WO₃/BiVO₄ photoanode coated with mesoporous Al₂O₃ layer for oxidative production of hydrogen peroxide from water with high selectivity†

Kojiro Fuku, a Yuta Miyase, a,b Yugo Miseki, a Takahiro Gunji a,b and Kazuhiro Sayama a,b

A WO₃/BiVO₄ photoanode coated with various metal oxides demonstrated high selectivity (faradaic efficiency) for hydrogen peroxide (H₂O₂) generation from water (H₂O) under irradiation of simulated solar light in a highly concentrated hydrogen carbonate (KHCO₃) aqueous solution. A mesoporous and amorphous aluminium oxide (Al₂O₃) layer significantly facilitated inhibition of the oxidative degradation of generated H₂O₂ into oxygen (O₂) on the photoanode, resulting in unprecedented H₂O₂ selectivity (ca. 80%) and the accumulation (>2500 μM at 50°C).

H₂O is an especially versatile and clean oxidation product having the potential to generate instead of O₂ from H₂O (eqn (1)).

\[
2\text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \quad (\text{E(}\text{H}_2\text{O}_2/\text{H}_2\text{O}) = +1.77 \text{ V vs. RHE})
\]

(1)

However, the accumulation of H₂O₂, generated oxidatively is extremely difficult because degradation of H₂O₂ into O₂ also occurs easily and oxidatively in a conventional photoelectrochemical system i.e. the redox potential of H₂O₂ degradation is more negative than the redox potential of H₂O₂ production from H₂O (eqn (1) and (2)), resulting in low selectivity for oxidative H₂O₂ generation.

\[
\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}^+ + 2\text{e}^- \quad (\text{E(}\text{O}_2/\text{H}_2\text{O}_2) = +0.68 \text{ V vs. RHE})
\]

(2)

Recently, we reported that a photoelectrochemical system combining the WO₃/BiVO₄ photoanode and aqueous electrolyte of KHCO₃ under CO₂ bubbling could achieve simultaneous generation and accumulation of H₂O₂ and H₂ from H₂O (eqn (3)). In this system, the aqueous electrolyte of KHCO₃ acts as an excellent oxidative catalyst for generating H₂O₂ from H₂O. Moreover, H₂O₂ could be produced at no external bias on both a WO₃/BiVO₄ photoanode (from H₂O) and an Au cathode (from O₂) via a two-photon process (eqn (4)).

\[
2\text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 + \text{H}_2 \quad (\text{two-photon process})
\]

(3)

\[
2\text{H}_2\text{O} + \text{O}_2 \rightarrow 2\text{H}_2\text{O}_2 \quad (\text{two-photon process})
\]

(4)

Although the selectivity (faradaic efficiency: \(\eta(\text{H}_2\text{O}_2)\)) of reductive H₂O₂ production from O₂ on cathodes such as Au was very high, almost 100%, the maximum selectivity (\(\eta(\text{H}_2\text{O}_2)\)) for oxidative H₂O₂ production on WO₃/BiVO₄ photoanodes was still...
low, only ca. 54%. The design of novel photoanodes capable of achieving efficient H$_2$O$_2$ generation and inhibiting oxidative degradation of generated H$_2$O$_2$ is absolutely imperative for building a clean and breakthrough technology, by accumulating H$_2$O$_2$ and H$_2$ with unprecedented H$_2$O$_2$ selectivity using only H$_2$O as the raw material.

Here, we focused on a surface modification of the metal oxide (MeO$_x$) layers on the WO$_3$/BiVO$_4$ photoanode surface to achieve selective efficiency of generation and accumulation of H$_2$O$_2$ in the KHCO$_3$ aqueous solution under simulated solar light irradiation (Fig. 1). The MeO$_x$ layers were prepared by spin-coating of metal organic solutions and calcination. Introducing a porous Al$_2$O$_3$ layer was found to specifically permit oxidative H$_2$O$_2$ generation and accumulation with exceptional selectivity in an aqueous KHCO$_3$ electrolyte because of the blocking effect of oxidative degradation of the generated H$_2$O$_2$ into O$_2$ on the photoanode.

Details regarding experimental procedures for preparation and photoelectrochemical reactions of photoanodes are provided in the ESI†.

The effects of MeO$_x$ layers, modified on the WO$_3$/BiVO$_4$ photoanode, for oxidative H$_2$O$_2$ generation properties were investigated at an applied electric charge of 0.9C (900 s at steady photocurrent of 1 mA) in a 0.5 M KHCO$_3$ aqueous electrolyte. As shown in Fig. 2, all MeO$_x$-coated photoanodes, except CoO$_x$, enhanced the oxidative H$_2$O$_2$ generation compared to a bare WO$_3$/BiVO$_4$ photoanode, and the enhanced effect, ranked by the modified metal oxide, was Al$_2$O$_3$ > ZrO$_2$ > TiO$_2$ > SiO$_2$ > CoO$_x$. Little H$_2$O$_2$ was observed on the CoO$_x$ coated photoanode, because CoO$_x$ probably decomposed the generated H$_2$O$_2$ quickly, or O$_2$ may be evolved on CoO$_x$ directly. It should be noted that the Al$_2$O$_3$ modification on the WO$_3$/BiVO$_4$ photoanode achieved roughly twice the oxidative H$_2$O$_2$ generation compared to the bare WO$_3$/BiVO$_4$ photoanode. The Al$_2$O$_3$ uniformly, smoothly and flatly covered the entire area of the WO$_3$/BiVO$_4$ photoanode as shown in the SEM images (Fig. 3), whereas other MeO$_x$ were granularly and uniformly supported on that and possessed any crack holes (Fig. S1; ESI†). It was also confirmed, from XRD measurement (Fig. S2; ESI†), that no diffraction peaks derived from MeO$_x$ were observed in all WO$_3$/BiVO$_4$/MeO$_x$ photoanodes, suggesting that all tried MeO$_x$ modified on WO$_3$/BiVO$_4$ photoanode possess amorphous-like structure. As shown in Fig. S3; ESI† little change of the light harvesting efficiency (LHE) was also confirmed in tried all photoanodes, suggesting that these MeO$_x$ introduced on the WO$_3$/BiVO$_4$ have little effect to light absorption efficiency on WO$_3$/BiVO$_4$ photoanode. The time courses of voltages applied between photoanode and a counter electrode of Pt mesh at steady photocurrent of 1 mA (Fig. 2) in oxidative H$_2$O$_2$ generation reaction were also confirmed (Fig. S4; ESI†). The voltages for applying steady photocurrent of 1 mA slightly increased by introducing MeO$_x$ on the WO$_3$/BiVO$_4$ photoanode. In particular, WO$_3$/BiVO$_4$/Al$_2$O$_3$ photoanode, coated uniformly, smoothly and flatly at Al$_2$O$_3$ compared to other MeO$_x$ required highest applied voltage. In order to confirm the effect introducing the Al$_2$O$_3$ on the photoanode in more detail, the photocurrent property of the WO$_3$/BiVO$_4$/Al$_2$O$_3$ photoanode was investigated in a 0.5 M KHCO$_3$ aqueous solution (Fig. S5; ESI†). The bare WO$_3$/BiVO$_4$ photoanode exhibited excellent photocurrent property in all applied voltage ranges as with our past reported example,11,12,28,29 and the photocurrent property slightly decreased by introducing the Al$_2$O$_3$ layer. However, it should be noted that the decreasing degree of the photocurrent property was slight, only ca. 9% and 5% at +1.23 V and +1.77 V vs. RHE, respectively, although the Al$_2$O$_3$, having an insulation property, covered the entire area of the WO$_3$/BiVO$_4$ photoanode. A similar
phenomenon has also been observed in O₂ and H₂ generation through water splitting on a photoanode coated with amorphous-like Ta2O₅.22 In addition, it was confirmed, from the N₂ absorption and desorption measurement of MeO₂ particles (Fig. S6; ESI†), that almost all MeO₂ possess mesoporous structure at a pore size of 4.2–20 nm. In particular, a pore size of the Al₂O₃ was ca. 4.7 nm. The thicknesses of Al₂O₃ calculated from the coating amount on the WO₃/BiVO₄ photoanode by XRF measurement were ca. 100 nm (0.055 mg cm⁻²). In order to also investigate the effects of dense Al₂O₃ on WO₃/BiVO₄ on the oxidative H₂O₂ generation, increasing Al₂O₃ amount on WO₃/BiVO₄ photoanode was performed by decreasing the spin coating number (500 rpm) of precursor solution of EMOD solved in butyl acetate containing ethylcellulose when introducing Al₂O₃ layers. The thickness of Al₂O₃ introduced at 500 rpm calculated from the XRF measurement was ca. 127 nm (0.070 mg cm⁻²), suggested that the thickness increases with decreasing the spin coating number. As shown in Fig. S7; ESI† little change of the H₂O₂ generation amounts was observed on these WO₃/BiVO₄/Al₂O₃ photoanodes prepared at 500 and 1000 rpm, indicating that increasing Al₂O₃ on WO₃/BiVO₄ photoanode has little effect on the oxidative H₂O₂ generation. In subsequent experiments, WO₃/BiVO₄/Al₂O₃ photoanode prepared at 1000 rpm was utilized as the photoanode. These results indicate that the specific effect enhancing oxidative H₂O₂ generation property was achieved on the WO₃/BiVO₄ though the mesoporous and amorphous Al₂O₃ layer covered uniformly, smoothly and flatly the entire area.

To track the specific performance enhancing effect of generating H₂O₂ by introducing the Al₂O₃ layer, the concentration dependency of KHCO₃ aqueous electrolytes on the oxidative H₂O₂ generation property was investigated at an applied electric charge of 0.9C (Fig. 4(A)). We have already reported that the oxidative H₂O₂ generation property on the WO₃/BiVO₄ photoanode was improved with increasing concentration of KHCO₃, which acts as an effective catalyst for H₂O₂ generation via the two-electron oxidation of H₂O.28 Even in the case of using the WO₃/BiVO₄/Al₂O₃ photoanode, the selectivity (η(H₂O₂)) for H₂O₂ generation was significantly enhanced with increasing concentration of KHCO₃, and the η(H₂O₂) in the 2.0 M KHCO₃ aqueous solution reached ca. 80% at 0.9C, whereas that using the bare WO₃/BiVO₄ photoanode was ca. 54%. It should be noted that the selectivity (η(H₂O₂) = ca. 53%) on the WO₃/BiVO₄/Al₂O₃ photoanode in lowly concentrated KHCO₃ (0.1 M) was comparable to that (ca. 54%) on the bare WO₃/BiVO₄ photoanode in highly concentrated KHCO₃ (2.0 M). This suggests that the Al₂O₃ could effectively be contributing to oxidative H₂O₂ generation from H₂O even in the lowly concentrated KHCO₃. Moreover, as shown in Fig. 4(B), the excellent H₂O₂ generation property on the WO₃/BiVO₄/Al₂O₃ photoanode compared to the WO₃/BiVO₄ photoanode was significantly maintained even at high electric charge up to 50C. As a result, the accumulation amount, using the WO₃/BiVO₄/Al₂O₃ photoanode, reached >2500 μM at 50C, while using the bare WO₃/BiVO₄ photoanode was >1300 μM at 50C. The dependency of the applied voltage on the oxidative H₂O₂ generation was investigated to confirm the effect of the Al₂O₃ coating in detail (Fig. S8; ESI†). A small change in H₂O₂ generation performance was observed in all ranges of applied voltages (0.8–1.8 V), suggesting that the enhanced effect of introducing an Al₂O₃ layer is independent of the voltages applied between a photoanode as the working electrode and a Pt mesh as counter electrode using the aqueous electrolyte of the KHCO₃.

Although little development with regards to highly selective H₂O₂ generation via two-photon oxidation of H₂O and accumulation using photoanodes has been reported, our method of Al₂O₃ coating on the WO₃/BiVO₄ photoanode produced tremendous improvement in selective H₂O₂ generation and accumulation from H₂O in a KHCO₃ aqueous electrolyte. It is speculated that the specific enhancement of selectivity for H₂O₂ generation on the WO₃/BiVO₄/Al₂O₃ photoanode may be caused by a blocking effect, on the mesoporous Al₂O₃ layer, that inhibits oxidative H₂O₂ degradation into O₂ on the BiVO₄. To investigate the blocking effect on the Al₂O₃ layer, a degradation property test of H₂O₂ was performed in a 2.0 M KHCO₃ aqueous solution containing H₂O₂ (550 μM) in the presence of the bare WO₃/BiVO₄ or WO₃/BiVO₄/Al₂O₃ photoanodes in presence or absence of simulated solar light irradiation in an ice bath (below 5 °C). In both cases, as shown in Fig. 5, almost all the initial amount of H₂O₂ was maintained in the dark condition, however, the H₂O₂ amount drastically decreased with irradiation by simulated solar light, suggesting that the H₂O₂ was decomposed by photocarriers (excited electrons and holes) produced on the BiVO₄. It should be noted that the H₂O₂ degradation in the presence of the WO₃/BiVO₄/Al₂O₃ photoanode was dramatically inhibited compared to the degradation in the presence of a bare WO₃/BiVO₄ photoanode. The oxidative H₂O₂ generation test was also confirmed in a 2.0 M KHCO₃ aqueous electrolyte, initially containing H₂O₂ (210 μM) on the bare WO₃/BiVO₄ and WO₃/BiVO₄/Al₂O₃ photoanodes, to track the generated H₂O₂ degradation behaviour in more detail (Fig. 6). The generated rates of H₂O₂ were reduced by the initial addition of H₂O₂ in both cases of presence or absence of Al₂O₃.

Fig. 4 (A) Oxidative H₂O₂ generation in KHCO₃ aqueous electrolytes (35 mL) of different concentrations at applied electric charges of 0.9C (900 s at steady photocurrent of 1 mA) under simulated solar light and (B) accumulation of oxidative H₂O₂ generation in a 2.0 M KHCO₃ aqueous solution (35 mL) under visible light irradiation (λ > 420 nm) using an intense Xe lamp at an applied voltage of 1.5 V in an ice bath (below 5 °C) on a (a) bare WO₃/BiVO₄ and (b) WO₃/BiVO₄/Al₂O₃ photoanodes.
However, the decreasing rate of \(\text{H}_2\text{O}_2 \) generation was significantly inhibited, from ca. 61% to ca. 39%, by introducing the \(\text{Al}_2\text{O}_3 \) layer on the \(\text{WO}_3/\text{BiVO}_4 \) photoanode. These results suggest that introducing the \(\text{Al}_2\text{O}_3 \) layer significantly contributed to the highly selective \(\text{H}_2\text{O}_2 \) generation and accumulation from \(\text{H}_2\text{O} \), with a high photocurrent property, by a blocking effect that inhibited the oxidative degradation of generated \(\text{H}_2\text{O}_2 \). The mechanism of blocking effect is proposed that the \(\text{H}_2\text{O}_2 \) generated on the \(\text{BiVO}_4 \) in the \(\text{WO}_3/\text{BiVO}_4/\text{Al}_2\text{O}_3 \) photoanode diffuses in electrolyte of \(\text{KHCO}_3 \) aqueous solution through mesoporous of the \(\text{Al}_2\text{O}_3 \), and contact of the \(\text{H}_2\text{O}_2 \) diffused in electrolyte with the \(\text{BiVO}_4 \) covered uniformly and smoothly \(\text{Al}_2\text{O}_3 \) may be significantly inhibited compared with that with bare \(\text{BiVO}_4 \), resulting in the formation of effective inhibition of oxidative \(\text{H}_2\text{O}_2 \) degradation. Furthermore, there may be other possible mechanisms such as a blocking effect of a direct \(\text{O}_2 \) evolution site via a 4-photon process covering by \(\text{Al}_2\text{O}_3 \), or an enrichment effect resulting from the increasing \(\text{KHCO}_3 \) concentration around the photoanode based on the acid-base adsorption between \(\text{HCO}_3^- \) (a weak base) and the weakly acidic sites on the \(\text{Al}_2\text{O}_3 \) surface, related to the good \(\eta (\text{H}_2\text{O}_2) \) in lower \(\text{KHCO}_3 \) concentration, as shown in Fig. 4(A). The tracking and contribution of these other mechanisms, on the \(\text{Al}_2\text{O}_3 \) layer, is currently under investigation.

Conclusions

In summary, various metal oxides were coated onto a \(\text{WO}_3/\text{BiVO}_4 \) photoanode to enhance the selectivity (faradaic efficiency) of oxidative \(\text{H}_2\text{O}_2 \) generation, in an aqueous electrolyte of \(\text{KHCO}_3 \), from water under solar light irradiation. Among the various metal oxides, the \(\text{Al}_2\text{O}_3 \) coating, which produced a mesoporous and amorphous structure on the \(\text{WO}_3/\text{BiVO}_4 \) photoanode, achieved excellent oxidative \(\text{H}_2\text{O}_2 \) generation at a selectivity of ca. 80% and an accumulation of >2500 \(\mu \text{M} \) (50°C).

Interestingly, the \(\text{Al}_2\text{O}_3 \)-coated \(\text{WO}_3/\text{BiVO}_4 \) photoanode dramatically inhibited oxidative degradation of \(\text{H}_2\text{O}_2 \) generated on the \(\text{WO}_3/\text{BiVO}_4 \) photoanode after introducing the \(\text{Al}_2\text{O}_3 \) layer. This study contributes to developing a promising design for a clean \(\text{H}_2\text{O}_2 \) production system that uses only water as the raw material under solar light irradiation. More effective dreamy \(\text{H}_2\text{O}_2 \) generation, at an excellent selectivity close to 100%, can be expected by modifying the surface-treatment technology, and it is currently under investigation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The present work was partially supported by JSPS KAKENHI Grant Number 26810105 and the International Joint Research Program for Innovative Energy Technology. We thank Dr Etsuko Fujita (Brookhaven National Laboratory) for helpful discussions.

Notes and references