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Detection of glycosylation and iron-binding
protein modifications using Raman spectroscopy

Lorna Ashton,*a,b Victoria L. Brewster,a Elon Correaa,c and Royston Goodacrea

In this study we demonstrate the use of Raman spectroscopy to determine protein modifications as a

result of glycosylation and iron binding. Most proteins undergo some modifications after translation which

can directly affect protein function. Identifying these modifications is particularly important in the pro-

duction of biotherapeutic agents as they can affect stability, immunogenicity and pharmacokinetics.

However, post-translational modifications can often be difficult to detect with regard to the subtle struc-

tural changes they induce in proteins. From their Raman spectra apo-and holo-forms of iron-binding pro-

teins, transferrin and ferritin, could be readily distinguished and variations in spectral features as a result of

structural changes could also be determined. In particular, differences in solvent exposure of aromatic

amino acids residues could be identified between the open and closed forms of the iron-binding proteins.

Protein modifications as a result of glycosylation can be even more difficult to identify. Through the appli-

cation of the chemometric techniques of principal component analysis and partial least squares

regression variations in Raman spectral features as a result of glycosylation induced structural modifi-

cations could be identified. These were then used to distinguish between glycosylated and non-glyco-

sylated transferrin and to measure the relative concentrations of the glycoprotein within a mixture of the

native non-glycosylated protein.

Introduction

It is well established that the large majority of proteins
undergo one or more modifications following translation
which will ultimately affect both structure and function. Even
the most subtle of changes can affect function, including acti-
vation and regulation. For example, during glycosylation of
protein based biopharmaceuticals it is essential that the
correct number and sequence of glycans are attached to the
correct amino-acid for stability, pharmacokinetics and appropri-
ate immunogenicity of the drug.1–3 Furthermore, a protein’s
function may specifically revolve around the binding of
ligands, as is the case for iron-transporting and iron storage
proteins such as transferrin and ferritin.

Whilst iron is an essential micronutrient and associated
with many important biological functions, including respir-
ation and cell division,4–7 it is also extremely toxic to cells in
its free form (Fe0) and therefore requires well regulated uptake,
transport and storage. Misregulation of iron at any stage can

result in severe consequences including the accumulation of
iron in the brain and this has been linked to neurogenerative
diseases including Halleroerden-Spatz syndrome, Parkinsons
and Alzheimer’s diseases.8–10 Two iron-binding proteins which
have essential roles in iron metabolism are the iron storage
protein, ferritin and the iron transporting protein, transferrin.
The majority of previous Raman spectroscopy studies of metal
binding proteins, such as transferrin, have used resonance
Raman to enhance the Raman signal arising from the pres-
ence of metal with wavenumbers below 900 cm−1 strongly
influenced by the specific metal ligand.11,12 More recently,
iron saturation in transferrin13 and differences between ferri-
tin and magnetoferritin have been determined using the non-
resonance Raman spectroscopy14 and although both studies
focused on Raman peaks arising from the presence of iron
they also observed intense protein structure and polysacchar-
ide associated peaks in the spectra.

The role of transferrin as a transporter protein has also
made it an important biopharmaceutical fusion protein.
Transferrin’s biopharmaceutical role is to bind to other thera-
peutics which have short half-lives and improve the pharmaco-
kinetics of these drugs by extending their activity. However,
transferrin also undergoes glycosylation with the addition of
mannose and it is also important for this protein to have
correct glycosylation. Previous studies have demonstrated how
Raman spectroscopy combined with multivariate analysis can
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be used to detect the glycosylation state of a protein quantify-
ing mixture of the model glycosylated and non-glycosylated
proteins.15 Here we extend this work to determine glycosyl-
ation status of transferrin, identify iron-binding in transferrin
and ferritin and identify structural modifications as a result of
the ligand-binding, using Raman spectroscopy.

Materials and methods
Samples

Holoferritin (holoF) and apoferritin (apoF), both from equine
spleen, were purchased from Sigma-Aldrich (Dorset, UK) in a
0.15 M NaCl buffer and used without any further purification
at a concentration of 10 mg mL−1. D-Mannose was also pur-
chased from Sigma-Aldrich and used without further purifi-
cation. Variants of transferrin proteins, non-glycosylated apo-
transferrin (apoTf), glycosylated apotransferrin (apoTfG), non-
glycosylated holotransferrin (holoTf) and glycosylated holo-
transferrin (holoTfG) were kindly supplied by Albumedix® in a
standard PBS buffer at a concentration of 1 mg mL−1. Mixtures
of apoTf and apoTfG were made, with increasing concen-
trations of apoTf at 5% intervals, keeping the total protein con-
centration the same for each sample (1 mg mL−1).

Raman spectroscopy

Raman spectra of all the transferrin variants were collected
using a Renishaw 2000 Raman microscope and ferritin spectra
were collected using a Renishaw inVia Raman Spectrometer
(Renishaw Plc. Old Town, Wotton-under edge, Gloucestershire,
UK), both with an excitation wavelength of 785 nm. For the
transferrin samples the laser power was ∼27 mW at source and
2–4 mW at the sample, whereas for the ferritin samples the
laser power was ∼100 mW at source and ∼50 mW at the
sample. The higher laser power was necessary for the ferritin
samples in order to overcome fluorescent background inter-
ference due to the brown colouring of the samples. At
lower laser power only weak Raman peaks were observed but
these became stronger as laser power was increased with a
reduction in fluorescence most likely due to photo-bleaching
during spectral acquisition although no damage to the dried
sample was observed through the light microscope after data
collection.

All samples were prepared on Tienta Spectra RIM™ slides
(Tienta Sciences Inc., Indianapolis, IN, USA) as previously
reported.15 All spectra were single accumulation collected for
60 s. For the pure samples six repeat spectra were collected.
For the mixed samples three repeat measurements were
recorded from each of the 21 samples and collection order of
all spectra was randomized.

Data preprocessing

In order to compare the spectra directly cosmic ray removal,
baseline correction, smoothing and normalization was carried
out on all spectra using MATLAB software version R2012a (The
MathWorks, Natwick, MA, USA). Smoothing was applied using

a triangular sliding average and baseline correction was
applied using an asymmetric least squares algorithm. For the
pure transferrin variants and the ferritin samples spectra were
normalized to the peak at ∼1445 cm−1 (arising from CH2

groups) since this band has been shown not to fluctuate in
signal strength in proteins.16–19 Principal component analysis
(PCA) was also applied using MATLAB software version R2012a
(The MathWorks, Natwick, MA, USA).

Partial least squares regression

Partial least squares regression (PLSR) is a supervised learning
method that relates a set of independent variables X (e.g., the
Raman intensities) to a set of dependent variables Y (the
apoTf concentration). PLSR projects the X and Y variables into
sets of orthogonal latent variables, scores of X and scores of Y,
so that the covariance between these two sets of latent vari-
ables is maximized.20 The purpose of PLSR is to build a linear
model Y = XB + E, where B is a matrix of regression coefficients
and E represents the difference (error) between observed and
predicted Y values.21 The size of the absolute value of the
coefficient for each independent variable (Raman shifts) re-
presents the influence of that variable on the prediction or
dependent variable (apoTf concentration). The higher the
absolute value of the coefficient is, the higher the influence of
the variable. Once the model has been built, it can then be
used to predict, or estimate, the values of the dependent vari-
ables (apoTf concentrations) of new samples. In addition to
these predictions, loadings plots from B regression coefficients
can be generated and used to ascertain which are the impor-
tant variables (Raman shifts) that are used in model construc-
tion, and hence related to the concentration of apoTf.

Results and discussion
Detection of iron-binding modifications

Transferrin is a relatively small molecule (molecular mass ca.
79 kDa) with two evolutionary related lobes each consisting of
two domains with a central β-sheet backbone that interacts to
form the iron binding site.22–24 Ferritin however is composed
of 24 subunits, each adopting a 4-helix bundle fold, which
together form a spherical molecule (molecular mass ca.
480 kDa) with a hollow central cavity where iron is stored.25–27

Channels link the interior and exterior of the shell to control
the release of iron. Fig. 1A and B compare the averaged Raman
spectra of holotransferrin (holoTf), apotransferrin (apoTf),
holoferritin (holoF) and apoferritin (apoF). Although the
majority of spectral variations in Fig. 1 arise from differences
in secondary structure and amino-acid residues (see Table 1)
two distinctive peaks can be observed in the proteins with iron
at ∼425 cm−1 (Fig. 1A) and ∼455 cm−1 (Fig. 1B) not observed
in the apo spectra. Peaks in the region of ∼405–550 cm−1 have
been reported as arising from both Fe–O and Fe–NO
complexes.28–31 Consequently, even though the holoF spectral
peak at ∼455 cm−1 is weaker and less noticeable than the
holoTf peak at ∼425 cm−1, the apo and holo forms are easily
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distinguishable in both the ferritin and transferrin Raman
spectra. The weaker holoF peak may be due to the fact that the
binding site for iron is buried inside the core of the ferritin

molecule and may suppress the intensity of the peaks arising
from the Fe–O complexes compared to the smaller transferrin
protein where the iron binding site is less compact.22

Alternatively, the ferritin samples were commercially bought as
opposed to the transferrin samples provided by Albumedix
and so these may not be as pure or all protein molecules may
not completely bound to the iron.

The distinction between Raman spectra of holo and apo
protein forms is further confirmed in the PCA scores plots of
PC1 and PC2 (Fig. 2A) where good separation between the four
samples can be observed. The two different proteins, transfer-
rin and ferritin can be observed to separate along PC1 with a
total explained variance (TEV) of 67.1% while the holo and apo
proteins are separated along PC2 with TEV 21.1%. As expected
the loading plot for PC1 reveals variance is due to differences
in secondary structure and amino acid residues (Table 1)
However, the loadings plot for PC2 is not dominated by the
peaks at ∼425 and 455 cm−1 but also indicates that the main
variations between the apo and holo spectra arise from confor-
mational differences.

The largest variance in PC2 loadings plot can be observed
for the peak occurring at ∼840 cm−1. When the holo and apo
spectra are compared (Fig. 1) a change in the ratio of the peaks
at ∼830 and 850 cm−1 can be observed which has been exten-
sively assigned to a change in tyrosine exposure32–34 suggesting
that with iron binding tyrosine residues in both proteins
become less exposed with a reduction in H-bonding.
Structurally, transferrin consists of two lobes, designated the
N-lobe and C-lobe linked by a short spacer sequence with each
lobe containing two domains interacting to form the metal
binding site.22 Iron binding or release has been shown to be
associated with a large scale domain movement that results in
the closing or opening of the binding cleft of each lobe,
mediated by a hinge in the two antiparallel β-strands that run
behind the iron-binding site in each lobe.24,35,36 Without iron
apoTf is in the more open conformation possibly increasing
the distance between β-sheets. Consequently, the majority of
intensity variations observed in Fig. 1A may be associated with
the change in solvent exposure of the side chain residues and

Fig. 1 Averaged Raman spectra of (A) transferrin and (B) ferritin, aver-
aged from 6 preprocessed spectra. Iron bound proteins (holotransferrin
and holoferritin) are shown in red. Iron free proteins (apotransferrin and
apoferritin) are shown in blue.

Table 1 Proposed Raman assignments for ferritin (F) and transferrin (Tf ) with (holo) and without (apo) iron as well as glycosylated (TfG) forms of
transferrin

Assignment holoF apoF holoTf apoTf holoTfG apoTfG

Fe–O, Fe–NO complexes29–31 455 cm−1 425 cm−1

Tryptophan, indole ring45,46 748 cm−1 754 cm−1 754 cm−1 754 cm−1 752 cm−1 752 cm−1

Tyrosine, H-bonding32,33 828 cm−1 828 cm−1

Tyrosine H-bonding32,33 850 cm−1 850 cm−1 850 cm−1 850 cm−1 850 cm−1 850 cm−1

Tryptophan, H-bonding47 878 cm−1 880 cm−1 880 cm−1 880 cm−1

α-Helix, C–C, C–N stretch37,48 940 cm−1

Phenylalanine48 1005 cm−1 1005 cm−1 1003 cm−1 1003 cm−1 1000 cm−1 1000 cm−1

Tyrosine, CH3
45 1176 cm−1 1176 cm−1 1170 cm−1 1174 cm−1

Tyrosine48 1208 cm−1 1211 cm−1

Tyrosine45/α-helix33,48 1270 cm−1 1264 cm−1 1272 cm−1 1270 cm−1

α-Helix41 1314 cm−1 1314 cm−1

α-Helix41,49 1334 cm−1 1334 cm−1 1334 cm−1 1334 cm−1

Phenylalanine, ring modes45,48 1600 cm−1 1603 cm−1 1600 cm−1

Disordered, CvO stretch33,39 1665 cm−1 1660 cm−1 1660 cm−1 1660 cm−1 1660 cm−1
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the change in orientation of structural elements between the
open and more closed forms of transferrin.

In Fig. 1B a large increase in intensity can be observed for
the peaks at ∼940 and 1656 cm−1 for apoF compared to holoF.
Peaks in the regions of ∼930–950 cm−1 and ∼1645–1665 cm−1

have been assigned to both α-helical33,37,38 and disordered
structure.37,39 The loadings for PC2 (Fig. 2C) also indicate sig-
nificant variation in these regions. The ferritin molecule is
composed of 24 subunits, each adopting a 4-helix bundle fold,
which together form a spherical molecule (molecular mass
ca. 480 kDa) with a hollow central cavity where iron is stored.5,40

Channels link the interior and exterior of the shell to control
the release of iron and the spectra may be monitoring either a
decrease in helical structure and/or less ordered structure
when iron is bound, possibly due to a closing of the channel.

Consequently, for both ferritin and transferrin, it is possible to
determine protein modifications from their Raman spectra
that occur due to iron-binding.

Detection of glycosylation modifications

Transferrin’s role as a transporter protein has resulted in its
extensive use as a biopharmaceutical fusion protein but this
also requires the protein to be correctly glycosylated, specifi-
cally with mannose, to maintain protein stability and
immunogenicity.1–3 Fig. 3A and B display the averaged Raman

Fig. 2 Principal component analysis of transferrin and ferritin spectra.
(A) Scores plot of PC1 versus PC2 of holoferritin (red), holotransferrin
(green), apotransferrin (blue) and apoferritin (black), along with the
associated (B) PC1 loadings plot and (C) PC2 loadings plots.

Fig. 3 Averaged Raman spectra of (A) holo- and (B) apo-transferrin
with and without glycosylation and (c) D-mannose, averaged from
6 spectra. Glycosylated transferrin (HoloTfG and ApoTfG) are shown in
blue and non-glycosylated transferrin (HoloTf and ApoTf) are shown in
red.
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spectra of glycosylated and non-glycosylated transferrin, with
and without iron. Despite the distinctive Raman spectra of
mannose (Fig. 3C) visual inspection of the spectra reveals that
although there is some variation in peak intensity no additional
mannose peaks are observed. However, when the PCA scores are
plotted (PC1 versus PC2, Fig. 4A) clear separation between the
four samples can be determined. Again, the loading plots
(Fig. 4B and C) reveal that the majority of variance is due to
differences in peaks assigned to secondary structure and amino

acid residues (Table 1). Consequently, although the variation in
PTM could be determined using Raman spectroscopy it is most
likely due to subtle changes in secondary structure rather than
the presence or absence of mannose.

The variation within holoTfG along PC2 may be due to differ-
ences in intensity of the iron peak at 425 cm−1 which was
observed to vary slightly depending on the location on the slide
where the spectra is taken from. A similar affect can be observed
for the holo samples in Fig. 2 which are spread further apart
than the apo samples. The intensity of the iron peak may be
affected by the orientation of the protein when drying out on
the slide. This is further supported by the intense peak at
425 cm−1 observed in the loading plot of PC2 (Fig. 3C).

From the loadings plots of PC1 (Fig. 4B) the main peaks of
variance are observed to occur at ∼850, 1000 and 1600 cm−1.
Intense peaks in these regions are also frequently assigned to
tyrosine, tryptophan and phenylalanine vibrations indicating
possible changes in orientation/exposure of these side chain
residues with the addition of glycans in the transferrin mole-
cule (Table 1). Peaks observed at ∼830, 880 and 1000 cm−1

have also been previously assigned to glycosidic ring and C–O–C
stretches in sugars14 however for these samples spectral vari-
ations in this region are most likely from changes in secondary
structure. A further spectral region of importance identified in
the loadings plot of PC2 (Fig. 3C) occurs at ∼1270–1350 cm−1

frequently assigned to α-helical structure33,41 again indicating
that the glycosylated and non-glycosylated forms of transferrin
are distinguishable from their Raman spectra but most likely
due to subtle protein modifications as a result of glycosylation
rather than from the determination of the peaks arising from
the sugars. This was also reported for our previous study of
RNaseA and RNAseB.15

Quantifying glycosylation in transferrin

In order to develop the application of Raman spectroscopy for
the analysis of glycosylated transferrin further, spectra were
recorded from mixtures of glycosylated and non-glycosylated
transferrin in order to attempt to quantify glycosylation from
the Raman spectra. PLSR was applied to the data with boot-
strap cross validations and Fig. 5A shows the liner regression
results of a single bootstrap cross validation selected as a
typical model based on the average R-squared value computed
over all cross validations.

Bootstrap is a re-sampling technique that can be applied as
cross-validation to estimate the prediction performance of a
model.42 The basic idea of this method is to select randomly,
with replacement, N samples from a set containing exactly
N samples. All selected samples, including the repetitions, are
then used as training set and the non-selected samples are
used as test set.43,44 One can think of this as having all
N samples analysed in a bag (N = 21 in our case where the 3
sample replicates are kept together, either in training or
testing, during sample picking). A single sample is taken out
randomly and its number noted, this sample now forms part
of the training data, and the sample is placed back into the
bag. This random sample picking process is repeated until 21

Fig. 4 Principal component analysis of glycosylated and non-glyco-
sylated transferrin. (A) PCA scores plot, PC1 versus PC2, holoTfG (green),
holoTf (red) apoTfG (blue), apoTf (black). (B) PC1 loadings plot and (C)
PC2 loadings plots.
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samples are in the training set; this will include the some
sample multiple times, and on average 63.2% of all of the
samples will have been selected for training. The remainders
(36.8%) are used as the test data. As can be observed in Fig. 5A
displaying the liner regression results of a typical bootstrap
cross validation (based on the average R-squared value com-
puted over all cross validations) there is a good correlation
between the predicted and actual concentrations of apoTfG.
Furthermore the loadings plot from the PLSR model (Fig. 5B)
also indicates very similar regions of importance as the load-
ings for the PCA (Fig. 4). Consequently, Raman spectroscopic
data can be used to accurately measure the relative concen-
trations of the glycoprotein within a mixture of the native non-
glycosylated protein.

Conclusion

Transport fusion proteins such as transferrin are being
increasing utilized in pharmaceutical processes. However, the

successful application of such proteins greatly depends on a
good understanding of how ligand binding and glycosylation
affect protein structure which in turn affects stability, immuno-
genicity and pharmacokinetics. Here we have demonstrated the
unique sensitivity of Raman spectroscopy for determining
iron binding, as well as glycosylation, and identifying the subtle
structural modifications.
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