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After isolating an unusual binuclear, but monosolvated NaHMDS
complex [{(R,R)-TMCDA}-(NaHMDS),] ., which polymerises via inter-
molecular electrostatic Na- - -Meymps interactions, further (R,R)-TMCDA
was added to produce the discrete binuclear amide [{«*-(R,R)-TMCDA}-
(NaHMDS),{k'-(R,R)-TMCDA}], whose salient feature is the unique
monodentate coordination of one of the chiral diamine ligands.

Chiral diamine ligands, for example (—)sparteine, its (+)-sparteine
surrogate and N,N,N',N'-(1R,2R)-tetramethylcyclohexane-1,2-diamine
[(R,RFTMCDA] have attracted considerable attention in asymmetric
synthesis in a whole host of transition metal catalysed
methodologies." From an s-block perspective, when paired with
an organolithium reagent it can be envisaged that ‘chiral
carbanions’ are created, which can be used in subsequent enantio-
selective syntheses.” Focusing particularly on the C,-symmetric
ligand (R,RFTMCDA, it has come to prominence recently as
the availability of the historically more widely utilised diamine
(—)-sparteine, has been unreliable over the past few years.” In terms
of its coordination chemistry, (R,R*-TMCDA has worldwide interest
and has been well studied. Over 50 metal complexes containing its
ligated form have been reported, spanning both the s- (Li,* Na,*
K,* and Mg,’) and d-block metals (Cu,® Zn,” Ru,® Pd,” Pt"° and Hg"").
Within s-block chemistry and germane to this work, Strohmann
has comprehensively studied (R,R)-TMCDA complexes of syntheti-
cally important organolithium reagents (such as ‘BuLi,*® MeLi,*
'PrLi,*” *BuLi,” "BuLi,* BH,P(Ph)(Me)CH,Li,"’ MeLi," PhLi,""
(allyl)Li** and (benzyl)Li* derivatives). An all-encompassing feature
of all known structures is that the chiral diamine ligand adopts
exclusively a k>-bidentate chelating mode. Due to the less flexible,
fixed bite angle in (R,R}TMCDA, with respect to that of N,N,N',N'-
tetramethylethylenediamine (TMEDA),"* it is a stronger chelating
ligand than the latter,"® with a recent study noting that it ‘displays
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no tendency to bind as a monodentate ligand.”™* This has been
attributed to the x' (or by implication ') form of (R,R-TMCDA
inducing severe steric strain due to the juxtaposition of the metal-
NMe, with the uncoordinated NMe, group. The structural
chemistry of alkali metal amide complexes continues to be an
important topic of research.’® We have recently discovered that
lithium and sodium 1,1,1,3,3,3-hexamethyldisilazide (LIHMDS
and NaHMDS) can capture alkali metal halide salts in the presence
of donor ligands to form ion pair metal anionic crown (MAC)
complexes, for example [Li{(R,R)-TMCDA},]'[LisHMDS;CI] .
A key starting material which remained hitherto elusive in our
studies involving sodium is the (R,R)-TMCDA-solvated NaHMDS
complex. Crystallisation of other donor ligated [e.g., Me,TREN"”
and (—)-sparteine’®] NaHMDS complexes has proven difficult,
although the polymeric TMEDA [(i-TMEDA)-(NaHMDS),].,"°
and N,N,N',N'-tetramethylpropanediamine (TMPDA) [(u-TMPDA):
(NaHMDS),]..>° complexes, which propagate via the non-
chelating diamine ligand, are known (Fig. 1). These have
similar structural motifs to Williard’s lithium diisopropylamide
(LDA) complex [(u-TMEDA)-(LDA),].,."°

In an effort to prepare the (R,RFTMCDA complex of NaHMDS, an
equimolar mixture of NaHMDS and (R,R}*TMCDA was combined in
n-hexane medium and left to stir at ambient temperature for 1 hour
(Scheme 1). The reaction mixture was then cooled to —33 °C and
crystals suitable for X-ray crystallographic analysis deposited after
48 hours (27% non-optimised, crystalline yield; maximum yield 50%
based on (R,RFTMCDA consumption). X-ray data reveal the mono-
(R,RFTMCDA, binuclear [{(R,R)}TMCDA}-(NaHMDS),]., 1 (Fig. 2a).
There are six crystallographically distinct but essentially chemically
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Fig. 1 Structures of previously known polymeric [(u-TMEDA)-(NaHMDS),] .,
and [(u-TMPDA)-(NaHMDS),] ...
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Scheme 1 Syntheses of [{(R,R)-TMCDA}-(NaHMDS),],, 1 and [{x3-(R.R)-
TMCDA}-(NaHMDS),{x"-(R,R)-TMCDA}] 2.

equivalent molecules of [{(R,R)-TMCDA}-(NaHMDS),] in the structure
of 1, thus for brevity only one is discussed here. Interestingly, the
empirical formula of 1, ie., [(donor)-(NaHMDS),] is identical to that
for the aforementioned TMEDA and TMPDA derivatives; however, in
keeping with previously known (R,RFTMCDA complexes, the diamine
adopts a chelating bonding mode, and with respect to the N donor
atoms, renders one Na metal centre (Nal) four-coordinate in a
distorted tetrahedral arrangement (bond angles range from 68.70(9)
to 151.55(10)°, see ESI} for full details). Additionally, Nal has two
long Na-:--Me interactions with a methyl group from each HMDS
ligand [Nat1---C12 2.987(4) and Nal---C22 2.987(4) A]. The second
Na metal centre (Na2) remains only two-coordinate with respect to
the bridging amido N atoms. To satisfy this electron deficiency, Na2

Fig. 2 (a) Molecular structure of [{(R,R)-TMCDA}-(NaHMDS),] ., 1 showing
one molecule from the asymmetric unit. Hydrogen atoms omitted for
simplicity and thermal ellipsoids are displayed at 35% probability. (b)
Section of the zigzag polymeric chain of 1. The dashed lines illustrate
Na- - -Me(SiMe,) interactions. The symmetry operation used to generate
the atoms labelled with "is —x + 1, y + 1/2, —z + 1.
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engages a solitary intermolecular Na.--Me(SiMe,) [Na2---C65
distance, 2.818(4) A] electrostatic interaction (Fig. 2b), which is
short in comparison to known literature examples [range
Na. - -Me(SiMe,) 2.947-3.138 A].*' This sole intermolecular
Na- - -Me interaction induces propagation of binuclear units in
a zigzag polymer chain. This change in the coordination chemistry
of (R,R)}-TMCDA in 1 with respect to the bridging TMEDA and
TMPDA ligands in the aforementioned polymeric sodium amides
emphasises the propensity for the chiral 1,2-diamine to remain as a
chelating ligand rather than binding in a monodentate fashion. As
a consequence of this coordination mismatch, significantly shorter
Na2-Nynps bonds (mean distance, 2.356 A) are observed when
compared with Nal-Nyyps bonds (mean distance, 2.530 A).
Despite utilising a 1:1 ratio of NaHMDS: (R,R}-TMCDA in this
synthesis, it is clearly evident that the ultimate ratio in 1 is 2:1.
When this optimised ratio is used in the synthesis, 1 was again the
sole product isolated (36% crystalline yield).

Complex 1 is a rare example of a solvated sodium amide
which contains an unsolvated Na site. Bochmann revealed the
mono(tetrahydrofuran), mono(THF), complex [(THF)-(NaHMDS),]
where one Na atom is two coordinate whilst the other binds to
the ether to render it three coordinate.*” Interestingly, seven
years prior to this report Dehnicke published the bis(THF)
analogue [(THF),-(NaHMDS),] where both Na atoms are three
coordinate.>® This begged the question: ‘could the coordinatively
unsaturated (Lewis acidic) Na atom in 1, act as a host for another
Lewis base?’

A logical route to address this question would be to utilise
monodentate donors such as THF and diethylether, in an
attempt to saturate the deficient metal centre; but, it is highly
likely that these strong o-donors would also displace the
chelating (R,R)-TMCDA ligand. Therefore to maintain synthetic
simplicity, we repeated the preparation of 1 but employing an
excess (two molar equivalents) of (R,R)-TMCDA with respect to
NaHMDS in an attempt to coordinate a second molecule of the
Lewis base ligand to the donor-free metal centre. High quality
crystals (39% crystalline yield) were obtained by storing the
resultant solution at —33 °C for 24 h, which were analysed by
X-ray crystallography and were pleasingly found to be the target
bis(solvated) derivative [{k*-(R,R)-TMCDA}-(NaHMDS),{x"-(R,R)-
TMCDAY}] 2 (Fig. 3). The distorted tetrahedral coordination sphere of
Na1 in 2 (bond angles around Nal range from 66.90(6) to 151.05(8),
see ESIT) is essentially identical to that found in 1, exhibiting
additional long contacts with a methyl group from each HMDS
amido ligand [Na1---C27 2.968(3) and Na---C24 2.976(3) A]. How-
ever, the second sodium metal centre, Na2, is additionally coordi-
nated to an extra molecule of (R,R}*TMCDA, giving rise to a distorted
trigonal planar geometry. As such there are two distinct coordinated
diamine ligands within the structure of 2. Undoubtedly, the
most eye-catching feature is that one (R,R)-TMCDA ligand
adopts a previously unseen k'-coordination mode. To change
from a k> to a k'-coordination mode, it appears that inversion
of the N1 atom of the (R,R)-TMCDA has occurred, no longer
allowing the ligand to chelate to Na2 (Fig. 3).

Complex 2 is a discrete dimeric entity, despite the potential
availability for N2 to coordinate further. In theory, this could be
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Fig. 3 Molecular structure of [{x?-(R,R)-TMCDA}-(NaHMDS)x{k-(R.R)-
TMCDA}] 2. Hydrogen atoms and one disordered component of the
mono-dentate (R,R)-TMCDA ligand are omitted for simplicity. Thermal
ellipsoids are displayed at 35% probability.

achieved if this N atom could also invert thus allowing an
additional exo-coordination site; however, it is unlikely that
this would occur due to high steric strain (buttressing)."* The
k'-coordinated (R,R)-TMCDA is disordered over two domains,
but its atomic connectivity and geometry are unequivocal. The
k>~ and the hitherto unseen x'-coordination mode (R,R)-
TMCDA observed in 2 can be compared with DFT calculations
(at the B3P86/6-311+G* level) performed for its diamine relative
(—)-sparteine (Fig. 4).>* It has been shown that when (—)-spar-
teine binds to a metal complex, it always adopts a chelating ‘cis’
configuration. However, in the absence of a metal complex, it is
actually slightly more stable (by 3.4 kcal mol ) in a ring-flipped
‘trans’ configuration [akin to our k'-coordinated (R,R)-TMCDA]
where the lone pairs of electron present on the N atoms are not
adjacent to each other. We have performed similar DFT studies
(ESIT) on (R,R)-TMCDA and have shown that there is negligible
difference (less than 1 kcal mol™") between the potentially
«'- and k*-coordination modes.

As 1 and 2 are both highly soluble in non-polar hydrocarbon
and arene solutions, solutions of these compounds were studied by
NMR spectroscopy. Using "H NMR spectroscopy, it was evident that
the expected 1:2 and 2:2 (R,R)}-TMCDA:HMDS ratios were
observed respectively. For 1, a single amido resonance (at 6 0.25)
was observed and the (R,R)-TMCDA resonances (at ¢ 2.01, 1.90, 1.47
and 0.74) in C¢Ds solution appeared to correspond to a metallo-
coordinated ligand (see ESIt for full details). For 2, the amido
resonance appears at ¢ 0.31 in the same solvent. If the solid state
structure of 2 was to be retained in solution, two unique sets of
(R,R)-TMCDA resonances would be expected. In reality a single set
of resonances (at ¢ 2.06, 1.99, 1.51 and 0.80 in C¢Dg solution) is
observed. This indicates that a single (R,R}-TMCDA environment
exists at 300 K in arene solution, indeed, a variable temperature

trans
3.4 kcal mol- more stable

Fig. 4 Relative stabilities of cis and trans isomers of uncoordinated
(—)-sparteine 24
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NMR spectroscopic study of 2 in [Dg]-toluene solution unveiled that
this situation was maintained even at low temperature (down to
206 K, see ESIY). In addition, *H and **C NMR spectra obtained in
non-polar [Dy,]-cyclohexane also reveal this situation (see ESIT).
Therefore due to the steric bulk of the HMDS ligands within the
molecule [thus precluding a dual k>situation for the (R,R-"TMCDA
ligands], it is likely that the spectra show a time-averaged situation
between dynamic x'- and x*-coordinated (R,R}TMCDA ligands.

In closing, we have shown that counter to previous studies,
(R,R)-TMCDA can indeed bind to an alkali metal in a non-
chelating x'-manner.
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