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A bodipy based hydroxylamine sensor†‡
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With this research, we have developed a bodipy based system as the

first ‘‘turn-on’’ fluorescence system for the detection hydroxylamine.

Hydroxylamine, (HA) NH2OH, is an oxygenated form of ammonia,
which is widely used in industrial and pharmaceutical processes.1

HA is widely known as a nitric oxide (NO) donor and participates
in a wide range of biological processes.2–4 In cellular metabolism,
HA is an intermediate in the conversion L-arginine to nitric oxide
(NO).5,6 This process involves the hydrolysis of oxime arginine to
L-citrulline and HA. HA is then converted by catalase to NO and
superoxide (�O2) in the presence of hydrogen peroxide.7 It is also
believed that HA can be converted to NO by the non-enzymatic
attack by �O2. Therefore, in inflammatory cells a reaction between
HA and �O2 could take place to generate NO.3,8 For example, HA
has shown to be a vasodilator in a dose-dependent manner in the
blood vessels of rats’ kidneys.9 HA has also shown to be an
inhibitor for the release of insulin and HA has been shown to
activate K+ channels.3,10

Despite HA being a product of metabolism and a NO donor, it
is moderately toxic to humans, animals and plants. HA toxicity
occurs at concentrations that are substantially greater than the
normal physiological concentrations. Exposure to HA has been
shown to be hemotoxic, mutagenic whilst also being an enzyme
and virus inhibitor.11

Given these important biological aspects of HA we set out to
develop a fluorescence probe for the detection of HA. To our
knowledge, there are currently no HA fluorescence probes. HA
is currently detected using: HPLC, GC, potentiometric, polaro-
graphic, biamperometric and electrochemical methods.12–19

Previously, we have developed a synthetic route to nitrones by
reacting an aromatic aldehyde containing an ortho a,b-unsaturated

ester with NH2OH (50% wt in H2O) in THF at �20 1C to produce
isoindole nitrones in high yields,20 Scheme 1. Therefore, we set
out to integrate this reaction with a fluorophore for the detection
of HA. Luckily, an appropriate system (probe 1) had previously
been prepared for the detection of hydrogen sulphide (H2S)21,22

Scheme 1.
The synthesis of probe 1, is given in the ESI.†
We also confirmed that probe 1 reacts as predicted with

hydroxylamines as shown by the 1H NMR, 13C NMR and MS
(ESI†). More importantly, when HA is added to a 0.5 mM solution
of probe 1 in a 1% DMSO PBS Buffer solution at pH 7.4 the
fluorescence is significantly enhanced as the concentration of
HA is increased (Fig. 1).

Having shown that probe 1 works with HA we set out to
investigate the selectivity amongst several hydroxylamines:
N-(benzyl)hydroxylamine, N-(propargyl)hydroxylamine, N-(tert-
butyl)hydroxylamine, O-(benzyl)hydroxylamine, and N-(phenyl)-
hydroxylamine (Fig. 2).

From these results, it is clear that the system works for simple
primary hydroxylamines (1) hydroxylamine, (2) N-(methyl)hydroxyl-
amine (3) N-(benzyl)hydroxylamine, (4) N-(propargyl)hydroxylamine,
however, larger alkyl groups or aromatic hydroxylamines such as
(5) N-(tert-butyl)hydroxylamine and (7) N-(phenyl)hydroxylamine

Scheme 1 Nitrone synthesis and probe for hydrogen sulphide.
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do not work. It is evident that the system also requires the
hydroxyl of the hydroxylamine (6) O-(benzyl)hydroxylamine.
These observations are consistent with the proposed mechanism
of the reaction (Scheme 2). Where, a nucleophillic nitrogen23

and exchangeable OH are required to facilitate condensation of
hydroxylamines with probe 1.

We have carried out a more extensive screen amongst relevant
biological species (ESI†), and as expected only H2S (50 mM)
produced a fluorescence response.

We then attempted to detect hydroxylamines in a cellular
environment using probe 1. HeLa cells were incubated HA
(0–150 mM) for 30 minutes and washed with DPBS then 1 mM
of probe 1 was added and left for 30 minutes, fluorescence
images were then acquired by confocal microscopy. From these
fluorescence images it is clear that probe 1 was fluorescent
in HeLa cells even without added HA (ESI,† Fig. S3). The
strong background fluorescence is attributed to cellular thiols
including endogenous H2S present in the HeLa cells.

In conclusion, we have developed a fluorescence turn-on
probe for the detection of hydroxylamines. The system
works well in vitro but with the in vivo cellular experiments
endogenous thiols react to turn on probe 1. We are currently
working to develop a system with enhanced selectivity for
hydroxylamines over thiols. However, it is interesting to note
that the system using N-(propargyl)hydroxylamine could be
used as fluorescent ‘‘click’’ tag.
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