Correction: Double-emulsion drops with ultra-thin shells for capsule templates

Shin-Hyun Kim, Jin Woong Kim, Jun-Cheol Cho and David A. Weitz

In the section “Diameter and shell thickness of double-emulsion drops” there are errors in eqn (2) and in the sentence that begins “In the same fashion, we calculate the thickness of the middle layer of double-emulsion drops which are produced at each values of Q_2/Q_1 and plot the results in Fig. 3c”. The equation should be

$$\frac{L}{R} = 1 - \left(1 + \frac{Q_1}{Q_2}\right)^{-13}.$$

The sentence should read “In the same fashion, we calculate the thickness of the middle layer of double-emulsion drops which are produced at each values of Q_2/Q_1 and plot the results in Fig. 3c”.

In the caption for Fig. 3c, “Relative thickness of shell to radius of the double-emulsion drops (t/R) as a function of Q_1/Q_2” should read “Relative thickness of shell to radius of the double-emulsion drops (t/R) as a function of Q_2/Q_1.” In addition, the x-axis is incorrectly labelled with “Q_1/Q_2”. The x-axis should be “Q_2/Q_1”. A corrected version of Fig. 3c is shown.

![Fig. 3](image-url)

(c) Relative thickness of shell to radius of the double-emulsion drops (t/R) as a function of Q_2/Q_1.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

*a School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts, USA. E-mail: weitz@seas.harvard.edu; Tel: +1 617 495 3275

*b Department of Applied Chemistry, Hanyang University, Ansan, South Korea

*c Amore-Pacific Co. R&D Center, Yongin, South Korea