
Analyst

PAPER

Cite this: Analyst, 2017, 142, 1285

Received 24th August 2016,
Accepted 6th December 2016

DOI: 10.1039/c6an01888b

rsc.li/analyst

Ultra-filtration of human serum for improved
quantitative analysis of low molecular weight
biomarkers using ATR-IR spectroscopy†

Franck Bonnier,*a Hélène Blasco,b,c Clément Wasselet,a Guillaume Brachet,d

Renaud Respaud,e Luis Felipe C. S. Carvalho,f Dominique Bertrand,g

Matthew J. Baker,h Hugh J. Byrnei and Igor Chourpaa

Infrared spectroscopy is a reliable, rapid and cost effective characterisation technique, delivering a molecular

finger print of the sample. It is expected that its sensitivity would enable detection of small chemical vari-

ations in biological samples associated with disease. ATR-IR is particularly suitable for liquid sample analysis

and, although air drying is commonly performed before data collection, just a drop of human serum is

enough for screening and early diagnosis. However, the dynamic range of constituent biochemical concen-

trations in the serum composition remains a limiting factor to the reliability of the technique. Using glucose

as a model spike in human serum, it has been demonstrated in the present study that fractionating the

serum prior to spectroscopic analysis can considerably improve the precision and accuracy of quantitative

models based on the partial least squares regression algorithm. By depleting the abundant high molecular

weight proteins, which otherwise dominate the spectral signatures collected, the ability to monitor changes

in the concentrations of the low molecular weight constituents is enhanced. The Root Mean Square Error

for the Validation set (RMSEV) has been improved by a factor of 5 following human serum processing with

an average relative error in the predictive values below 1% being achieved. Moreover, the approach is easily

transferable to different bodily fluids, which would support the development of more efficient and suitable

clinical protocols for exploration of vibrational spectroscopy based ex vivo diagnostic tools.

1. Introduction

Bodily fluids have become a much investigated source of
samples for the development of rapid and cost effective diag-

nostic methods.1–4 Reducing the invasiveness of the current
approaches to get molecular information linked to patho-
logical events occurring in different organs affected by various
diseases is naturally one of main challenges to improve the
patients’ comfort. Therefore, performing analysis directly on a
few microliters of serum, plasma, saliva or urine has attracted
great interest in the medical field, especially due to the facile
specimen collection. Blood analysis still holds much promise
for accurate ex vivo diagnostics and, compared to deep
tissue biopsies, often requiring extreme interventions, the
reduced invasiveness of the syringe remains a quite acceptable
alternative.

Human serum (or plasma) is a vast reservoir for biochemi-
cal products collected and accumulated while perfusing the
different organs of the body,5 ultimately reflecting the physio-
logical status of a patient. It is expected that modifications in
its overall composition could indicate the presence of disease
and consequently deliver a diagnostic based on specific mole-
cular signatures.6 It is well accepted that proteins secreted and
shed from cells and tissues, such as prostate-specific antigen
(PSA) and CA125, can be identified routinely and act as bio-
markers of disease.7 In addition, proteolysis within the tissue
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or deregulated post-translational events participate in fragmen-
tation of proteins produced in tumours that diffuse into the
circulation.6 This is further supported by recent associations
of pathological conditions with small protein and peptide pro-
files in serum, notably for diabetes,8 cardiovascular or infec-
tious diseases.9 The number of studies related to serum pro-
teomics, peptidomics or metabolomics has literally exploded
in the literature, complex analytical techniques such as chrom-
atography and/or mass spectroscopy being the reference
tools.10,11 Quite naturally, vibrational spectroscopy, which has
been widely employed in biomedical analysis, from tissue
sections12,13 to single cells14,15 with a well demonstrated poten-
tial for diagnosis,16,17 has the capability to become the next
generation gold standard tool for serum based patient
screening.18–20 The advent of imaging technologies coupled to
the rapid data collection offered by FTIR systems has contri-
buted considerably to the attraction of infrared absorption
spectroscopy for biomedical applications.21–23 However, other
methods such as ATR-FTIR are highly suitable for analysis of
liquid samples, such as body fluids, allowing delivery of
chemical fingerprints from micro-deposition of the samples
directly on the Attenuated Total Reflection (ATR) crystal.24,25

The IR spectrum contains rich and specific information about
the molecular composition of the human serum which,
coupled to advanced multivariate analysis tools, could deliver
accurate diagnostics. Recent systematic studies have demon-
strated the potential of IR serum based diagnosis with
different data mining approaches such as Principal
Components Analysis (PCA), PCA coupled to Linear
Discriminant Analysis (PCA-LDA), Random Forest or Support
Vector Machine (SVM).26–30 However, the development of
spectroscopic technologies with medical perspectives needs to
align with clinical requirements to enable clinical translation
of these promising technologies.31 Although infrared and
Raman spectroscopy have great potential for serum based
detection of disease biomarkers,32,33 in many cases, detection
of the presence of a biomarker is not sufficient, but rather
quantification within a physiologically relevant range is
required, a common example being glucose levels in blood.34

Partial Least Squares Regression analysis (PLSR) remains
one of most used analysis methods for quantitative models35

either in different body fluids such as urine,36 saliva,37,38

serum39 or to evaluate physiological responses to drugs in
cells.40 However, the serum composition is highly complex,
with up to 10 000 different proteins in an overall concentration
ranging from 60 to 80 mg mL−1. Moreover, other circulating
molecular species such as sugars, lipids, peptides, metabolites
are present, adding to the complexity of the mixture and con-
sequently making quantitative analysis of variations in individ-
ual constituents a challenging task. Human serum is also
characterized by the dynamic range of concentrations observed
between the abundant, high molecular weight (HMW) and the
sparse, low molecular weight (LMW) molecules. For example,
human serum albumin (HSA) (57–71%) and globulins (8–26%)
are two abundant HMW proteins completely dominating the
composition of the serum quantitatively, potentially impacting

the detection and monitoring small variations in the features
related to the presence of the informative low molecular
weight proteins/peptides/metabolites.41 The analytical capa-
bilities of traditional proteomic methods are limited, given
this large dynamic range of concentrations in the serum.
Therefore, depletion of the highly abundant proteins is now
recognized as the first step, yet to be optimized, in the analysis
of the serum composition.42 ATR-FTIR suffers from similar
limitations to those encountered with chromatography and/or
mass spectroscopy based approaches, which can be overcome
by means of sample fractionation prior to data recording.24

Including a separation step prior to IR analysis in order to
enhance the specificity and sensitivity has been proposed
through coupling with chromatography technologies such as
LC-IR and GC-IR.43 Those hyphenated approaches have been
reported in chemistry, pharmaceutical and food sciences
applications.44–46 However, the development of cryogenic
temperature control methods during the sample preparation
remains the most promising aspect for possible emergence of
such technologies in biomedical applications and human
body fluids analysis.47 This present study however investigates
the benefits of an alternative approach combining centrifugal
filtration/fractionation with ATR-IR spectroscopy for the ana-
lysis of human serum as a proof of principle for monitoring
and quantified potential low molecular weight biomarkers.
Glucose has been used as a model to illustrate the strategy to
isolate the relevant fraction of the sample to minimize the
influence of the HMW proteins and improve the precision and
accuracy of the quantitative models built using the PLSR
algorithm. Initially, human serum spiked with systematically
varying, physiologically relevant, concentrations of glucose will
be used to optimise the measurement protocol, including a
study of how the volume deposited on the ATR crystal
influences the relevancy of the data collected. PLSR will be
employed to build a predictive model over the concentration
range to demonstrate the principle of the predictive capacity of
the technique and the improved precision afforded by serum
fractionation. In the second part of the study, the technique
will be demonstrated in patient samples of known varying
glucose levels, validating the potential for glucose level
monitoring.

2. Experimental
2.1 Materials and methods

Sterile, filtered human serum from normal mixed pool (off the
clot) was purchased from TCS Biosciences (UK) for the in vitro
model prepared from spiked solutions, while patient serum
samples were donated by the University Hospital CHU
Bretonneau de Tours (France), following the institutional
ethical procedures. Initially, the samples were collected during
routine blood check-ups, 1 mL of the vial remains being
provided for further spectroscopic analysis. Commercially
available, centrifugal filtering devices, Amicon Ultra-0.5 ml
(Millipore – Merck, Germany), with cut-off points at 10 kDa,
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were employed to fractionate the serum samples, in both
cases. As a result, for each sample, 2 fractions were obtained
following filtration; the first representing serum constituents
with a molecular weight higher than the cut-off point of the
filter used (concentrate); the second corresponding to the
fraction passed by the membrane and collected in the vial
(filtrate). 0.5 mL of the serum was placed in the centrifugal
filter for spinning. The procedure for washing the centrifugal
devices prior to serum processing was adapted from,48 based
on manufacturer’s guidelines, and performed as follows: the
Amicon Ultra-0.5 ml filter was spun thrice with a solution of
NaOH (0.1 M), followed by 3 rinses with Milli-Q water
(Millipore Elix S). For both washing and rinsing, 0.5 mL of the
respective liquid was added to the filters and the centrifu-
gation was applied for 10 min at 14 000g followed by a spin-
ning with the devices upside down at 1000g for 2 min in order
to remove any residual solution contained in the filter. The
aim of the study was to illustrate the potential of ATR-IR spec-
troscopy to detect and screen a potential biomarker in the
LMWF. Therefore, based on previous experience demonstrat-
ing that 100% of the LMWF is recovered with the 10 kDa, only
this cut-off has been included in the present work.24

Additionally, D-glucose (Fisher scientific, UK) was analysed
as reference chemical compound for the quantitative analysis
on whole and filtered human serum. Notably, glucose has
been selected because it is routinely screened in clinics allow-
ing determination of exact blood levels for each patient sample
tested.

2.2 Glucose spiked human serum model

The commercial whole human serum was supplemented with
known concentrations of glucose; 0.0 mg dL−1 (control), 20
mg dL−1, 60 mg dL−1, 100 mg dL−1, 140 mg dL−1, 180 mg dL−1,
220 mg dL−1, in order to explore the dynamic range and sensi-
tivities of the ATR-IR measurement of unprocessed and filtered
samples. The concentrations have been selected to cover a
wide range of physiological relevance to simulate hypoglycae-
mia (<60 mg dL−1), normal level (70–110 mg dL−1) and hyper-
glycaemia (>120 mg dL−1), in order to optimise the protocols
for clinically relevant human serum monitoring using ATR-IR.
The serum stock solution has been used as a reference to
build the regression models and evaluate the sensitivity of the
techniques.

2.3 Patient samples blood glucose levels

A total of 15 patient samples have been included in the
present study. Glucose levels have been measured at the CHU
de Tours using a Cobas analyser following the in house guide-
lines for routine biochemical analysis. The principle of the test
is based on the enzymatic reference method with hexokinase,
which catalyses the phosphorylation of glucose to glucose-6-
phosphate by ATP.49,50 Subsequently glucose-6-phosphate is
oxidized by glucose-6-phosphate dehydrogenase, in the pres-
ence of NADP, to gluconate-6-phosphate. This reaction is
specific, with no other carbohydrate being oxidized. The rate
of NADPH formation during the reaction is directly proportional

to the glucose concentration and is measured photometrically
in the UV.

Glucose level is one of the most common tests performed
during blood check-ups and is therefore a perfect model to
develop a proof of principle for quantification of low molecular
weight biomarkers in human serum using ATR-IR spec-
troscopy. The instrumentation available at CHU de Tours has a
standard deviation of 0.04 mmol L−1 (0.721 mg dL−1), and can
therefore be considered as the gold standard. Measured
glucose concentrations were provided with the patient samples
and have been used as target values for the PLSR models.
A summary of information extracted from patient histories is
given in Table 1 (see below).

All patient samples have been processed with the 10 kDa
centrifugal devices in order to carry out HMWF proteins
depletion prior to IR analysis. The reproducibility being a criti-
cal point to ensure reliability of the results, a set of 10 inde-
pendent samples (5 unprocessed and 5 filtered mixed pool
human serum samples) has been tested on the Cobas analyser
before and after ultrafiltration. Ultimately, it has been demon-
strated that the concentration of glucose was 4.0 ± 0.1 mmol L−1

in both unprocessed and filtered samples, demonstrating that
glucose can freely pass through the membrane of the filters
and be quantified in the filtrates recovered. This observation
correlates with previous testing of reproducibility highlighting
the repeatability of the process.24

2.4 Data collection using the ATR-IR

ATR-IR spectra were recorded using a Bruker Vector 22
equipped with a single reflection golden gate ATR accessory
(Specac, UK). A diamond top plate with a 45 °C incident
angle was preferred for this study. Penetration depth of the
evanescent wave into the sample is both wavenumber and
sample dependent, but is typically on the order of 1 µm.
Spectral data were the result of 32 scans, with a spectral resolu-
tion of 4 cm−1 covering the spectral window 4000–600 cm−1.
A background spectrum was also recorded in air (32 scans)

Table 1 Summary of patient’s information

Sample
number

Glucose blood levels

Gender Age
mmol L−1

(±0.04)
mg dL−1

(±0.721)

1 3.4 61.25 F 33
2 3.5 63.05 F 36
3 3.6 64.86 F 64
4 3.7 66.66 M 31
5 3.7 66.66 F 30
6 3.7 66.66 F 87
7 3.8 68.46 F 26
8 6.4 115.3 M 73
9 6.5 117.10 M 65
10 6.7 120.70 F 58
11 7.0 126.11 M 75
12 7.3 131.51 M 53
13 9.5 171.15 M 79
14 10.0 180.16 F 63
15 11.6 208.98 M 63
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and automatically ratioed with the sample spectrum by the
software. A built-in quality control is automatically performed
by the operating system (OPUS software) every day upon
system start up, ensuring the ATR accessory is delivering ade-
quate data and no malfunction of the instrument is detected.
Liquid human serum solutions: the spectroscopic analysis of
samples was performed directly after deposition of a drop on
the crystal (0.1 µl, 0.2 µl, 0.5 µL, 1 µL and/or 2 µl), following
air drying. The drying time necessary is directly related to the
volume deposited and can be affected by external parameters
such as room temperature and humidity, but it generally com-
prised between 3–5 min. Moreover, the effectiveness of the air
drying has been confirmed in real time following the evolution
of the main water band in the range 4000–2500 cm−1 directly
on screen. The broad water band, with a maximum absorbance
between 3270–3340 cm−1, is a reliable indicator of the de-
hydration of the sample deposited. The intensity of the band
gradually decreases as the sample dries, until an equilibrium
is reached, at which point no further spectral evolution is
observed. When the signal has been found to be stable for at
least 60 seconds, the drop is considered dry and the spectra
were collected. Although not yet automated and requiring the
constant presence of the operator to monitor the screen, this
approach has been found particularly efficient and the com-
plete drying can be unambiguously confirmed in the data col-
lected, as illustrated with the raw spectrum in Fig. 1B.

At least 5 drops have been measured per sample and sets of
5 spectra have been collected for each drop in order to take
into account both instrumental and inter-drop variability In
order to reduce the inter-drop size and shape variability, the
deposition has been made on clean and dry crystal. It has
been observed that the top diamond plate is quite hydro-
phobic, preventing the drop from spreading out after depo-
sition and maintaining the round shape of the liquid sample.
All drops have been administered with micropipettes, perpen-
dicular to the surface, which ultimately results in reproducible
circular shaped samples centred on the crystal after air drying.
Finally, only 20 spectra (4 drops) have be used for each

sample, selecting the data sets with similar raw maximum
absorbance indicating the solutions have been deposited simi-
larly on the crystal. Ultimately, a total of 140 spectra were
included in the model study with spiked human serum, while
300 spectra were analysed for the 15 patient samples. 2 µL has
been found to be the maximum realistically usable volume,
considering the drying time and the large number of samples
tested.

2.5 Data pre-processing and analysis

The different pre-processing and data analysis steps were per-
formed using Matlab (Mathworks, USA). Partial Least Squares
Regression (PLSR) analysis was exploited as an approach to
quantify the spectral variability generated by either the
addition of known concentrations of glucose to the human
serum or estimate blood glucose levels in patient samples.

The analysis of the spectra collected has been restricted to
the finger print region, in which the sugar contribution occurs
in IR spectra. The spectra collected from spiked human serum
have been either min–max normalized (MMN) at the
1637 cm−1 peak corresponding to the amide I band or pro-
cessed using baseline correction (rubber-band) followed by
vector normalization (VN). The IR data collected being highly
reproducible with no sign of strong distortion linked to physi-
cal effects such as Mie scattering, the baseline correction has
been mainly employed to correct the slight offset observed in
the spectra between drops. For instance, the rubber-band
algorithm employed has been adapted for use on spectral
data.51 In the present case, only 2 nodes have been defined at
1800 cm−1 and 900 cm−1 for the baseline correction and this
consistently for all spectra. To better appreciate the minimal
correction applied to the data sets, the process is illustrated in
Fig. S1.† It should be noted that, following filtration, the spec-
tral signature is quite different, due to the depletion of the
abundant proteins. Consequently, the typical amide I and II
bands are not observed in the filtered serum, but are replaced
by a strong peak at 1591 cm−1 most likely assigned to conju-
gated CvC. For consistency, this band, which is the most
intense observed in the spectra of the filtered samples, and is
also remote from the glucose bands, has been selected for the
min–max normalisation.

In an attempt to preserve the information related to raw
absorbance intensity, a different method has been employed
for the data collected from patient samples. Due to the fact
that none of the spectral features can be assumed to be con-
sistent between patients, and thus cannot be used as internal
standard, the min–max normalisation on the amide I band
was found to be insufficient (data not shown). However, in
order to minimise the slight drifts observed the spectral back-
ground, it has been preferred to normalised the data at
1780 cm−1, located in a region away from any IR bands of the
serum. This approach was evaluated in this study to compen-
sate from the offsets observed in the raw data, restoring a
common baseline for the spectra without losing the relation
between absorbance and the concentrations of different
molecular species. The PLSR model has been built from the

Fig. 1 Typical ATR IR spectra collected from a 2 µL drop of 10 g dL−1

pure glucose solution deposited on the ATR crystal (A) and human
serum (B). Both spectra have been recorded after air drying. No pre-
processing has been applied. The spectra have been offset for clarity
and the main features of interest in the serum spectrum are highlighted.
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pre-processed data sets. The algorithm works in a supervised
fashion, whereby all different concentrations are known before
running the analysis. Ultimately, the output gives an esti-
mation of the model precision (Root Mean Square Error –

RMSE) and linearity between the experimental and predicted
concentrations (R2). In order to validate the robustness of the
models, a 20 fold – cross validation loop has been included in
the routine. For each iteration, 50% of the data is randomly
selected to constitute the calibration set, while the remaining
50% are used as a validation set for the quantitative predic-
tions. In the present study, particular attention has been
accorded to exploit the entire outcome of the PLSR models.
For this, for each iteration of the cross validation the RMSE,
R2 and predicted concentrations have been extracted and com-
piled to calculate mean and standard deviations values. It is
also important to note that, PLSR being a supervised algor-
ithm, spectral variations not directly related to the target vari-
able of glucose concentration should have little to no impact
on the precision estimated. Also the air drying has been care-
fully monitored for each sample, and any residual water vari-
ations in the data would not be expressed in the dimensions
selected for the construction of the quantitative model.

Finally, the 2 main notions developed throughout the study
are the precision, which is the variability in the measurements
realised, and the accuracy corresponding to the how closely
the result of an experiment agrees with the “true” or expected
result. While the former can be given by mean of the RMSEV
from the PLSR models and different calculation of standard
deviation, the latter has been particularly used for the patient
samples by comparing the relative error (%) between the
reference concentrations results provided by the clinicians
(gold standard) and the predicted concentrations estimated
by PLSR.

3. Results and discussion
3.1 Quantification of glucose levels in spiked human serum

3.1a Selecting volumes deposited. ATR-FTIR appears to be a
convenient, rapid and reliable approach to collecting high
quality spectra from highly concentrated liquid samples such
as human body fluids and for instance serum.52 A drop
directly deposited onto the crystal can be analysed without
prior dilution to avoid saturation effects generally encountered
with transmission mode measurements.53 Despite the rich
composition of the human serum, the water contribution
remains quite intense in the data gleaned from liquid form
samples and air drying remains preferable to visualise all the
spectral features.54 Fig. 1 presents ATR-IR spectra collected
from an air dried aqueous solution of glucose (10 g dL−1)
(Fig. 1A) and human serum (Fig. 1B). Following air drying,
the human serum spectrum displays numerous well
defined peaks within the 4000–650 cm−1 spectral widow, allow-
ing clear identification of specific features of the human
serum, for example those highlighted in grey at 3280 cm−1

(H–O–H stretching), 2957 cm−1 (asymmetric CH3 stretching),

2920 cm−1 (asymmetric CH2 stretching), 2872 cm−1 (symmetric
CH3 stretching), 1536 cm−1 (amide II of proteins), 1453 cm−1

(CH2 scissoring), 1394 cm−1 (CvO stretch of COO–),
1242 cm−1 (asymmetric PO2 stretch), 1171 cm−1 (ester C–O
asymmetric stretch) and 1080 cm−1 (C–O stretch).54–56 The
spectrum from whole human serum is clearly dominated by
the abundant proteins contribution such as albumin and glo-
bulins24 which swamp the contribution of less represented
biomolecules. In comparison, the glucose signature exhibits
fewer features, the main peaks being located in the spectral
range 1280–800 cm−1, resulting from both the ν(C–O) and
ν(C–O–C) vibrational modes,57 as identified in Fig. 1A. In the
present work, the limited spectral window of 1800–900 cm−1

was chosen to avoid the regions of strong water absorption.
Although the spectral response has stabilised, contributions of
water are still visible as a broad background in the region of
∼3300 cm−1.

The volume deposited can have an influence on the data
collected, depending on the concentration of the solutions
analysed and the coverage of the crystal achieved. The so-
called “coffee ring effect” has been documented extensively in
literature54,58 and describes the uneven distribution of the
constituents following air drying. Commonly, a higher concen-
tration is obtained on the edge of the deposited material
which can result in some spectral variability. In complex mix-
tures such as human serum, different chemical constituents
are deposited at different rates, as described by Vroman,59

resulting in spatially inhomogeneous chemical composition in
the dried deposit. Fig. 2 presents the dependence of the area
under the curve observed in raw data (AUC – between baseline
and peak maximum), calculated for the band 1180–955 cm−1,
depending on deposited volume, for two different concen-
trations of glucose solution. The 10 g dL−1 solution does not
exhibit any noticeable decrease in the AUC between 0.5 µL and
2 µL, explained by a full coverage of the crystal coupled to a
saturation of the signal.24 The notion of saturation is defined
by the loss of linearity between the absorbance and the

Fig. 2 Evolution of Area Under the Curve (AUC) of the band at
1180–955 cm−1 as a function of volume of glucose solution deposited.
Red: 10 g dL−1 glucose solution; blue: 0.1 g dL−1 glucose solution.
Intensity of the blues bars have been multiplied by 5 for better visualiza-
tion on the graph. Error bars are the results of 5 independent
measurements.
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concentrations measured. In contrast to transmission IR
spectroscopy, which can deliver absorbance up to 3 with a
saturation manifesting itself as highly noisy spectra coupled to
plateau effects, ATR-IR spectra intensities are limited by the
depth of penetration of the evanescent wave. In the present
study and considering the instrumentation used, it has been
observed that the maximum absorbance that can possibly be
recorded from protein rich samples such as human serum
would never exceed 0.45. Following air drying, the Beer–
Lambert type dependence of the absorbance on initial sample
concentration and length of the optical path can both be par-
tially lost and the critical parameter is the amount of matter
deposited. In other words, the deposited sample thickness,
and therefore absorbance, depends on the concentration of
the droplet applied, but if the sample thickness exceeds the
evanescent wave penetration depth, no further increase in the
absorbance can be observed. However, when reducing the
volume below 0.5 µL, the deposit thickness becomes less than
the sampling depth, and the AUC consequently decreases. The
AUC pattern for the 0.1 g dL−1 is rather different, a maximum
intensity being found with 0.2 µL. This is a result of the coffee
ring effect, as the glucose is accumulated in the edges of the
drop, outside the field of data collection for larger volumes
(Fig. 2, 0.5 µL–1 µL–2 µL), thus delivering poor signals, while
the 0.2 µL deposit is completely contained on the crystal and
entirely recorded. The decrease observed for the 0.1 µL sample
confirms that the drops are smaller than the ATR crystal area.
These observations clearly demonstrate the difficulty to accu-
rately estimate the maximum and minimum glucose concen-
trations that can be measured with IR, due to the different
behaviours at low and high concentrations. However, as
demonstrated in the ESI (Fig. S2†), based on the amount of
glucose deposited, such limits can be estimated. Also, as the
highest concentrations measurable are much greater than any
relevant range for clinical applications, with values between
1210 mg dL−1 and 24 205 mg dL−1 for respectively 2 µL and
0.1 µL drops, the minimum concentrations are indeed of far
more importance. While a 0.1 µL drop would be associated
with a limit of detection around 15 mg dL−1, increasing the
volume deposited would gradually decrease the minimum
concentrations measurable to 7.5 mg dL−1, 3 mg dL−1, 1.5
mg dL−1 and 0.75 mg dL−1 for respectively 0.2 µL, 0.5 µL, 1 µL
and 2 µL. Such observation implies that larger volumes should
deliver more accurate outcomes from the analysis, however
further investigations of human serum have been performed
with both 2 µL and 0.2 µL. Although 0.1 µL would have been
optimum to ensure the volume deposited is smaller than the
crystal size, due to the viscosity of the serum, the smallest
volume that could be deposited as drops was 0.2 µL.

3.1b Construction of the quantitative model: partial least
square regression (PLSR). Before analysing the patient samples,
a quantitative model has been built using the PLSR algorithm
and applied to the glucose spiked human serum models in
order optimise the protocol for measurement, including deposit
volume, and to evaluate the impact of centrifugal filtration on
the sensitivity and accuracy of the technique.

The first step of the study was to build a model accurately
mirroring clinically relevant blood variations of glucose levels
using human serum spiked with D-glucose. For this, different
amounts of pure glucose have been added to the human
serum stock solution in order to achieve variable concen-
trations in the physiologically relevant range of 20 mg dL−1–
220 mg dL−1. The normal glucose concentration being
between 70 mg dL−1 and 110 mg dL−1, simulation for hypo-
glycaemia and hyperglycaemia have been deliberately included
in the set of samples prepared and tested. Fig. 3A presents mean
ATR-IR spectra collected following air drying from the different
solutions. The (1637 cm−1) min–max normalized data exhibit
similar profiles, only the region attributed to sugar being
affected by the increase of glucose concentration. In Fig. 3B, it
can be observed how the 1140–950 cm−1 spectral region
evolves from the serum stock solution (red) to the highest con-
centration prepared (cyan), the main features at 1105 cm−1,
1078 cm−1, 1032 cm−1 and 989 cm−1 systematically increasing
with glucose concentration.

Pre-processed spectra have been analyzed using the PLSR
algorithm to determine the relationship between spectral vari-
ations and glucose concentrations. The method being super-
vised, the different concentrations are taken into account
during the calculations. The first step generates a scatter plot,
(not shown). Fig. 4 presents the first two weighting vectors
A and B, confirming the discrimination of the data is based on

Fig. 3 Mean ATR-IR spectra collected from unprocessed whole human
serum (red) and supplemented with 20 mg dL−1 (blue), 60 mg dL−1

(green), 100 mg dL−1 (yellow), 140 mg dL−1 (black), 180 mg dL−1

(magenta) and 220 mg dL−1 (cyan) of glucose respectively. A: Finger
print region 1800–900 cm−1; B: Glucose region 1190–900 cm−1. Min–
max normalized spectra on the amide I band (1637 cm−1) used for
illustration.
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glucose features, which, as demonstrated in Fig. 2 and 3,
mainly occur in the 1190–950 cm−1 window. The similarities
between the 2 weighting vectors support the fact that more
than 1 dimension is required to fully describe the spectral
variability due to glucose concentrations. Plotting the Root
Mean Square Error from the validation set (RMSEV) as dis-
played in Fig. 5 is commonly used to guide the operator in
choosing the optimal number of dimensions necessary to
reach the best model. In the present case, a 20 fold cross vali-
dation has been preferred, leading to the creation of 20 inde-
pendent calibration/validation sets and thus 20 predictive
models. In order to simplify the illustration, the error bars in
Fig. 5 illustrate the standard deviation calculated between each
iteration of the cross validation. As expected, a strong decrease
in the RMSEV is observed within the 3 first dimensions, which
is normal behaviour for well discriminated data, followed by a
stabilisation of the values observed without any further
improvement of the model precision. Considering the min–
max normalised spectra used for illustration in Fig. 5, a
minimum is found at 2.078 ± 0.252 mg dL−1, corresponding
to 8 dimensions. For consistency between data sets, the

minimum found has always been selected to build the predic-
tive models. It should be noted that similar plots can be
obtained from the RMSE for the calibration sets (not shown).

Ultimately, after selection of the optimal number of dimen-
sions for the data set analysed, a predictive model can be built
from the PLSR scatter plot (Fig. 4), to compare the obser-
vations corresponding to the known concentrations of glucose
in the samples with the estimated concentrations from the
spectral data sets. In the example presented in Fig. 6, a really
good linearity was reached, with a R2 value of 0.9992. The
standard deviation (2.172e−4) is indicative of good repeatability
between the 20 iterations of the cross validation. However, the
standard deviation of the RMSEV (0.2526 mg dL−1) is equal to
about 10% of the mean value, but remains acceptable consid-
ering the precision of the model is below the mg dL−1 range.
Moreover, the error bars display no overlapping of data,
indicating that each concentration can be unambiguously
identified. This approach has been replicated for all data sets
collected from the human serum samples spiked with glucose,
either unprocessed (whole serum) or following centrifugal
filtration with a 10 kDa device. The summary of the PLSR
results is presented in Tables 2 and 3.

Fig. 4 First (A) and second (B) PLS weighting vector corresponding
respectively to dimension 1 and 2 of the scatter plot. Min–max normal-
ized spectra on the amide I band (1637 cm−1) used for illustration.

Fig. 5 Evolution of the root mean square error on the validation set
(RMSEV) according to the number of dimensions selected in the PLS
model. Value are average calculated from the 20 iteration of the cross
validation associated to corresponding error bar illustrating the standard
deviation. Min–max normalized spectra on the amide I band (1637 cm−1)
used for illustration.

Fig. 6 Predictive model build from the PLS analysis. For each concen-
trations the value displayed is an average of the concentration predicted
with the corresponding standard deviation calculated from the 20 iter-
ations of the cross validation. Mean RMSEV and R2 values are given on
the plot both also with their respective standard deviation. Min–max
normalized spectra on the amide I band (1637 cm−1) used for illustration.

Table 2 Summary of PLS results for the unprocessed human serum
analysis

Deposit type

Drop – 2 µL Drop – 0.2 µL

RMSEV STD R2 RMSEV STD R2

MMN FP 2.078 0.252 0.999 12.347 1.852 0.974
GLU 2.388 0.126 0.999 15.419 0.753 0.96

VN FP 2.137 0.181 0.999 12.512 1.36 0.973
GLU 2.806 0.362 0.999 15.942 2.058 0.956

MMN: min–max normalised at 1637 cm−1; VN: baseline and vector
normalised, STD: standard deviation, GLU: spectra cut to the range
1190–950 cm−1.
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3.1c Summary of results from unprocessed whole human
serum spiked with glucose. As detailed in Fig. 2, the depo-
sition of 2 µL and 0.2 µL drops has been used to illustrate 2
distinct experimental conditions corresponding to a coverage
exceeding the ATR crystal, after air drying of the samples, com-
pared to a coverage less than the recording area. The objective
is to better understand how the volume of the deposit can
influence the relevancy of the data collected, notably in
relation to the coffee ring effect. It has been documented that
such an effect can result in variations of the distribution of
molecular species.

A direct comparison of the predictive results obtained from
2 µL and 0.2 µL (Table 2) drops of whole human serum un-
ambiguously demonstrates that the precision of the PLSR
models is strongly affected by the size of the drops. The best
RMSEV (2.078 ± 0.252 mg dL−1) was achieved with the Min–
Max Normalised (MMN) ATR-IR spectra collected from the
2 µL drops, while this value is up to 6 times higher for the
0.2 µL deposits (12.347 ± 1.852 mg dL−1). It should be noted
that neither reducing the spectral range of the glucose
windows (1190–950 cm−1) (see Table 2 GLU) nor using vector
normalisation (VN) improves the precision of the predictive
models (see Table 2 VN). This observation is rather encourag-
ing and supports the notion that, although the samples
exhibit a heterogeneous distribution of the different molecular
species following air drying, the centre of the drop still delivers
quantitative information that can be linearly captured by the
PLSR models.

Interestingly, the 0.2 µL does not improve the PLSR quanti-
tative model, which suggests that attempting to ensure that
the entire sample is deposited on the ATR crystal, with a cover-
age less than the recording area, is not the best strategy when
performing ATR analysis. An experimental limitation of ATR-IR
spectroscopy is the absence of a bright field imaging system
coupled to the spectrometer, making the visualisation of the
drop positions quite difficult, especially with volumes less
than 1 µL. Therefore, it is simply impossible to ensure the
0.2 µL samples have been positioned identically on the ATR
crystal, explaining the high RMSEV values.

3.1d Summary of results: 10 kDa filtered human serum
spiked with glucose. Centrifugal filtration has been used to
fractionate the human serum and isolate chemical populations

depending on their molecular masses. In the present study,
a 10 kDa centrifugal device was used in order to specifically
deplete the abundant proteins such as globulins and
albumin24 and retain only the molecular species with low
molecular weight in the filtrate, below the cut-off point of the
membrane, for subsequent spectroscopic analysis. For
instance, glucose is about 180 Daltons, which means it will
freely pass through the membrane during spinning of the
human serum. Using such an approach, the complex mixture
of the human serum can be partially simplified, removing
some of the most dominant proteins such as albumin and glo-
bulin, consequently enhancing the contribution of underlying
constituents in the IR signatures collected as illustrated in
Fig. 7. For the 10 kDa filtered serum model, the measurement
of deposits from the 2 µL drops deliver the best predictive
model with a RMSEV value of 2.199 ± 0.250 mg dL−1 for the
MMN data. As for the unprocessed whole human serum, no
improvement can be obtained with deposits from smaller
volumes (0.2 µL), but rather an increased RMSEV of 5.337 ±
0.551 mg dL−1 is observed, indicating once more that precision
in the sample deposition on the ATR crystal is a crucial aspect
for this experimental set up. However, as witnessed earlier, the
centre of the dried samples preserve the linear relation
between glucose concentrations and spectral variations. This
is a significant observation as, following the centrifugal
filtration, the overall concentration of the serum filtrate is
strongly diminished due to depletion of the abundant pro-
teins. The thickness of material deposited from the same
volume is therefore significantly reduced, potentially below the
region of saturation of the STR sampling (Fig. 2). The high
degree of variability in the raw spectral intensities is compen-
sated by the normalisation of the data prior to PLSR analysis.
Ultimately, values of the RMSEV of 2.078 ± 0.252 mg dL−1 and
2.199 ± 0.250 mg dL−1 for, respectively, the unprocessed
and filtered serum are not significantly different, within the
standard deviation associated with them (Table 3).

This initial step of the study is rather reassuring, indicating
that centrifugal filtration does not affect the sample integrity,
which remains representative of the concentrations of the
different serum physiological constituents. The main concern

Table 3 Summary of PLS results for the 10 kDa filtered human serum
analysis

Deposit type

Drop – 2 µL Drop – 0.2 µL

RMSEV STD R2 RMSEV STD R2

MMN FP 2.199 0.250 0.999 5.337 0.551 0.995
GLU 3.465 0.317 0.998 5.506 0.417 0.995

VN FP 2.679 0.234 0.998 5.357 0.396 0.995
GLU 4.001 0.337 0.997 8.746 0.539 0.986

MMN: min–max normalised at 1591 cm−1; VN: baseline and vector
normalised, STD: standard deviation, GLU: spectra cut in range
1190–950 cm−1.

Fig. 7 Mean ATR-IR spectra collected from human serum stock solu-
tion unprocessed whole (A) and 10 kDa (B) in the finger print region
1800–900 cm−1. Spectra offset for clarity.
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was regarding the drying pattern of biological samples charac-
terised by low concentrations, as illustrated in Fig. 2, which
are more affected by the coffee ring effect which could result
in a drastic decrease in the IR spectral intensity due to
accumulation of molecules in the edge of the dried drop, with
little or no contribution at the centre of it. However, despite
the considerably reduced concentration in filtered serum, this
effect remains limited and the recordings performed on the
2 µL drops are perfectly relevant, delivering good predictive
models by means of PLSR analysis. Following those obser-
vation, the use of 0.2 µL samples can be disregarded for ana-
lysis of patient samples, in favour of the 2 µL. A comparison
with a PLSR model constructed from aqueous glucose solu-
tions indicates that the coffee ring effect is limited in filtered
serum. In pure glucose solutions, it is observed that the
RMSEV tends to be slightly higher than those obtained in
Table 3 (see Fig. S4†). The small drop in the R2 value (0.9987)
illustrates the difficulty to get a linear correlation between
spectral variations and concentrations for pure glucose solu-
tions. It also supports the fact that the residual serum con-
stituents present in the 10 kDa filtrates play a key role in main-
taining a more consistent drying pattern while reducing the
coffee ring effect. Thus, it is important to deplete the human
serum and remove the HMW fraction, but preserving the
whole LMW fraction seems to be a better approach than trying
to further separate or extract glucose from the samples as the
surrounding matrix clearly impacts the precision of the
measurements done.

3.2 Glucose level quantification in patient samples

Although the quantitative capabilities of ATR-IR spectroscopy
can be quite easily demonstrated with model human serum
spiked with glucose, both commercially available, the analysis
of patient samples can be considered a more delicate matter,
the main reason being the multi-parametrical variability
observed in clinical applications. When spiking human serum
with glucose, only one physiological constituent is affected,
while all others remain at similar levels. In that situation, any
peak away from the glucose spectral window can be used as an
internal standard for calibration of the data, explaining the
good results obtained with a MMN to the amide I band. The
overall protein content being the same between spiked
samples, the multivariate analysis of the spectra ultimately
highlights the linear evolution of the band ratio between the
proteins and glucose. However, samples harvested from
patients can display an intrinsic variability, directly reflecting
their physiological state on the day. In real conditions, there is
no real control, as each individual has its own metabolism,
characterised by different ground blood levels for all the
serum constituents. Uric acid, blood urea nitrogen (BUN), crea-
tinine, total proteins (albumin, globulin), total bilirubin, alka-
line phosphatase, GGTP, LDH, SGOT (also called AST) are
some of the most screened serum constituents, although only
a few are routinely tested. Glucose is indeed one of them, used
for monitoring either hypoglycaemia or hyperglycaemia, par-
ticularly important for the detection of diabetes. In addition to

the fact that glucose can freely diffuse through the centrifugal
device membranes and be fully collected in the filtrate, the
choice of the glucose was also motivated because of its physio-
logical relevance and normal levels in human serum. With
concentrations ranging between 70–100 mg dL−1, it can be
detected in whole unprocessed serum, which was the con-
dition required to be able to build a comparative model
between patients samples before and after fractionation.

A total of 15 patient samples have been analysed using
ATR-IR spectroscopy, selected to cover a wide range of glucose
concentrations mirroring cases of hypoglycaemia and hyper-
glycaemia (Table 1). The initial measurements have been per-
formed from the unprocessed samples, as provided from the
clinician, from 2 µL air dried drops. Similarly to the spiked
samples, the spectra, min–max normalised at 1780 cm−1, have
been analysed with the PLSR algorithm and the results are pre-
sented in Fig. 9A. With a RMSEV of 11.87 ± 0.88 mg dL−1, the
precision of the predictive model has strongly decreased in
comparison to the observation made from spiked serum.
Furthermore, the R2 reflects the lack of linearity between the
spectral variations and the glucose levels, thus the poor quality
of the analysis performed. As shown in Fig. 8B, although the
first (a) and second (b) PLSR weighting vectors contain contri-
butions which can be associated with glucose (Fig. 1), there
are also significant other contributions associated with serum
proteins in the region 1650–1350 cm−1.

Following the first set of measurements, the same patient
samples have been processed with a 10 kDa centrifugal device
in order to fractionate the serum by depletion of the abundant
proteins. From the resulting filtrates, ATR-IR spectra have been
recorded, also min–max normalised at the 1780 cm−1 and ana-
lysed in identical conditions for comparison purposes. The
PLSR model is presented in Fig. 9B, displaying a much better
RMSEV value (3.1 ± 0.13 mg dL−1). A comparison of both plots
unambiguously supports the improvement after centrifugal fil-
tration that can be achieved, confirmed by the reduced stan-
dard deviation associated with each concentration tested.
Consequently, the linearity of the predictive model is restored
to an acceptable value for R2 of 0.9957. The first (a) PLSR
weighting vector, shown in Fig. 8D, still contains significant
contributions associated with serum proteins in the region
1650–1350 cm−1, although the spectrum (b) of the second is
now dominated by glucose.

Table 4 gives an overview of the different predicted concen-
trations for each patient for both unprocessed and fractionised
samples. The mean values from the 20 cross validations iter-
ations are given in mg mL−1 with the corresponding standard
deviation and finally the relative error compared to the real
glucose concentration, as given by the clinician, has been
expressed in percentage. Ranging from 16.39% to 0.25%, the
relative error for the unprocessed serum clearly highlights the
difficulties to estimate the glucose levels in whole serum.
Indeed some of the samples display acceptable mean predic-
tive values because of the supervised fashion of the PLSR
algorithm. As for any calibration curve, the trend line illus-
trates the best fit between data point, meaning few samples
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are located close to it. In comparison, the filtered serum deli-
vers higher accuracy, ranging from 2.51% to 0% mean relative
error. Looking at the samples independently, it can be seen
that the majority of them are below 1% relative error, clearly
supporting the increased accuracy of the model with fraction-
ated samples.

Considering the complexity of human serum, concerns can
be raised towards the monitoring of low molecular weight
physiological constituents potentially relevant for diagnosis.
The proof of principle presented throughout this study demon-
strates that glucose levels, a well-known biomarker for dia-
betes, can be monitored by means of infrared spectroscopy. As
highlighted in Fig. 1, specific spectral features can be identi-
fied for the detection of glucose in complex biological mix-
tures. Moreover, using multivariate analysis tools such as
PLSR, a linear relationship between glucose levels and the
intensity of glucose spectral features can be obtained. The
interference presented by the HMWF of the human serum is
illustrated in the case of patient samples (Fig. 9), indicating
that the presence of the abundant proteins can be identified
as a limiting factor when focusing on the spectral analysis of
potential low molecular weight biomarkers. Similarly to
glucose, the constituents of the LMWF of the serum can
exhibit weak contributions in the IR data collected directly
impacting on the precision and accuracy of the quantitative
models developed. The concept of human serum fractionation
proposed in the present work, implies that separating the frac-
tions of interest to perform spectral characterisation indepen-
dently would ultimately lead to better accuracy. This statement

Fig. 8 Evolution of the root mean square error on the validation set (RMSEV) according to the number of dimensions selected in the PLS model
with corresponding first (a) and second (b) PLS weighting vector corresponding respectively to dimension 1 and 2 of PLSR model. A: Unprocessed
serum; B: 10 kDa filtered serum.

Fig. 9 A: Predictive model built from the PLS analysis of patient un-
processed samples; B: Predictive model built from the PLS analysis of
patient 10 kDa filtered samples. For each concentrations the value
displayed is an average of the concentration predicted with the corres-
ponding standard deviation calculated from the 20 iterations of the
cross validation. Mean RMSEV and R2 values are given on the plot both
also with their respective standard deviation. Min–max normalized at
1780 cm−1.
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can be further supported by the presence of 3 different
patients with similar glucose concentrations as given by the
clinicians. Although patients 4, 5 and 6 all have glucose levels
found at 66.6 mg dL−1, all individuals tested would logically
present different overall serum composition, notably with con-
sequent variations in the protein contents. While the predic-
tive model built from the whole serum delivers glucose con-
centrations of respectively 73.44 mg dL−1, 66.94 mg dL−1and
67.04 mg dL−1, after depletion of the abundant proteins, those
values are found to be 65.66 mg dL−1, 67.16 mg dL−1and
67.02 mg dL−1. Although the analysis is not able to generate
exact glucose concentrations for those 3 patients due to the
precision of the model, it is noticeable that the inter-individ-
ual variability is considerably reduced, leading to improved
accuracy. Instrumentation available in clinics present high per-
formance towards glucose level monitoring, and with a stan-
dard deviation of 0.72 mg dL−1 (0.04 mmol L−1), it is hardly
conceivable that IR can deliver better results. Although, with a
RMSEV of 3.1 ± 0.13 mg dL−1, fractionating the human serum
before analysis places the ATR-IR approach in a clinically rele-
vant range of concentrations allowing the identification of
patients with abnormal glucose levels (either hypo- or hyper-
glycaemia), the aim of the work proposed was to further
demonstrate the potential for body fluids screening towards
disease diagnosis, in general. However, the precision of the
model expressed by the RMSEV indicates the lowest variations
in glucose concentration that can be considered statistically
relevant for the discrimination of 2 patients with close results.
More importantly, the precision and accuracy play key roles in
identifying patients at risk, according to blood glucose (BG)
falling in the range corresponding to hypoglycaemia or hyper-
glycaemia. For this reason, the detection and monitoring of
biomarkers are subject to requirements specifically defined by
the clinical context. For instance, when considering blood

glucose monitoring, the concept of the Parkes error grid has
been implemented in 1994.60 This model defines performance
zones for the results collected, aiming to assess the clinical
accuracy of BG monitoring devices. Notably, the Parkes error
grid has been introduced as an accepted evaluation tool
according to the ISO15197:2013 guideline “In vitro diagnostic
test systems – requirements for blood-glucose monitoring
systems for self-testing in managing diabetes mellitus”.
Example of Parkes error grids constructed from the PLSR ana-
lysis performed from whole and filtered patient serum are
given in Fig. 10. Each estimated value from both PLSR models
(3000 predicted concentrations) has been plotted in order to
better visualize their distribution across the risk zones (it
should be noted that the model is based on Diabetes type I).
While for the whole serum, a majority of the values are found
in zone A, defined as the zone of “clinical accurate measure-
ments with no effect on clinical action”, it can also be
observed that, for the lowest concentrations, many are located
in zone B. A general consensus would support that, based on
the definition of the risk boundaries, a clinically accurate BG
meter should show at least 95% of its data points in zone A of
the Parkes error grid. Although the number of patients in the
present study remains limited, it is nevertheless interesting to
observe the significant improvement obtained after depletion
of the abundant proteins by ultrafiltration and how all the pre-
dicted concentrations from the PLSR model are now gathered
in zone A, unambiguously removing any doubts about the data
interpretation (Fig. 10B). This further supports the increased
clinical relevancy of the quantitative measurement performed
after isolation of the LMW fraction. Recently, an increasing
numbers of publications promote the capabilities of IR and
Raman spectroscopy for serum analysis in both animal and
human models from cardiovascular disease to cancers
diagnosis.61–63 However even facing the difficulties to accurately

Table 4 Summary of PLS results for the unprocessed and 10 kDa filtered human serum patient samples

Patient
Concentrations
(mg dL−1)

Unprocessed serum 10 kDa filtered serum

Predicted concentrations (mg dL−1)

Mean STD % Mean STD %

1 61.25 65.39 9.84 6.75 61.68 2.45 0.71
2 63.05 52.71 11.46 16.39 63.05 3.74 0.00
3 64.86 70.34 7.59 8.45 65.37 2.73 0.78
4 66.66 73.44 10.69 10.17 65.66 3.04 1.51
5 66.66 66.94 10.98 0.42 67.16 2.68 0.76
6 66.66 67.04 9.90 0.58 67.02 3.66 0.55
7 68.46 73.71 7.62 7.67 70.18 3.33 2.51
8 115.3 116.54 8.49 1.08 112.92 2.65 2.06
9 117.1 112.04 10.04 4.32 116.30 2.42 0.69
10 120.7 115.32 8.68 4.46 122.65 1.90 1.61
11 126.11 127.20 7.44 0.86 126.64 2.89 0.42
12 131.51 126.72 8.91 3.64 131.43 3.39 0.06
13 171.15 175.12 9.48 2.32 171.44 2.50 0.17
14 180.16 180.61 7.16 0.25 179.03 2.77 0.63
15 208.98 202.37 9.66 3.16 209.01 3.00 0.01

Mean % = 4.7 Mean % = 0.84

STD: standard deviation; %: relative error between reference and mean predicted value expressed in percent.
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perform specific discrimination or diagnosis,2,53 resorting to
pre-analytical sample preparation procedures is rarely or
never considered. Ultimately, the benefits of serum fraction-
ation using centrifugal filtration demonstrated in the case of
glucose levels can be easily transferable to any other low
molecular weight biomarkers with swapped contribution in
the IR data by the HMWF. Indeed, the transferability into
clinics remains an open discussion and further in depth
investigation is needed to better evaluate the place of centri-
fugal filtration in medical routines. However, separation tech-
niques such as those based on chromatography hold a pivotal
position in diagnosis based on proteomics, peptidomics or
metabolomics. Considering the cost to equip a service with
an operational LC/MS systems, the labour intensive proce-
dure for sample preparation and analysis and the running
costs attached to maintenance of the instrumentation, the IR
approach coupled to centrifugal filtration remains a competi-
tive and cost effective alternative, especially in cancer detec-
tion. The centrifugal filters can generate enough sample for
analysis in less than a minute and, although they can rep-
resent an additional cost to patient testing, compared to pro-
tocols involving electrophoresis and/or immunoassays, the
3 euros per device (around 3 dollars) could appear to be in-
significant. However, this study remains a proof of concept
and the emergence of new technologies for automated
sample fractionation and protein depletion based on similar
membrane based principle may be necessary (e.g. micro-
fluidic based) for translation of such an approach to the
clinical environment. Therefore such optimisations would

contribute to further broaden the range of applications of
vibrational spectroscopic techniques.

4. Conclusion

Screening of human serum, and by extension all body fluids,
is still an emerging field of application and in order to
strengthen the position of infrared spectroscopy as a potential
clinical tool, numerous questions need to be considered and
addressed by the community. Firstly, the technique should be
competitive with other approaches currently used, such as
mass spectroscopy, in terms of sensitivity and specificity, and,
secondly, it should be able to deliver information relevant for
clinical diagnosis. Infrared spectroscopy holds immense
promise for the implementation of new quantitative analytical
techniques in clinical routines. The label free/reagent free
argument is often used to further support the relevancy to
develop such techniques. However, in order to comply with
the high requirements associated with body fluids based diag-
nostics, a number of improvements of the experimental proto-
col can be proposed. Notably, delivering quantitative infor-
mation of the different serum constituents is crucial to vali-
date the approach as a potential clinical tool. Centrifugal
filtration of human serum has been proposed to specifically
isolate relevant fractions of the samples for more accurate
spectroscopic analysis. Using glucose as an example, it has
been clearly illustrated that the depletion of the abundant pro-
teins has greatly reduced the spectral variability and conse-
quently significantly improved the precision and accuracy of
the quantitative models for potential low molecular weight bio-
markers built from the PLSR analysis. In the present study, it
has been highlighted that the patient samples are character-
ised by a normal variability, reflecting the physiological state
of the individuals tested, but also that such effects can be con-
siderably reduced by means of easy and rapid pre-analytical
samples preparation steps. Furthermore, as the sample proces-
sing is also applicable to a wider range of body fluids, the
methodology presented in the present work will certainly be
beneficial for the field and lead to drastic improvements in the
strategies oriented toward their implementation as the next
generation of diagnostics techniques clinical tools.
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