and attempts to connect them using the
procedures discussed above. The SHORTCUT procedure usually
decreases the total number of steps on the path and leads to a
significant increase in the overall rate constant. Alternatively, the
SHORTCUT BARRIER scheme92,96 selects minima on either side
of the largest barriers on the current path, up to a maximum
number of steps apart. Additional connection attempts between
these minima may find paths avoiding such high barriers, again
improving the rate constant.

However, these procedures may also introduce kinetic traps,
in the form of low-lying minima separated from the product
minimum by high barriers. Most of these traps are artificial
and are due to insufficient sampling. To find low-barrier paths
for these minima the UNTRAP scheme96 is used. Candidate
minima for ‘untrapping’ are chosen based on the ratio of the
potential energy barrier and potential energy difference from the
product (B). Hence, minima with low potential energies con-
nected by high barriers are most likely to be chosen. Connection
attempts between these minima and the product minimum then
proceed in search of better paths. Local free energies can also
be used.

2.4 Computation of free energies

Thermodynamic properties can be estimated directly from the
underlying potential energy landscape using the superposition
approach. At a given temperature, the canonical partition
function Z(T) is written as a sum of contributions from the
basins of attraction of the local minima:4,52,74,98–101

ZðTÞ ¼
X

i

ZiðTÞ: (1)

A harmonic approximation is often used to estimate the vibra-
tional partition function of each local minimum,

ZiðTÞ ¼
ni exp �bVið Þ

bh�við Þk ; (2)

where ni is the number of distinct permutational isomers
of minimum i with potential energy Vi, b = 1/kBT, kB is the
Boltzmann constant, %vi is the geometric mean vibrational
frequency and k is the number of vibrational degrees of freedom.4

The free energy of each minimum is then:

Fi(T) = �kBT ln Zi(T). (3)
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The harmonic approximation has also been used as a starting
point for superposition calculations that include quantum correc-
tions and anharmonicity.99,102–107

2.5 Visualisation of energy landscapes: disconnectivity graphs

Originally introduced by Becker and Karplus,75 disconnectivity
graphs have played a pivotal role in conceptualising energy
landscapes.76–78 Fig. 1 illustrates how a disconnectivity graph
(red lines) may be constructed from a database of minima and
the transition states that connect them (blue curve). The energy
is represented on the vertical axis of the graph, while the
horizontal axis can be arbitrary or may represent an order
parameter. In the disconnectivity graph, a vertical line is drawn
from each minimum (A–D), beginning at the potential or free
energy of that state. At the energy threshold E + DE minima A and
B are grouped together, since the transition state connecting them
lies below the threshold, and similarly for minima C and D.
However, the two sets are disjoint, as the transition state connect-
ing them lies above this threshold. When the threshold is high
enough the two sets of minima merge. Since the energy spacing
(DE) determines how the analysis is performed, the graph is most
meaningful when the thresholds are spaced at suitable regular
intervals. This analysis provides useful information on relative
barriers separating minima in different regions of the landscape.

3 Systematic local rigidification for
trpzip1

Bimolecular processes, such as protein folding, frequently exhi-
bit a separation of timescales between low frequency modes and
localised fast vibrations.109–113 For instance, changes in ring
planarity occur orders of magnitude faster than the formation
of salt bridges. We can exploit this disparity in timescales to
improve computational efficiency, by effectively factorising out
the irrelevant degrees of freedom using a local rigid body (LRB)
framework.114–117 This approach is similar in spirit to the FEG-RBD
procedure,118 where rigid body dynamics is employed to compute
free energy gradients in constrained MD simulations.

In the local rigidification scheme employed here, groups of
atoms, whose relative coordinates vary on timescales signifi-
cantly shorter than the process of interest, are treated as rigid
units.115–117 Each non-linear rigid unit, regardless of size, then
has six degrees of freedom: three translational and three
rotational. Since interactions between sites within each local
rigid body are not required, this formulation results in computa-
tional savings in evaluating the energy and gradient. Additionally,
fewer geometry optimisation steps are generally needed, due to
the dimensionality reduction of the conformational search space.
Hence, significant speedups in the mean first encounter time for
global optimisation are possible.116 Moreover, a clear mapping
between the minima found on locally rigidified and uncon-
strained potential energy landscapes can be maintained.116

In a recent article,108 we investigated the systematic effects
of local rigidification on the structure, thermodynamics and
kinetics of trpzip1.119 The tryptophan side-chain rings, peptide
bonds, trigonal planar centres and termini were grouped as
rigid bodies, and, based on these sets, we formulated three LRB
schemes: I – rings, II – rings and peptide bonds, III – rings,
peptide bonds, termini, trigonal planar centres treated as local
rigid bodies. Trpzip1 was represented by the AMBER99SB
forcefield,120 and discrete path sampling71,72 was used to analyse
the potential energy landscape for each LRB scheme, as well as
the unconstrained (U) peptide.

The main conclusions are summarised in Fig. 2 and 3. The
potential energy range and structural heterogeneity of the locally
rigidified landscapes are consistent with the unconstrained
landscape (Fig. 2). However, there is a significant increase in
the number of prominent subfunnels in the disconnectivity
graph for the most constrained case (Fig. 2d). This result suggests
that excessive rigidification can reduce the conformational
flexibility of the protein in an unphysical manner, leading to
artificially high barriers on the potential energy landscape.

Nonetheless, the free energy global minimum (particularly
at low temperatures) and the melting temperature for the
locally rigidified implementations were in good agreement with
the unconstrained benchmarks (Fig. 3a). To assess the effects of
local rigidification on the folding mechanism, we extracted the
fastest folding path71–73 from each transition network (Fig. 3b).
The folding pathways for the unconstrained peptide, schemes I
and II, were found to be consistent with an initial hydrophobic
collapse (s1 - s2), followed by subsequent zipping (s2 - s4).
However, for LRB scheme III a significant lengthening of the
folding pathway was observed, which is consistent with exces-
sive reduction in conformational flexibility.

These results suggest that local rigidification should be
useful for analysis of thermodynamics and folding mechanisms
of biomolecules. Moreover, the results provide some practical
guidelines for systematically eliminating unnecessary degrees
of freedom, and demonstrate how too much rigidification can
significantly perturb pathways and kinetics. An appropriate
choice of local rigidification (based on the level of resolution
required, and the timescale to be probed) can preserve the
underlying properties, and provide useful gains in computa-
tional efficiency.

Fig. 1 Construction of a disconnectivity graph from a database of stationary
points. Minima are labelled A–D. In the disconnectivity graph (red) each local
minimum is represented by a vertical line, starting at the energy of that
minimum. At a given energy threshold, E + nDE, minima connected by
transition states that lie below the threshold are grouped into disjoint sets.
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The number of stationary points on the energy landscape
increases exponentially with system size,98,121 but the mean
first encounter time for the global minimum in basin-hopping
global optimisation for atomic clusters seems to scale roughly as
the cube of the number of atoms.68 Hence, removing irrelevant
degrees of freedom will be even more beneficial if the size
scaling is steeper, which may be the case for larger proteins.

4 GPU-accelerated geometry
optimisation

Basin-hopping global optimisation,67,68 the doubly-nudged86

elastic band87,89 method (DNEB), hybrid eigenvector-following
(HEF)90 and the local rigid body framework116,117 have all been
adapted to run on graphics processing units (GPUs).122 GPU
hardware is well suited to massively parallel computations, as a
greater number of transistors are devoted to data processing
than to data caching and flow control, relative to a CPU.123

The most time-consuming component in all of the compu-
tational energy landscapes approaches is the calculation of the
potential energy and gradient. For biomolecules, the task of
adapting a force field for GPU was facilitated by the release of a
GPU-accelerated version of the AMBER potential.124 The generalised

Born (GB) implicit solvent potential from AMBER 12 was interfaced
with all the energy landscapes codes. The DPDP precision model
was used, in which contributions to forces and their accumulation
are both performed in double precision.

Basin-hopping global optimisation and transition state
determination employ several variants of the L-BFGS algorithm.
In each case, the whole algorithm was ported to the GPU, and
compared to an implementation with just the potential on
GPU. Our GPU implementation of L-BFGS was based on the
code of Wetzl and Taubmann,125,126 with various modifications
applied to make it as similar as possible to our CPU code. The
coordinate transformation and gradient projection functions
from our local rigid body framework were also ported to GPU.
Extensive use was made of the cuBLAS library127 in this work,
alongside custom CUDA kernels.

Tests were performed for eight different system sizes ranging
from 81 to 22 811 atoms. A subset of these results is presented
here for the trimeric haemagglutinin (HA) glycoprotein of the
influenza A(H1N1) virus128 (‘full trimer’, 22 811 atoms), a mono-
meric version of HA (‘full monomer’, 7585 atoms), and finally
a truncated version of this monomer (‘truncated monomer’,
3522 atoms). These systems are shown in Fig. 4. L-BFGS was
benchmarked in isolation as a proxy for full basin-hopping
global optimisation. The change in coordinates and the change

Fig. 2 Potential energy disconnectivity graphs for TZ1 (DE = 2 kcal mol�1) at different levels of local rigidification. The branches are coloured based on
order parameters L (the sum of the four inner native hydrogen-bond lengths and the distances between the CD2 atoms of the three TRP pairs) and S (the
relative orientation of the TRP rings). The three main morphologies are: blue (L o 60 Å, S-value = +1), green (L o 60 Å, S-value = �1), and red (all other
minima). Adapted from ref. 108.
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in gradient for the last m steps are used in calculating the step
direction for minimisation.129 The history size, m, affects the
accuracy of the L-BFGS step direction and the overall time taken
for minimisation. Results for L-BFGS are shown in Table 1 for
history sizes 4 and 1000. Significant speed ups are obtained of
up to two orders of magnitude. A large history size is more
favourable for bigger systems with the whole L-BFGS algorithm
on GPU, whereas a smaller history size gives optimal perfor-
mance for smaller systems; in contrast, for CPUs a larger history
size is always more favourable. We extended our analysis to find

the optimal history size and GPU implementation for the full HA
trimer. The fastest average minimisation time obtained was
1788 s for a history size of 75 with the whole L-BFGS algorithm
on GPU (implementation 1).

Tests were also performed to compare transition state searches
on GPU and CPU. Interfacing the DNEB procedure with the
GPU-accelerated potential gave a 178 times speed up compared
to CPU for the full HA trimer with a small history size of 4.

Fig. 4 Structures of the biomolecules used in the tests of GPU geometry
optimisation procedures. Adapted from ref. 122.

Fig. 3 Summary of thermodynamic and mechanistic properties for trpzip1,
as a function of local rigidification: U – no local rigid bodies; I – TRP rings,
II – TRP rings and peptide bonds, III – TRP rings, peptide bonds, termini,
trigonal planar centres treated as rigid bodies. (a) Constant volume heat
capacity curves: the heat capacities are divided by the appropriate total
number of degrees of freedom (DOF) and the melting temperature of the
unconstrained peptide, TU

m, is indicated. The free energy global minima
at 0.48 and 0.88 kcal mol�1 are superimposed on the plot; key: red (U),
green (I), blue (II), magenta (III). (b) Variation of the total potential energy
(kcal mol�1) with the integrated path length (Å) for the fastest folding path
from the denatured trpzip1 peptide to the global minimum. Some morphol-
ogies encountered along the paths are shown. Adapted from ref. 108.
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Results for hybrid eigenvector-following with HA are shown in
Table 2. Again, significant improvements are obtained.

Local rigidification is now supported on GPU in conjunction
with all of these methods in the GMIN85 and OPTIM94 programs.
The GPU implementations of the coordinate transformations
and gradient projection were found to incur negligible computa-
tional overhead in each L-BFGS procedure.

5 Multifunnel energy landscapes for
proteins

The question that originally motivated interest in the energy
landscapes of proteins is how a sequence of amino acids achieves
its native fold.130 From the application of statistical mechanics to
various model systems the existence of intrinsic properties of
protein sequences emerged, which lead to a preference for parti-
cular folded states. This idea produced the notion of a funnelled
free energy landscape containing the native state as the global
minimum.9,131,132

A single funnel on the free energy landscape leads to a single
dominant ensemble corresponding to the native state, yet for
many biological systems more than one stable fold is observed,
e.g. activated states or misfolded states. In many cases these
additional stable states require a significant rearrangement of
the original folded structure. The resulting alternative morphol-
ogies are unlikely to exist within a single funnel on the energy
landscape. As a result we observe multifunnel energy landscapes
that contain at least two competing morphologies. One important

group of multifunnel landscapes are associated with proteins that
exhibit stable misfolded structures. Such structures alter the
functionality of the protein, and hence they may be pathological.
Particularly important examples are amyloid forming proteins,
such as Ab1–42. Another set of proteins likely to exhibit multi-
funnel landscapes are those that show activated and inactive
states, such as kinases. Apart from these important biological
and medically relevant proteins, artificial systems used in nano-
technology, such as peptide-based molecular switches, may
also require multifunnel landscapes to represent alternative
states of an engineered system.

An interesting question for multifunnel landscapes involves
the changes caused by mutations, which affect the observable
properties. Analysing these changes will lead to a better under-
standing of biological processes, such as activation and disease,
as well as design principles for functional peptides. Previous
studies of mutations suggest that naturally occurring proteins
possess an inherent stability towards mutations.134 Hence, if
a protein still folds after mutation, the folded structure may
closely resemble the wild type native state. However, it has also
been noted that this stability is likely to be marginal, and may
be overcome.135–137

Recently, we have studied a system that exemplifies these
features.133 The coiled-coil protein, GCN4-pLI, experimentally
exhibits exclusively parallel assemblies of a-helices. A mutation
of the parent sequence, namely E20S, leads to the observation
of both parallel and antiparallel states.138 Other studies have
considered a variety of similar coiled-coil systems, and concluded
that there is competition between different oligomer sizes,

Table 1 L-BFGS benchmarking for HA with history sizes 4 and 1000 using two GPU and one CPU implementationa

History
size System

Average minimisation
time for GPU
implementation
1/seconds

Average minimisation
time for GPU
implementation
2/seconds

Average minimisation
time for CPU
implementation/
seconds

Time for CPU
implementation/time
for GPU
implementation 1

Time for CPU
implementation/time
for GPU
implementation 2

4 Truncated monomer 40.1 39.4 5937.7 148.1 150.8
Full monomer 489.9 492.1 86552.8 176.7 175.9
Full trimer 2546.9 2527.1 517567.7 203.2 204.8

1000 Truncated monomer 382.1 239.6 4561.2 11.9 19.0
Full monomer 1249.5 1609.0 48754.5 39.0 30.3
Full trimer 2392.5 4747.1 337077.0 140.9 71.0

a GPU implementation 1 has the entire L-BFGS routine on GPU, including the potential calculation. GPU implementation 2 has just the potential
calculation on GPU. See the original paper for full descriptions of all the parameters.122

Table 2 Hybrid eigenvector-following benchmarking for HA with history sizes 4 and 1000 using GPU and CPUa

History size System

Average time for GPU
implementation
(m = 4)/seconds

Average time for
CPU implementation
(m = 4)/seconds

Time for CPU
implementation/time for
GPU implementation (m = 4)

4 Truncated monomer 25.7 3529.1 137.4
Full monomer 197.1 36779.8 186.6
Full trimer 1047.6 176550.7 168.5

1000 Truncated monomer 186.3 3160.9 17.0
Full monomer 669.6 32046.2 47.9
Full trimer 1225.4 169234.0 138.1

a The GPU implementation has the entire Rayleigh–Ritz L-BFGS and L-BFGS routines with gradient projection on GPU, including the potential
calculation. See the original paper for full descriptions of all the parameters.122
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as well as between parallel and antiparallel alignments.139–142

A multifunnel landscape was suggested as one explanation for
this behaviour.143 Our calculations used the properly sym-
metrised144,145 AMBER ff99SB force field,120,146–148 with an
implicit generalised Born solvation model149,150 using infinite
interaction cutoffs and the Debye–Hückel approximation for
salt (0.1 M).151

The energy landscapes for the parent sequence and the E20S
mutant dimers resemble each other, as shown in Fig. 5, in that
the main topography is maintained. There are two distinct
funnels for parallel (red) and antiparallel (blue) structures.
However, a key difference is found in the intermediate region
between these funnels. The E20S mutant supports stable inter-
mediate structures, which show a kink in one of the helices
(one example is shown in Fig. 5). These low energy structures
facilitate interconversion at lower temperatures, which will not
occur for the parent sequence, a feature that leads to signatures
in the calculated heat capacity curves. The structural basis for
this effect is the change in interaction patterns caused by the
mutation. When the energy landscapes are analysed regarding
the distribution of the local minima with respect to potential
energy, and the logarithm of the product of their normal mode
frequencies,133 we find that the E20S mutant exhibits a bimodal
distribution, corresponding to the parallel and the antiparallel
funnels in the landscape. In contrast, the parent sequence only
exhibits unimodal distributions, suggesting that the energy
landscape is based on an underlying single funnel.

Further insight can be obtained by decomposing the con-
tributions of local minima to the heat capacity features, using
the temperature gradient of the occupation probabilities.152 For
the E20S mutant three peaks in the heat capacity curve can be
associated with three distinct transitions (see Fig. 6): (i) from
the global minimum to other low-lying minima in the same
funnel, (ii) from minima in the parallel funnel to minima in the
intermediate region, and (iii) a melting peak. The second
transition is the key to the thermal accessibility of both parallel
and antiparallel states at ambient conditions.133 In contrast, the
parent sequence only shows transitions within the same funnel
and a single melting peak.

Moving to more disruptive mutations, the energy landscapes of
three further mutants, E20P, E20A and E20G, all exhibit distinct
features (Fig. 7). While all three still support stable dimers, both
antiparallel and parallel, a number of significant changes occur.
Firstly, the energy differences between funnels shift as the dimers
are destabilised. Additionally, for E20A and E20G, we see new
funnels appearing. Furthermore, the number of intermediate
structures increases and they show a larger variety of conforma-
tions. While the E20S mutant exhibits one particular interconver-
sion mechanism, the larger perturbations of the bonding pattern
lead to coiling and helix kinking in many places.

These results suggest a number of important conclusions.
First of all, the effects of mutations can be analysed using
energy landscape methods, leading to a detailed understanding
of energetic balances, structural and mechanistic differences,
and changes of associated observables, such as the heat capacity
curves. Moreover, protein sequences may be mutated in silico to

Fig. 5 Disconnectivity graphs for the E20S mutant (top) and the parent
sequence (bottom). The order parameter q1 represents the angle between
the two helices and is 0 for parallel and 1 for antiparallel alignments. The
separate funnels are clearly visible. Adapted from ref. 133.
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use energy landscape methods as a predictive tool in engineering
and de novo design. Our results also reveal the inherent com-
plexity of multifunnel landscapes and the nature of changes
associated with mutations. Last but not least, even the relatively
simple coiled-coil system highlights the marginal stability of
these energy landscapes towards mutations.

6 Helical transitions in a DNA duplex

The B - Z transition is one of the slowest conformational changes
that has been characterised in biomolecules. ZDNA exhibits a
left-handed helical structure,153–155 in contrast to the well known
right-handed helices of BDNA and ADNA. This left-handed helix

Fig. 6 The heat capacity curve for the E20S mutant shows three distinct peaks. The central peak (A) corresponds to the transition from the parallel
funnel to intermediate states. The disconnectivity graph (left) highlights the minima involved, colouring branches red and blue for decreasing and
increasing occupation probabilities, respectively, for the states that make the largest contributions to the heat capacity peak.152 The highest temperature
peak (B) corresponds to the melting peak and a disconnectivity graph with the key minima coloured in the same way is shown on the right. These results
exploit a formulation of the heat capacity written in terms of occupation probability temperature gradients,152 which enables the contribution of each
minimum to be quantified. Adapted from ref. 133.

Fig. 7 Disconnectivity graphs for E20A (left), E20G (middle) and E20P (right) mutants. The order parameter q1 represents the angle between the two
helices and is 0 for parallel and 1 for antiparallel alignments. Adapted from ref. 133.

Feature Article ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
M

ay
 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

1/
1/

20
25

 1
:5

3:
45

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cc02413d


6984 | Chem. Commun., 2017, 53, 6974--6988 This journal is©The Royal Society of Chemistry 2017

has zig-zag phosphate backbone with an alternating pattern of
syn and anti glycosidic torsions.154–156 The discovery that ZDNA
has important cellular functions156–161 makes the complex
rearrangements required to interconvert alternative helices
particularly interesting. Experimentally, BDNA may convert to
ZDNA at high salt concentrations,153,156,162,163 through negative
supercoiling,164–166 methylation,167–169 and binding to protein
ligands.170,171 Various suggestions have been proposed for the
mechanism,172 ranging from cooperative schemes,173 pathways
involving base-pair opening,154 ADNA intermediates,174 stretched
intermediates,175,176 and a zipper model, which involves stepwise
propagation of a B–Z junction.177,178

Although the helical transitions are relatively slow, this does
not present a problem for methodology based on geometry
optimisation. In fact, the transition state theory formulation we
employ to calculate the individual minimum-to-minimum rate
constants using harmonic vibrational densities of states will
probably be most reliable for pathways with higher overall
barriers. We investigated the landscape and helix interconver-
sion kinetics for a DNA hexamer duplex with the sequence
(CGCGCG)2, using a properly symmetrised144,145 version of the
AMBER99bsc0 force-field,179 and e and z torsional correc-
tions180 with implicit solvent treated by a generalised Born
model,149,150 and an effective salt concentration of 1.0 M from
the Debye–Hückel approximation.151 Full details are available
in the original report,181 including comparisons with molecular
dynamics runs using explicit solvent, which provide a check on
the stability of the predicted structures on short timescales.

The resulting free energy landscape at 298 K is illustrated in
Fig. 8, where minima separated by free energy barriers less than
5 kcal mol�1 have been recursively regrouped.56,182 There are
two principal funnels, which can be largely assigned to left- and
right-handed helices. The global free energy minimum under
these conditions corresponds to an ensemble of BDNA config-
urations, including structures with terminal bases frayed out,
stacked on top of the base-pairing partner, and trans Watson–
Crick/sugar edge hydrogen-bonding patterns, in addition to the
canonical form. Helices exhibiting B–Z junctions and ADNA
structures are also present in this funnel, and are generally
connected to BDNA minima via low downhill barriers. The B–Z
junctions have the first two base-pairs in a ZDNA-like confor-
mation, and the last three in a BDNA-like conformation, with
the G3 and C10 bases at the boundary flipped out.

The funnel containing ZDNA is more structurally homo-
geneous, and our results support the suggestion that BDNA is
more flexible. This funnel also contains conformations that we
have described as left-handed BDNA.181 At high energy we see
stretched DNA structures, where the helix is significantly unwound.
These minima are different from the SDNA state that forms during
overstretching, which is thought to be a ladder-like structure,
with Watson–Crick base-pairs maintained throughout.183,184 The
stretched forms that we have characterised have no such pairs.

A mechanistic analysis of the landscape reveals two distinct
pathways (Fig. 9) for the B - Z transformation:181 one involving
a B–Z junction and the other sampling stretched intermediates.
The stretched minima are accessed via helix unwinding, loss of

Watson–Crick base-pairs, with the central guanines flipping
from anti to syn conformations before the guanines near the helix
termini. This ordering is reversed for the BZ-junction mecha-
nism, which is predicted to be more favourable at 298 K, since the
enthalpy barrier is lower.181 However, stretched intermediates
will become more competitive at higher temperatures.

In contrast to the B - Z transition pathways, the A - B
transformation is essentially downhill (Fig. 10), consistent with
previous molecular dynamics simulations.186,187 The small
barriers encountered along the pathway correspond to repuck-
ering of the ribose sugars, which in turn are coupled to global
changes in the helix morphology. The key features of the
Calladine–Drew model are correctly captured in our proposed
mechanism.188

A switch in the chain topology is required for the transfor-
mation from the left-handed BDNA structure to ZDNA (Fig. 10).
This transition does not require large-scale deformations of the
DNA duplex, and is largely driven by concerted motions involv-
ing only a few nucleobases. The anti to syn torsional flips of the
guanine bases, which are necessary to reach the ZDNA state,
introduce kinetic bottlenecks in the pathway.

Fig. 8 Free energy landscape computed at 298 K using a regrouping
threshold182 of 5 kcal mol�1.181 The branches are coloured according to
the handedness (H) of the DNA structure, with positive values representing
right-handed conformations and negative values representing left-handed
conformations.185 Some representative structures from the different con-
formational ensembles are also shown. Adapted from ref. 181.
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Due to the intrinsic coupling between many degrees of
freedom, probing helical transitions in a DNA duplex is a
challenging task. This case study therefore provided an ideal
testing ground for the potential energy landscape framework. Our
simulations captured several aspects of the models proposed for
helical transformations in DNA, and revealed some additional
complexity, which would be difficult to capture in approaches
that require the definition of a reaction coordinate.

7 Conclusions

The computational procedures associated with the potential
energy landscapes framework are largely complementary to
conventional molecular dynamics and Monte Carlo schemes.
Coarse-graining the landscape, in terms of local minima
and the transition states that connect them, enables us to
predict structure, dynamics, and thermodynamic properties
using established methods and approximations of statistical
mechanics and unimolecular rate theory. In this Feature
Article we have highlighted the gains in efficiency resulting
from implementation of all the key geometry optimisation
techniques on GPU, and from a general local rigid body formu-
lation. Recent results for systematic analysis of these schemes
have been summarised, and specific applications to protein
and nucleic acid systems provide examples of interesting test
cases.

Accelerating the sampling and exploration of the potential
energy landscape has many benefits, especially in terms of
treating larger systems. Initial surveys involving global optimi-
sation to find favourable conformations are also a stringent test
of the empirical force field. Identifying unphysical features can
inform future force field development and improvement, which
provides the foundations on which analysis of thermodynamic
properties and kinetics depends.

Many new applications can be envisaged for biomolecules,
including more coarse-grained models of mesoscopic systems.
The two applications we have summarised for this report show
how new insight into mechanism and design of new materials
might arise. Both the coiled-coil protein and the DNA duplex
landscapes exhibit multifunnel organisation, with competing
low energy morphologies separated by relatively high barriers.
The potential to tune such landscapes through mutations,
applied fields, salt concentration, temperature, and specific
ligands, raises the possibility of new design principles for
multifunctional devices. The ability to explore such designs
through theory and simulation, in tandem with feedback from
experiment, could significantly facilitate progress in these
endeavours.
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Fig. 9 Potential energy (V) as a function of the integrated path length (s)
for pathways corresponding to the BDNA to ZDNA transition, via BZ
junction (top panel), and stretched intermediates (bottom panel). Adapted
from ref. 181.

Fig. 10 Potential energy (V) as a function of the integrated path length (s)
for pathways corresponding to ADNA to BDNA transition (top panel), left-
handed BDNA to ZDNA transition (bottom panel). Adapted from ref. 181.
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180 M. Zgarbová, F. J. Luque, J. Šponer, T. E. Cheatham, M. Otyepka
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