Issue 1, 2017

In vitro study of the host responses to model biomaterials via a fibroblast/macrophage co-culture system

Abstract

Surface properties are believed to play important roles in initial inflammatory and subsequent wound healing/fibrotic responses after implantation of biomaterials. To investigate the surface property effect in mediating these host responses, we used an in vitro fibroblast/macrophage co-culture model established with a cell migration chamber, and a series of self-assembling monolayers (SAMs) bearing different terminal groups as model surfaces to study the effect of surface properties on macrophage fusion, fibroblast attachment, spreading morphology, proliferation, outgrowth, as well as pro-(interleukin-6) and anti-(interleukin-10) inflammatory cytokine production, expression of ED-A fibronectin (FN) and alpha-smooth muscle actin (α-SMA). The obtained results show that the hydrophobic CH3 surface caused high levels of inflammatory but low levels of wound healing/fibrotic responses, while the hydrophilic/anionic COOH surface resulted in both low levels of inflammatory and wound healing/fibrotic responses. Interestingly, the hydrophilic OH surface was found to possess a low potential of inducing inflammatory responses but high potential of inducing wound healing/fibrotic responses. These results reveal that the extent of inflammation and wound healing/fibrosis might not be always related in vitro. However, more important is the observation of the macrophage contributions in facilitating the wound healing and fibrotic responses by up-regulation of fibroblast outgrowth, cytokine production as well as ED-A FN and α-SMA expression. Overall, by linking the surface properties to cell activities with our established fibroblast/macrophage co-culture system, we could provide an useful model system for in vitro studies to design more biocompatible biomaterials for various biomedical and tissue engineering applications.

Graphical abstract: In vitro study of the host responses to model biomaterials via a fibroblast/macrophage co-culture system

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2016
Accepted
20 Nov 2016
First published
02 Dec 2016

Biomater. Sci., 2017,5, 141-152

In vitro study of the host responses to model biomaterials via a fibroblast/macrophage co-culture system

G. Zhou, A. Liedmann, C. Chatterjee and T. Groth, Biomater. Sci., 2017, 5, 141 DOI: 10.1039/C6BM00247A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements