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Narasaka–Heck cyclizations:
synthesis of tetrasubstituted nitrogen-bearing
stereocenters†

Nicholas J. Race,‡a Adele Faulkner,‡a Gabriele Fumagalli,a Takayuki Yamauchi,a

James S. Scott,b Marie Rydén-Landergren,c Hazel A. Sparkes§a and John F. Bower*a

The first examples of highly enantioselective Narasaka–Heck cyclizations are described. A SPINOL-derived

P,N-ligand system enables Pd-catalyzed 5-exo cyclization of a range of oxime esters with sterically diverse

trisubstituted alkenes to generate dihydropyrroles containing tetrasubstituted nitrogen-bearing

stereocenters in 56 to 86% yield and 90 : 10 to 95 : 5 e.r. These processes are rare examples of reactions

that proceed via enantioselective migratory insertion of alkenes into Pd–N bonds, and the first where

trisubstituted alkenes are used to generate tetrasubstituted stereocenters with high enantioselectivity.
Introduction

The intramolecular Heck reaction is a powerful method for the
enantioselective construction of all-carbon quaternary stereo-
centers.1 Pioneering contributions from the Overman and Shi-
basaki groups2 have resulted in its establishment as a lynchpin
reaction in the synthesis of a wide range of challenging
natural products, most notably alkaloids.3 Within this class of
compound, fully substituted nitrogen-bearing stereocenters are
ubiquitous (Scheme 1A),4 and so related C–N bond formations
via enantioselective aza-variants of the Heck reaction become
appealing. First reported in 1999, the Narasaka–Heck cyclization
of oxime esters with alkenes is the prototype aza-variant of the
conventional Heck reaction, in so much as it incorporates the
key steps of (a) N–O oxidative addition, (b) imino-palladation
and (c) b-hydride elimination (Scheme 1B).5,6 Recently, related
processes that use other classes of redox active N-donors have
started to emerge.7

We have shown that the Narasaka reaction and related
cascades are effective at generating tetrasubstituted stereo-
centers via cyclization onto a wide range of sterically encum-
bered alkenes.8c,d However, to date, highly enantioselective
variants have remained elusive. In this report, we disclose the
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hemistry 2017
rst examples of highly enantioselective Narasaka–Heck cycli-
zations, which provide efficient access to sterically congested
tetrasubstituted stereocenters. These studies serve as proof-of-
concept for enantioselective processes of this type and, in
broader terms, provide rare examples of reactions that involve
enantioselective migratory insertion of alkenes into N–Pd
bonds.6,9–12 Indeed, to the best of our knowledge, this is only the
third class of process where this step is used to generate tetra-
substituted nitrogen-bearing stereocenters with high enantio-
selectivity,9c,d and the rst that achieves this using trisubstituted
alkenes.
Scheme 1
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Results and discussion

Rendering Narasaka–Heck cyclizations enantioselective has
proven especially challenging because processes that deliver
racemic products exhibit prescriptive ligand requirements, with
P(3,5-(CF3)2C6H3)3 emerging as by far the most efficient and
general system to date.8a–d In earlier work we assayed a wide
range of commercial mono- and bi-dentate chiral P-based
systems, and established that TADDOL-phosphoramidate 1 can
promote cyclization of 2a to 3a in 56% yield and 66 : 34 e.r.
(Scheme 1B, box and Scheme 2).8c Evaluation of a range of
non-commercial variants of 1 failed to deliver a system that
offered appreciable additional benets to yield or selectivity.
Our attention therefore turned to P,N-based systems, inspired,
in part, by their success in conventional cationic Heck reac-
tions.1 Note that in the current scenario, entry to a cationic
manifold is driven by facile, triethylammonium-mediated
protodecarboxylation of the pentauorobenzoate leaving
group.8d The most promising early results were obtained using
BINOL, SPINOL and H8-BINOL derived systems, as outlined in
Scheme 2. We found that non-commercial ligands (Sa,S)-L-113

and (Sa,S)-L-314 provided (S)-3a with appreciable levels of
enantioselectivity (92 : 8 and 85 : 15 e.r. respectively), but in
low yield. However, (Sa,S)-L-215 offered the best balance
between cyclization efficiency and selectivity, delivering the
opposite (R)-enantiomer of 3a in 53% yield and 89 : 11 e.r.; this
latter ligand system can be considered pseudo-diastereomeric
with respect to (Sa,S)-L-1 and (Sa,S)-L-2, which accounts for the
observed switch in enantioinduction.16

(Sa,S)-L-2 is commercially available, but optimization of the
oxazoline and phosphine aryl groups of this system necessitated
the “in house” synthesis of a range of known non-commercial or
novel analogues.17 Initially the phosphine aryl groups were
varied ((Sa,S)-L-2a–d) and these studies revealed that
Scheme 2 Development of an enantioselective protocol.

1982 | Chem. Sci., 2017, 8, 1981–1985
replacement of the phenyl groups with 3,5-dimethylated vari-
ants ((Sa,S)-L-2d) offered a signicant improvement in yield and
a marginal enhancement in enantioselectivity for 3a. Notably,
strongly electron-donating or -withdrawing groups at the
para-position of the arene resulted either in lower yields or
lower enantioselectivities (cf. (Sa,S)-L-2a vs. (Sa,S)-L-2c). With
a suitable phosphine aryl group established, attention turned to
variations at the oxazoline portion. (Sa,S)-L-2e, in which a bulky
tert-butyl group has replaced the benzyl moiety present in (Sa,S)-
L-2d, was ineffective and generated 3a in low yield (<10%).
However, replacement of the benzyl group with a phenyl
substituent ((Sa,S)-L-2f) provided 3a in an increased e.r. of 94 : 6
and maintained cyclization efficiency at 65% yield. Although
the improvements on moving from (Sa,S)-L-2a to (Sa,S)-L-2fmay
appear modest, they are signicant, and this ligand confers
approximately 10–20% enhancements for both yield and e.r. (vs.
(Sa,S)-L-2) for additional examples discussed later. During the
course of this work, the synthesis and application of (Sa,S)-L-2f
to highly enantioselective reductions of 2-pyridyl cyclic imines
was reported by Zhou and co-workers.18

With an optimal ligand system established, we evaluated
initially its scope with respect to the alkene component (Table
1). A range of systems 2b–j, where Ar ¼ phenyl or 2-naphthyl,19

cyclized to provide the targets in good to excellent yield and
high enantioselectivity (91 : 9 to 95 : 5 e.r.). Notably, the system
tolerates signicant steric variation at R1 and R2, whilst main-
taining cyclization efficiency and enantioselectivity. For
example, cyclization of 2j, which possesses an iso-propyl
substituent at R1, afforded 3j in 69% yield and 93 : 7 e.r. To
achieve an optimal balance between cyclization efficiency and
enantioselectivity, ne tuning of reaction temperature was
required on a case-by-case basis. Control of substrate alkene
geometry is crucial, as the alternate (Z)-isomer of 2c cyclized
with considerably lower levels of enantioinduction.20 The
absolute stereochemistry of cyclization products 3a–j was
assigned on the basis of an X-ray structure of 3b and supporting
VCD analysis of 3a and 3h (see the ESI†).21

We have also conducted a preliminary evaluation of the
scope of oxime ester moiety (Table 2). Systems 2k–n, which
possess electron rich or poor aryl groups at R1, cyclized effi-
ciently and with minimal variation in enantioinduction. The
system can be extended to other, distinct classes of oxime ester.
For example, cyclization of cyclopropyl and cyclohexyl deriva-
tives 2o and 2p occurred efficiently to deliver the targets 3o and
3p with satisfactory levels of enantioselectivity. The stereo-
chemical assignments of the products were made by analogy to
3b and were supported by VCD analysis of 3p (see the ESI†).
Pertinent limitations of the oxime ester moiety in non-enan-
tioselective Narasaka–Heck cyclizations have already been
delineated in our earlier work.8a,22

To rationalize the sense of enantioinduction in the processes
described here, (Sa,S)-L-2f-ligated palladium complex 4 was
synthesized and characterized by single crystal X-ray diffraction
(see the ESI†), and this enabled the construction of a quadrant
diagram (Scheme 3).21 The two xylyl groups of the phosphine
provide little steric difference between quadrants I and III due
to the similarity of the two N–Pd–P-aryl torsion angles (�115.5�
This journal is © The Royal Society of Chemistry 2017
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and 124.6�). The oxazoline resides approximately perpendic-
ular to the square plane of the complex (P–Pd–N–C(7) torsion
angle ¼ 80.7�), such that the phenyl substituent occupies
quadrant II, and quadrant IV remains relatively unimpeded.
Scheme 3B shows the conformations of the two diastereomeric
complexes that lead to enantiodivergent iminopalladation
during the conversion of 2a to 3a. The alkene likely coordinates
trans to the phosphine, such that differentiation of its enan-
tiotopic faces by the phenyl substituent of the oxazoline is
facilitated. For diastereomer I, which leads to the major
enantiomer (R)-3a, the terminal methyl group of the alkene
Table 2 Enantioselective Narasaka–Heck cyclizations: scope of the oxim

This journal is © The Royal Society of Chemistry 2017
occupies “free” quadrant IV and steric clashes are minimized.
Minor enantiomer (S)-3a requires access to the indicated
conformer of diastereomer II, where the alkene methyl
substituent is placed in quadrant II and suffers unfavorable
interactions with the oxazoline phenyl group. The increased
enantioselectivity obtained with (Sa,S)-L-2f vs. (Sa,S)-L-2d is
consistent with this model (APh ¼ 3 vs. ABn ¼ 1.8), as is the
insensitivity of the system to increased substitution at R2 (cf. 3b
vs. 3j). A key factor in the chemical efficiency of (Sa,S)-L-2f likely
resides in the weak donor ability of the oxazoline nitrogen,
which, in turn, should enhance s-donation from the
e ester component
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trans-imino group.23 This lowers the basicity of this moiety,
such that competing protodepalladation is suppressed and
cyclization efficiency is enhanced. A similar rationale was
invoked for the success of P(3,5-(CF3)2C6H3)3 in our earlier
work.8a–d In the present case, the structural features of the
ligand backbone also play a key role, as highlighted by the
studies outlined in Scheme 2.

The heterocyclic products described here retain syntheti-
cally exible imine and alkene moieties and this provides
many opportunities for derivatization. Our preliminary focus
has been upon reductive manipulations of the cyclization
products (Scheme 4). Exhaustive hydrogenation of both the
alkene and imine moieties of 3a (H2 (6 atm.), Pd/C, 4–6 days)
generated efficiently acyclic target 5, which possesses
a remote, tetrasubstituted stereocenter; this denes a exible
approach to this challenging class of substrates. Chemo-
selective reduction of the imine of 3j was achieved using
DIBAL-H, and this occurred from the less hindered face to
generate pyrrolidine 6 in 5 : 1 d.r. Related reductions of less
sterically biased substrates proceeded with lower levels of
diastereocontrol; efforts to address this issue will be a focus of
future studies.24
Scheme 4 Reductive manipulations of the cyclization products.

1984 | Chem. Sci., 2017, 8, 1981–1985
Conclusions

To conclude, we have outlined the identication and develop-
ment of a P,N-based ligand system that promotes, for the rst
time, highly enantioselective Narasaka–Heck cyclizations. This
provides access to challenging pyrrolidine derivatives that
contain fully substituted nitrogen-bearing stereocenters and are
key motifs in a wide range of alkaloid targets. The processes
described here add to an emerging, yet rare class of reactions
that proceed via enantioselective migratory insertion of alkenes
into Pd–N bonds.9–12 Within this context, the current proof-of-
concept study is unique in harnessing trisubstituted alkenes to
generate tetrasubstituted stereocenters. Stereocontrolled
manipulations of the cyclization products and the development
of related enantioselective cyclizations and cascades are the
focus of ongoing investigations in our laboratory.
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