Clearing the undergrowth: detection and quantification of low level impurities using 19F NMR†

Pinelopi Moutzouri, a Peter Kiraly, a Andrew R. Phillips, b Steven R. Coombes, c Mathias Nilsson a and Gareth A. Morris a,*

A new method for the analysis of low level impurities in sparsely fluorinated species allows measurement of clean high dynamic range 19F spectra, fully decoupled and free of interfering signals from 13C isotopomers.

The high sensitivity and wide chemical shift range of 19F NMR1–4 make it potentially very attractive for characterising fluorine-containing impurities. In pharmaceutical chemistry, for example, a quarter of current drugs contain one or more fluorines,5 and regulatory authorities require all impurities above 0.1% of a main active pharmaceutical ingredient to be identified and quantified.6

Both 1D 19F NMR and 19F DOSY have been used for the detection of minor fluorinated impurities.7 One major technical problem is the difficulty of exciting quantitatively the very wide chemical shift range of 19F, but solutions now exist for both 1D8 and DOSY9 experiments. However, there remains the problem of 13C isotopomer signals. At around 0.54% of the intensity of 12C isotopomer signals, these are in the same range as impurity signals of interest and often have similar chemical shifts, and therefore complicate their identification and quantitation. The obvious solution is to use broadband 13C decoupling to collapse the heteronuclear f-couplings. This can work well for 1H spectra, albeit at the expense of some sample heating.10–15 However, 19F is excessively sensitive to chemical environment and its large secondary isotope shift means that the decoupled (19F–13C) signals have slightly different chemical shifts from the parent (19F–12C) signals, so decoupling just halves the number of 19F–13C signals, rather than hiding them all under the parent. Here we show how to acquire clean 19F spectra without interference from 13C isotopomers and with no heteronuclear (1H or 13C) splittings. The new method does not use 13C decoupling, minimising sample heating, and should greatly facilitate the detection and quantification of low-level impurities by 19F NMR.

Fig. 1 shows 19F spectra of a slightly degraded sample of rosuvastatin (1, Scheme 1), used for treating dyslipidaemia, spiked with small amounts of precursors 2 and 3. The proton-decoupled spectrum of Fig. 1a (multiplet structure renders the proton coupled spectrum, shown in Fig. S4 of the ESI,† uninformative) is complicated by the presence of both one-bond and long-range 13C satellites; one of the two satellite signals due to the presence of 13C at the ortho position with respect to fluorine is almost degenerate with (8 ppb from) the signal of 2.

Acquiring a spectrum with this resolution with full broadband decoupling is uncomfortably close to the limits of many instruments, because of the long high-power irradiation required, but if the one-bond 13C satellite signals are suppressed (see Section S1 of the ESI†), low power irradiation can be used to decouple the remaining longer-range (\geq two-bond) couplings. This gives the spectrum of Fig. 1b, in which a singlet signal is seen for the 2.2% of ortho-13C 1. Had full 13C decoupling been used, the ipso-13C signal of 1, midway between the one-bond satellites in Fig. 1a, would have been degenerate with that of impurity 1a (a diastereomer). In the spectrum of Fig. 1c, in contrast, which was obtained with the new method, no resolvable signals at all are seen from 13C isotopomers, and there is no interference with the signals of the minor components of the sample.

The new method, using the pulse sequence of Fig. 2, is compatible with several different hardware configurations; the results shown here used a single high band radiofrequency (RF) amplifier and a (1H/19F),13C triple-resonance probe with a double-tuned high band coil. The experiment consists of three parts: a low-pass filter to suppress one-bond 13C satellite signals; a J_{CF}–modulated spin echo; and time-shared acquisition during which the 19F signal is recorded under 1H decoupling.

The low-pass J filter,16–20 which converts 19F antiphase signals into unobservable heteronuclear multiple quantum coherences when $J = 1/(2 J_{CF})$, suppresses the one-bond 13C satellite signals. Since a 19F spin echo is needed to refocus the...
fluorine chemical shift, there is time to use two \(^{13}\text{C}\) 90° pulses in a two-stage filter; if a wide range of \(J_{\text{CF}}\) values is present, further stages can be added.

The modulated spin echo, which is analogous to a heteronuclear 2D \(J\) resolved experiment,\(^{21-23}\) makes the phases of the remaining \(^{13}\text{C}\) satellite signals depend on the evolution time \(t_1\), while the desired signals from the \(^{12}\text{C}\) isotopomers are unaffected. Weighted averaging of experiments with different \(t_1\) cancels the modulated signals, leaving a clean spectrum. In practice the most effective way to perform this averaging is by double Fourier transformation and integral projection onto \(F_2\) of the \(F_1\) range spanned by the lineshape of the parent signal. This suppresses all satellite signals that would be resolvable in the 1D spectrum, while preserving the quantitative character of the spectrum. The final \(^{13}\text{C}\) 90° pulse deals with the problem of the phasetwist lineshape\(^{24-26}\) of a 2D \(J\) spectrum by suppressing the sine-modulated dispersive part of the signal. The remaining cosine-modulated signal can then be selected by zeroing the imaginary component after the first Fourier transformation, leading to signals that are doubled in \(F_1\) but have 2D absorption mode lineshapes. The choice of increment \(1/\text{sw1 in } t_1\) is determined by the range of couplings to be suppressed (\(\text{sw1} > |J_{\text{CH}}|\)), and the number of increments \(n_i\) by the \(T_2\) of the parent signal (\(\text{sw1} > \text{sw1}\)). Relaxation losses during \(t_1\) lead to a small sensitivity penalty for the new method, about a factor of 2 here (apparent on comparing Fig. 1a and c).

The data acquisition section of the pulse sequence uses time-shared decoupling because the \(^1\text{H}\) and \(^{19}\text{F}\) channels share the same coil in the probe used. In normal circumstances, a simple WALTZ\(^{27,28}\) or similar decoupling waveform would suffice to decouple \(^1\text{H}\) from \(^{19}\text{F}\), but the very high dynamic range of the sample means that the weak systematic signal modulations such methods induce would here give rise to significant decoupling sidebands (see Fig. S3, ESI\(^\dagger\)). These are suppressed very effectively here by the use of bilevel adiabatic decoupling.\(^{29}\)

As well as decoupling \(^1\text{H}\) from \(^{19}\text{F}\) during acquisition, it can be helpful to decouple in the earlier parts of the sequence, to suppress any echo modulation caused by strong \(^1\text{H}\)–\(^1\text{H}\) coupling. This is common in aromatic spin systems (as for example in Fig. S2 of the ESI\(^\dagger\)).\(^{21,30,31}\) Here the quality of decoupling is less critical, so bilevel decoupling is not needed.
Fig. S5 (ESI†) shows the intermediate stage in the production of Fig. 1c at which the F_2 projection of the 2D is calculated. Each 13C isotopomer gives four symmetrically-disposed signals, with frequency coordinates ($\pm J_\text{C\text{-}F}/2, \Delta J_\text{C\text{-}F}/2$); in Fig. S5 (ESI†) both of the less shielded satellites overlap in F_2 with t_1-noise from the parent peak. Integration between the dotted lines produces the spectrum of Fig. 1c.

To test the quantification performance of the new method, the relative percentages of the impurities compared to the main drug substance were measured using the spectrum (Fig. S6 of the ESI†) of a fresh, undegraded, sample. Since the dynamic range of the spectrum is very high, lineshape fitting$^{35-36}$ was used instead of conventional integration. As shown in Table 1, the relative percentages measured agree well with those expected.

In systems with mutually coupled fluorines, homonuclear J modulation interferes with 13C satellite suppression if hard 180° pulses are used in Fig. 2. Selective 180° pulses avoid this problem, as shown in Fig. 3 for the antifungal drug fluconazole, which has $J_{\text{CH}} = 8.1$ Hz. Fig. 3b and c were acquired separately using the selective analogue of Fig. 2 to excite the regions around -107 and -111 ppm respectively, revealing the degradation products 4a, 4b and 4c.

13C isotopomer signals can pose significant challenges in identifying and quantifying impurities down to the 0.1% level. The novel approach introduced here of filtering out, rather than decoupling, these signals offers the possibility of acquiring clean, high dynamic range 19F spectra without interference from species containing 13C. A slightly simpler approach can be used in proton spectra.

Table 1

<table>
<thead>
<tr>
<th>Expected (%)</th>
<th>Measured (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.33</td>
</tr>
<tr>
<td>3</td>
<td>0.17</td>
</tr>
<tr>
<td>1a</td>
<td>0.28</td>
</tr>
<tr>
<td>1b</td>
<td>0.26 ± 0.03</td>
</tr>
</tbody>
</table>

This work was supported by AstraZeneca and by the Engineering and Physical Sciences Research Council (grant number EP/N033949/1). All raw experimental data, and the pulse sequence code, can be downloaded from DOI: 10.15127/1.304823.

Notes and references