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Improving the prediction of organism-level
toxicity through integration of chemical,
protein target and cytotoxicity qHTS data†
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Prediction of compound toxicity is essential because covering the vast chemical space requiring safety

assessment using traditional experimentally-based, resource-intensive techniques is impossible. However,

such prediction is nontrivial due to the complex causal relationship between compound structure and

in vivo harm. Protein target annotations and in vitro experimental outcomes encode relevant bioactivity

information complementary to chemicals’ structures. This work tests the hypothesis that utilizing three

complementary types of data will afford predictive models that outperform traditional models built using

fewer data types. A tripartite, heterogeneous descriptor set for 367 compounds was comprised of

(a) chemical descriptors, (b) protein target descriptors generated using an algorithm trained on 190 000

ligand–protein interactions from ChEMBL, and (c) descriptors derived from in vitro cell cytotoxicity dose–

response data from a panel of human cell lines. 100 random forests classification models for predicting

rat LD50 were built using every combination of descriptors. Successive integration of data types improved

predictive performance; models built using the full dataset had an average external correct classification

rate of 0.82, compared to 0.73–0.80 for models built using two data types and 0.67–0.78 for models

built using one. Pairwise comparisons of models trained on the same data showed that including a third

data domain on top of chemistry improved average correct classification rate by 1.4–2.4 points, with

p-values <0.01. Additionally, the approach enhanced the models’ applicability domains and proved useful

for generating novel mechanism hypotheses. The use of tripartite heterogeneous bioactivity datasets is a

useful technique for improving toxicity prediction. Both protein target descriptors – which have the

practical value of being derived in silico – and cytotoxicity descriptors derived from experiment are suit-

able contributors to such datasets.

Introduction
Toxic substances are those “which, if they are inhaled or taken
internally or if they penetrate the skin, may involve serious,
acute or chronic health risks and even death”.1 Contempora-
rily, the Globally Harmonized System of Classification and
Labelling of Chemicals (GHS) gives globally accepted defi-
nitions for different types of toxicity including acute toxicity,
carcinogenicity and specific organ toxicity.2 Toxicology, the
study of toxicity, is concerned both with the evaluation of

toxicity in substances, and the elucidation of their toxic mode-
of-action.3 Toxicology is of particular importance to medicinal
chemistry, as the discovery of toxic side effects late in the drug
discovery process is dangerous to study volunteers and patient
groups, as well as being highly wasteful as drug development
must be abandoned after significant cost; understanding the
nature and causes of such toxicity enables researchers to mini-
mize the likelihood of uncovering adverse compound effects
late in the process. In addition, many other areas as diverse as
agrochemistry, consumer goods, and advanced materials
would benefit from a better understanding of the toxicity
associated with chemical structures.

Traditional toxicology has focused on extrapolating human
toxicity from animal toxicity, based on the assumption that
adverse toxic reactions in animals imply the potential for
similar consequences in humans – an assumption that often
does not hold true.4,5 Experimental animal testing in vivo is
also time- and resource-expensive, and usually low-through-
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put.6 Alongside such practical and economic reasons to seek
alternative methodologies, there are also social and legal
pressures to minimize the use of laboratory animals, such as
the recent ban on testing cosmetic products on animals in the
EU.7 In addition, there is a broad movement toward more pre-
cautionary governmental treatment of potential toxicological
risks.8,9 Reliable and efficient methods of predicting organ-
ism-level toxicity using data which has already been obtained
are therefore of great utility.

Computational toxicology is a growing discipline which
pursues the goal of predicting compounds’ toxicological effects
in silico.10,11 This goal has become attainable due to recent
advancements in three areas: (i) technological improvements
affording high-throughput data generation techniques, e.g. high-
throughput screening (HTS) assays, and the accumulation of
their results in publicly-accessible repositories;12 (ii) the develop-
ment of advanced machine-learning algorithms, which are able
to find relationships within large databases of chemical and bio-
logical data;13 and (iii) the increasing availability of powerful
computational resources capable of applying these algorithms
to large datasets.14 The combination allows the development of
quantitative structure–activity relationship (QSAR) models able
to predict toxicity from compound structure.15

HTS was originally developed by the pharmaceutical indus-
try as a technique to identify potential drug leads from large
panels of candidate molecules.16 Traditionally, the HTS assays
were performed for single compound concentrations; those
chemicals that gave a response could then be screened again
at a range of concentrations. The initial single data point
screening leads to a high proportion of false positives and
false negatives; this is acceptable when seeking one lead from
many candidates; however, this is less acceptable when screen-
ing for toxicity because false negatives are less tolerable, and
because more subtle biological interactions go undetected.17 The
quantitative HTS (qHTS) paradigm,18 wherein all compounds are
screened for a concentration-dependent response from the start,
allows for a more nuanced assessment of biological activity
while retaining the advantage of inexpensive high throughput.
Furthermore, the presence of multiple data points enables the
identification of errors outlying the curve which would not be
detected in single-point screening. Consequently, this paradigm
produces data highly suitable for large-scale toxicity modelling.19

The development of novel experimental technologies has
been followed by many coordinated endeavours to produce
large-scale databases of the resulting data in order to prioritize
future toxicological evaluation of compounds.20,21 Novel data
sources and repositories afford increasing opportunities to
study the complex biological effects of chemicals, and enable
the introduction of heterogeneous data sources in broad-scale
predictive modelling.

A further result of the dramatic increase in availability of
such large-scale bioactivity data is the development of compu-
tational models that can predict the protein targets of a ligand
given its chemical structure.22 These models are founded on
the assumption of the similarity principle, i.e. that chemicals
of similar structures will exhibit similar activities; in the frame

of target prediction models, this assumption is natural as it is
equivalent to the assumption that similar molecules will bind
to the same active site, or otherwise modulate the same targets’
activities. However, target prediction transcends a simple simi-
larity search due to the flexibility of binding pockets, and the
possible presence of allosteric sites, affording interactions with
chemically quite dissimilar compounds. Machine learning
methods are thus necessary to capture the complex, non-linear
relationships between chemical and biological spaces.

The recent easy availability of bioactivity and structural
data, and the heterogeneous nature of this data, now permits
its utilisation in the prediction of organism-level phenotypes
such as toxicity. Hence, in silico prediction of biological activity
is no longer solely performed using the traditional QSAR para-
digm of extrapolation from structural chemical descriptors
alone; rather there have been a number of studies exploring
the additional use of descriptors derived from cell-line
exposure response.23,24 Such integration of descriptors from
heterogeneous data domains provides more accurate predic-
tions, due to the variety of complementary input data. Indeed,
because the chemical responsible for a toxicity may only be
generated through biotransformation of the substance to
which the organism has been exposed, data from in vitro
experiments which include metabolic competence may be
required to detect the toxicity.25

The present work builds upon the study of Sedykh et al.26

in which chemical descriptors in combination with qHTS-
derived descriptors were used to predict rat acute toxicity. The
authors found that the inclusion of qHTS-derived descriptors
enhanced both the predictive performance and the applica-
bility domain coverage of their models – once a suitable noise-
filtering algorithm had been applied to the qHTS data. They
stated that their results “provide compelling support for
increasingly sophisticated and tailored predictive approaches
that incorporate all available information (chemical, biologi-
cal, and concentration–response) in modeling”.

In this study, we make use of the data collated and noise-
filtered by Sedykh et al.,26 and additional include protein-target
affinity scores to generate a triply heterogeneous dataset. The
novelty of the work arises from the use of a validated in silico
target-prediction algorithm to facilitate the creation of a
dataset comprising three data domains suitable for the predic-
tion of in vivo toxicity.

Compounds’ toxicity can arise for a variety of reasons. The
physiochemical properties of the whole molecule (which may
result in adverse interactions with e.g. cell membranes), specific
functional groups of undesirable reactivity, and the ability of
the compound to bind to protein targets can all have toxic con-
sequences. As toxicity can be caused by multiple properties, so
multiple data domains describing encoding these properties
may be required for the prediction of these toxicities.11

Seven sets of classification models for the prediction of rat
toxicity have been developed using varying combinations of
the three data domains outlined above; the predictive power of
the models is used to illustrate the power of heterogeneous
data integration.
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Materials and methods
Data sources

The experimental data used in the work was previously used in
the study of Sedykh et al.26 in which quantitative high-through-
put-screening (qHTS) data were combined with molecular
descriptors in the prediction of acute rat toxicity.

The qHTS data were generated by the National Toxicology
Program and originally extracted from PubChem’s BioAssay
Database.27 These comprise concentration–response profiles
for 1408 substances against 13 rat, mouse and human cell
lines;28 the concentration of substances varies between 0.6 to
92 μM and the response values correspond to the decrease in
cell viability compared to controls. These data were curated by
Zhu et al.24 to eliminate duplicates, and filtered for noise by
Sedykh et al.26 using the parameters determined to be optimal
in their study.

The acute rat toxicity data were collected and curated by
Zhu et al.29 The toxicities of 7385 unique compounds were
expressed as the negative logarithm of the median lethal dose,
−log10 (LD50/mol kg−1) or pLD50.

Within the set of 695 structures for which both acute rat
toxicity data and qHTS data were available, in accordance with
the previous procedure of Sedykh et al.,26 substances with a
toxicity pLD50 < 2 were classified as nontoxic, those of pLD50 >
3 were classified as toxic, and the remaining chemicals of 2 <
pLD50 < 3 were classified as marginal and therefore discarded.
Compounds classed as toxic correspond to acute toxicity cate-
gories 1–3 of the GHS, and non-toxic compounds to category 5.2

The result was a dataset of 367 structures, each one being
accompanied by 13 noise-filtered qHTS profiles. 275 of the
compounds were classed as non-toxic and 92 were classed as
toxic (this class imbalance will be addressed in the modelling
procedure). Further information on the dataset’s chemistry is
given in the ESI.†

Descriptor generation

An overview of the descriptors used in this study is given in
Table 1. The procedure for generating them is outlined in the
following section.

After standardization (see ESI† for details), Molecular
Operating Environment (MOE) (version 2013.08, 2013,

Chemical Computing Group Inc.) was used to calculate 192 2D
molecular descriptors for each structure.

An in-house developed in silico algorithm,30 which has
found a number of applications in recent studies,31,32 was
used to generate protein target affinity descriptors for each
chemical from its standardized structure. The training set for
the target prediction model was extracted from ChEMBL
version 14, comprising over 10 million bioactivities covering
9003 targets and over a million distinct compounds, all
derived from the primary literature.33 To be included in the
training set, compounds had to have a Ki, Kd, IC50 or EC50 of at
least 1 μM against human protein targets; compound-target
associations had to have an assay-to-target confidence score of
8 or 9 (corresponding to a single protein assignment, either
directly to a homologue); and target classes had to be associ-
ated with at least 50 data points. This left 477 human protein
target classes that the algorithm was able to predict. The com-
pounds were stored as SMILES and were converted to circular
Molprint2D descriptors,34,35 implemented using the open-
source Open Babel package.36 The target prediction algorithm
uses an implementation of the Laplacian-Modified Naïve Baye-
sian Classifier.37 For this study, in order to generate descrip-
tors suitable for toxicity prediction, each compound was
annotated with a measure of its Bayesian likelihood of inter-
action (also called its “score”, and corresponding to the para-
meter which is ordinarily used to determine class membership
by Bayesian classifiers) for every protein in the model: these
scores were used as the protein target descriptors. It is impor-
tant to note that the numerical value of these descriptors
corresponds to the expectation of an interaction, rather than
quantitatively predicting the affinity (e.g. Ki) or potency (e.g.
IC50) of any such interaction.

The qHTS profiles comprised 14 concentration–response
values across 13 cell lines. Each of the 13 sets of concen-
tration–response variables for each molecule was scaled such
that the maximum response was unity, producing 182 cell line-
concentration point cytotoxicity descriptors.

Due to the three descriptor domains used in this study, the
total number of generated descriptors is comparable to the
total number of molecules in the dataset. It is generally
acknowledged that an excessive number of descriptors is
undesirable in a QSAR model,15 notwithstanding that certain

Table 1 Overview of descriptor sets from the chemical, protein target, and cytotoxicity domain to be used in modelling toxicity data in all possible
combinations. In each modelling repeat, the feature selection and pre-processing procedure was applied to the data in the respective modelling set
to select an optimum similarly sized subset of descriptors from each domain

Data domain Details Source Information encoded

Chemical 192 2D descriptors MOE Chemical structure and physiochemical
properties

Protein target 477 human target-affinity descriptors In silico algorithm trained on dataset
extracted from ChEMBL version 14

Translation of chemical space into
biological space; likelihood of interaction
with subset of human proteome

Cytotoxicity 182 dose–response datapoints of
14 concentrations across 13 human, rat
and mouse cell lines, scaled such that the
maximum response for each curve equals 1.

Original data extracted from
PubChem and processed to remove
noise as per study of Sedykh et al.
(2011)

Experimental cell-viability outcomes of
compound exposure
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modelling algorithms (e.g. partial least squares) reduce the
dimensionality of the problem by e.g. considering the variance
of the data as principle components. Furthermore, unequal
numbers of descriptors from each data type may allow one
type to dominate the model due to the random sampling
inherent in the random forests algorithm. To overcome this,
before modelling, maximum permissible descriptor corre-
lation values were derived for each domain independently;
these values were used during the pre-processing routines to
reduce each descriptor set to a similar size (see ESI† for
details). Alternative techniques to reduce the number of
descriptors (such as information gain analysis and genetic

algorithms) were explored, but were not found to afford an
increase in performance to compensate for the increase in
computational burden.

The experimental data and descriptors used in this study
are available for download at the University of Cambridge data
repository via repository.cam.ac.uk.

Modelling workflow

A diagrammatic overview of the workflow used in this study is
given in Fig. 1.

The model was implemented in R using the caret
package.38 The metrics used to assess model performance

Fig. 1 Data collation (top) and modelling (bottom) workflows. The modelling workflow was repeated five times, varying which fifth of the data was
held out as the external validation set such all data was included in the external set once. This five-fold cross validation was repeated 20 times with
20 different 5-way cross-validation splits. The entire procedure was repeated for each combination of descriptors in order to establish whether com-
bining different input domains improve toxicity predictions on the dataset used in this study.
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were sensitivity, selectivity and the correct classification rate
(CCR). Here, sensitivity is the fraction of correctly identified
toxic compounds; selectivity is the fraction of correctly identi-
fied non-toxic compounds; and CCR the mean of the two. The
performance of 100 models was recorded; these 100 models
were generated using twenty 5-fold external cross validation
procedures such that twenty toxicity predictions are made for
each compound.

In 5-fold cross-validation, the whole dataset is divided into
five subsets, and each subset is held out from the rest of the
data. Models are trained using the data from the remaining
four subsets as the modelling set and tested using the hold-
out subset as the external validation set. The procedure is per-
formed five times holding out a different subset each time.
Class stratification ensures that the ratio between classes is
consistent across subsets.

To ensure a true external assessment, for each round of
cross-validation the external validation set was removed from
the remaining data before any pre-processing. All pre-proces-
sing transformations were therefore determined solely from
the structures present in the modelling set and then applied
uniformly to both the modelling set and the external vali-
dation set.

The following pre-processing procedure was applied to
every modelling set before model building, and to each
descriptor type independently.

1. Descriptors of zero and near-zero variance were
discarded.

2. The domain-specific correlation cutoffs were applied.
3. The descriptors were range scaled to vary between 0 and 1.
4. A downsampling routine was performed, which discarded

those nontoxic compounds over a certain distance in chemical
space from toxic compounds to afford an approximately class-
balanced dataset (see the ESI† for details of the routine).

A random forest classification model was trained on the
resultant final modelling set using the following parameters:
n (the number of trees) = 500, and mtry (the number of variables
to be randomly chosen for each node) = the square root of the
total number of descriptors. The predictive accuracy of the
resultant model was assessed by measuring the sensitivity,
selectivity and CCR on the held-out subset.

This procedure was performed five times in each cross-vali-
dation round, and the 5-fold cross validation itself was per-
formed 20 times with different five-way splits. The entire 20-
repeat 5-fold cross-validation routine was performed for each
possible combination of descriptor types. To ensure fair com-
parison, the same random, class-stratified splits were re-used
for assessing the performance of each descriptor combination.

Model robustness

y-Scrambling (also called y-randomization) was used to ensure
the performance of each model could not be the result of
chance over-fitting.39 For each of the 100 models built using
each combination of descriptors 10 similar models were
trained on scrambled data, their performances recorded, and a
one-tailed t-test performed to measure the probability the

model’s performance falls within the distribution of
scrambled models.

Results and discussion
Effect of data domains on model performance

The Euclidean distances in the three descriptor spaces of all
pairwise combinations of molecules are plotted in Fig. 2 (in all
figures utilizing descriptor space, the domain-specific corre-
lation cutoffs were applied over the whole dataset). The cluster
at the rear top-right of the 3D plot represents pairs of com-
pounds dissimilar in every data domain. It can be seen that
this cluster contains no toxic pairs, and that therefore no two
toxic substances are entirely dissimilar in all three descriptor
domains. It can also be seen that, outside of the afore-
mentioned cluster of diverse chemicals, pairs which are distant
in protein space tend to consist of at least one toxic compound;
this may be rationalized through the argument that substances
which have diverse protein targets may comprise either a
highly biologically active (and potentially toxic) substance and
a non-active partner, or else two substances having diverse bio-
logical activities (both potentially harmful).

Mantel tests were performed to assess the correlation
between pairs of distance matrices within these domains: no
pair produced a correlation coefficient >0.29, indicating a great
degree of linear independence. The expectation that chemical,
protein target, and cytotoxicity descriptors encode different
information about compound bioactivity is therefore corrobo-
rated; however, whether this different information has rele-
vance for the improved prediction of toxicity had to be
investigated in the next step.

Here, the performance of the models built in this study
further substantiate this hypothesis, inasmuch as models built
using more data domains tend to have improved performance.
The distributions of these performance metrics are given in
Table 2 and visualized in Fig. 3.

The vast majority of models passed the y-validation test (i.e.
having a one-tailed t-test p-value <0.05), except for four out of
the 100 models built using protein target descriptors only.
These four models had CCR values <0.55, and as such were
not significantly better than models built using scrambled
data. The performance statistics of these models have not
been removed from the final results to prevent unduly exagge-
rating the average performance of the protein target only
models.

Considering models using only a single data domain, the
mean CCR, sensitivity and selectivity values for the models
built using chemical data alone were 0.78 (SD of 0.05), 0.72
(0.11) and 0.84 (0.06) respectively. The same metrics for the
models built using solely protein target descriptors were 0.67
(0.06), 0.56 (0.12) and 0.78 (0.06); those for the models built
using only cytotoxicity data were 0.67 (0.06), 0.40 (0.15) and
0.93 (0.03). For those predictive models built using dual data
domains, the mean CCRs, sensitivities and selectivities
respectively were: for the dual chemical and protein target
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model, 0.79 (0.05), 0.74 (0.12) and 0.86 (0.05); for the dual
chemical and cytotoxicity model, 0.80 (0.06), 0.74 (0.12) and
0.86 (0.05); and for the dual protein target and cytotoxicity
model, 0.73 (0.06), 0.63 (0.13) and 0.84 (0.06). The perform-
ance metrics of the models built from the complete tripartite
dataset were a mean CCR of 0.82 (0.05), a mean sensitivity of
0.77 (0.10), and a mean selectivity of 0.86 (0.05).

The most accurate predictions on average are those made by
the model built from all three descriptor sets, having a mean
CCR of 0.82. In contrast, those models built solely from either
protein target or cytotoxicity data domains have the poorest
mean CCRs of 0.67. This is consistent with the study of Sedykh
et al., who “found qHTS in vitro data for cell viability alone to
be insufficiently accurate classifiers of in vivo acute lethal
toxicity”.26 However, the performance of the model which uses
both protein target and cytotoxicity data has a more respectable

mean CCR of 0.73. This supports the central hypothesis of our
study, in that the combination of heterogeneous data is a useful
technique for improving the performance of toxicity classifi-
cation models. Although the increase in CCR on increased data
inclusion is evident, the size of the standard deviations indi-
cates that the performance of the models varies considerably
depending on the training-test data split employed.

It was investigated whether the ability of the models trained
on different descriptor sets would vary in their ability to clas-
sify the compounds of marginal toxicity, discarded earlier,
into moderately toxic and moderately nontoxic classes. We
found that no models were able to perform this task well, no
matter which descriptors were used (with unsatisfactory CCRs
ranging from 0.50 to 0.55).

Because the measured performance of a model is highly
dependent on the split between training and testing data, in

Fig. 2 Pairwise Euclidean distances in the three descriptor spaces. Each point represents a pair of compounds: blue points represent non-toxic
pairs, red points represent toxic pairs, and green points represents pairs which differ in toxicity. The plots allow for inspection of the relationship
between the three data domains and toxicity. The cluster representing dissimilarity in every space (marked with an asterisk on the 3D plot) does not
contain any toxic pairs.
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order to isolate and measure the effect of data integration it is
necessary to remove the variability caused by different data
splits. Therefore, the average differences in performance
between models, trained and tested on the same data split,
but built using different combinations of data domains were
calculated and are given in Table 3 and visualized in Fig. 4.

It is seen that, within a 95% confidence interval, inclusion
of each of the three domains gives a performance improve-
ment. The greatest improvement, of 13.6 CCR percentage
points, is seen when including chemical data – which is to be
expected, given the general utility of simple QSAR models and
the strong performance of the chemistry-only model. However,
there is also an evident improvement when including cytotoxi-
city and protein target information even as a third descriptor
domain, with modest gains of 1.4 and 2.4 CCR points respect-
ively in those cases. These results indicate that, for a given
dataset, integration of heterogeneous data domains improves
the performance of the model built using that dataset.

A further analysis of the effect of data domain on model
performance – but using the area under the receiver operating
characteristic (ROC) curve as the metric – is given in the ESI.†

Effect of data domains on model coverage

Although predictive bioactivity models may be capable of for-
mally classifying any compound, it is widely acknowledged
that a defined applicability domain (AD) is mandatory in order
to prevent such models groundlessly extrapolating into un-
explored chemical space. To explore how the integration of
heterogeneous descriptors into regular models may affect their
ADs, for all models utilizing chemical descriptors, the accuracy
of prediction against distance to the nearest neighbor in the
modelling set in chemical space across all models utilizing
chemical descriptors (Fig. 5) was compared.

Table 2 Distributions of performance metrics for models built using each combination of data. Although the mean performance is improved
through increasing data integration, the standard deviations indicate strong variability of performance across different selections of training and
test data

Descriptor domains CCR (mean ± SD) Sensitivity (mean ± SD) Selectivity (mean ± SD)

Chemical only 0.78 ± 0.05 0.72 ± 0.11 0.84 ± 0.06
Protein target only 0.67 ± 0.06 0.56 ± 0.12 0.78 ± 0.06
Cytotoxicity only 0.67 ± 0.06 0.40 ± 0.10 0.93 ± 0.03
Chemical and protein target 0.79 ± 0.05 0.74 ± 0.10 0.84 ± 0.06
Chemical and cytotoxicity 0.80 ± 0.06 0.74 ± 0.12 0.86 ± 0.05
Protein target and cytotoxicity 0.73 ± 0.06 0.63 ± 0.13 0.84 ± 0.06
Chemical, protein target and cytotoxicity 0.82 ± 0.05 0.77 ± 0.10 0.86 ± 0.05

Fig. 3 Performance distributions of predictive model build using each
combination of descriptor domains. There is a clear trend toward better
performance with increased data inclusion. Here error bars are used to
display the standard deviations in the performance distributions, illus-
trating the marked deviation from the mean in several cases. Abbrevi-
ations: Chem, chemical descriptors; Targ, protein target descriptors;
Cytotox, cytotoxicity descriptors.

Table 3 Differences in predictive performance on integrating further data domains. The CCR improvements refer to the increase in performance of
models using the given descriptor set, compared with the models trained and tested on the same data but using the comparison descriptor set. The
p-value is calculated using a two-tailed t-test with the null hypothesis that there is no difference in performance between models using the different
descriptor sets

Descriptor set
Comparison
descriptor set

CCR improvement
(mean ± SE) p-Value

Chemical and protein target Chemical only 0.013 ± 0.005 8.1 × 10−3

Chemical and protein target Protein target only 0.124 ± 0.005 2.5 × 10−33

Chemical and cytotoxicity Chemical only 0.023 ± 0.005 3.5 × 10−5

Chemical and cytotoxicity Cytotoxicity only 0.136 ± 0.007 8.1 × 10−43

Protein target and cytotoxicity Protein target only 0.067 ± 0.006 5.2 × 10−18

Protein target and cytotoxicity Cytotoxicity only 0.068 ± 0.006 4.9 × 10−18

Chemical, protein target and cytotoxicity Chemical and protein target 0.024 ± 0.005 8.7 × 10−6

Chemical, protein target and cytotoxicity Chemical and cytotoxicity 0.014 ± 0.005 2.3 × 10−3

Chemical, protein target and cytotoxicity Protein target and cytotoxicity 0.081 ± 0.006 8.1 × 10−26
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It can be observed that all the models have similar strong
predictive accuracy of >0.85 CCR on molecules very close to the
modelling set. However, while all models become progressively
less accurate the less similar the tested compound is to the

training data, the models built with additional heterogeneous
descriptors outperform the simple chemical model in their
ability to accurately classify compounds further out into
chemical space not covered in the training set. Indeed, Fig. 5
shows that the strong comparative performance of the tri-
partite model illustrated in Table 2 and Fig. 3 is largely due to
the model’s improved ability to successfully classify a broader
range of molecules than the other models, rather than simply
being a more accurate classifier with a similar applicability
domain.

Model interpretation

The use of cytotoxicity and especially protein target descriptors
in predictive toxicity models provides the additional advantage
of improving the interpretability of resultant models. Through
an analysis of which descriptors are most important in suc-
cessful classification, influences on the mode-of-action of the
toxicity can be uncovered.

The random forest algorithm implemented in R40 allows
for the extraction from a model of variable importance, range-
scaled to between 0 and 100. These importance figures were
extracted from the 100 tripartite models constructed in this
study in order to investigate what additional information
about toxicity mechanism might be gleaned (see ESI† for
more). The top 10 most important descriptors from each
domain, ordered by average importance over tripartite models,
are given in Table 4. These features, being important to the
classification of molecules, can be suspected of involvement in
the processes leading to organism-level toxicity. In contrast to
the esoteric meaning of the important chemical descriptors,
the specified protein names are far more easily interpreted.

For example, the two most-important targets are HSP 90-
beta and the endothelin receptor type B. Heat shock proteins
are essential for cellular homeostasis under stress conditions
and can even interact with the programmed-cell death
system.41 The endothelin receptor is suspected of contributing
to the pathogenesis of myocardial infarction, bronchial
asthma, renal failure amongst other diseases;42 endothelin
itself is a potent vasoconstrictor and is implicated as an impor-
tant factor in the development of cardiovascular disease,43 and
has been shown to cause small intestinal mucosal damage in
rats through significant hemorrhagic and necrotic lesions.44 A
further enriched target involved in vascular system hemostasis
is plasminogen activator inhibitor 1, elevated levels of which
are associated with an increased risk of arterial thrombotic
events, while deficiencies result in bleeding disorders.45

Patients with a plasminogen activator inhibitor-1 deficiency
suffer from frequent bleeding episodes, while its increased
expression has been shown to lead to numerous kidney dis-
eases.46 Additionally, E3 ubiquitin-protein ligase is known to
bind to a tumor suppressor, and abnormal regulation of E3
ligases has been shown to contribute to cancer development.47

Analysis of these protein target descriptors, several of which
are implicated in a range of pathologies, affords much more
scope for further mode-of-action investigation than their
chemical counterparts. The presence of various different cell

Fig. 4 Mean CCR improvement on addition of further heterogeneous
descriptors to models trained and tested on the same data. Here error
bars represent the standard error in the value of the mean. Chemical
data gives the biggest improvement (where originally absent), but it is
clear that protein target and cytotoxicity data also improve performance
when included. Abbreviations: as for Fig. 3.

Fig. 5 Applicability domains of each modelling technique. The figure
illustrates the enhanced extrapolation into chemical space facilitated by
the inclusion of heterogeneous descriptors. While all models give similar
CCR performance of >0.85 when tested on the chemical compounds
that are the most similar to the training data, the models built on chemi-
cal descriptors only give the worst performance on less similar chemi-
cals with a CCR of <0.6 on the least similar chemicals. In contrast, the
models built from all three data domains are the best performing on the
molecules that are the most dissimilar to the training set. Abbreviations:
as for Fig. 3.
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lines and doses in Table 4 indicate that these are each provid-
ing somewhat complementary information. As toxicity may
arise for a range of reasons, beyond chemical reactivity or
simple target binding, so we find that the most important cyto-
toxicity descriptors have comparable importance to the most
important protein target descriptors. Further descriptor analy-
sis is provided in the ESI,† including the example of N,N′-di-
sec-butyl-p-phenylenediamine, which is only correctly identi-
fied as toxic when cytoxocitity descriptors are included. Such
examples are to be expected, given the heterogeneous mecha-
nisms by which toxicity can occur.

To further illustrate the potential benefits of descriptor ana-
lysis afforded through using heterogeneous descriptors, a
subset of the dataset was extracted (defined as all molecules
that were classified correctly every time they were used to test a
tripartite model). Of these molecules, phenacyl chloride (the
active ingredient in the original formulation of Mace spray)
was successfully predicted to be toxic although it possesses
five non-toxic neighbors in chemical space within a Euclidean
distance of 0.82 and hence represents a molecule that is not
expected to be easily classified correctly in this space.

Phenacyl chloride is chemically similar to these five other
compounds, yet is consistently able to be distinguished and cor-
rectly classified as toxic by the tripartite model. In contrast, no
simple chemistry-only models correctly classified phenacyl
chloride as toxic. We can therefore infer that the combination
of the protein target and cytotoxicity descriptors enabled the tri-
partite model to detect phenacyl chloride’s toxicity. For each of
these non-toxic neighbors, the five protein target descriptors
which display the largest numerical increase going from the
compound in question to phenacyl chloride – and which are
therefore implicated as being more likely to interact with the
toxic compound than the non-toxic – are given in Table 5.
Amongst the most frequently found protein targets are the
histamine H2 receptor, antagonists of which have been shown
to induce neurotoxic convulsions in mice,48 and macrophage
metalloelastase which is associated with inflammatory diseases
such as aneurysms, cancers and chronic pulmonary inflamma-
tory diseases.49 Given the frequency of their appearance, and
their known involvement in toxic outcomes, the assumption
that these targets may be involved in the mode of action of
phenacyl chloride is a good starting point for further investigation.
Such interpretations, linking descriptor analysis to the experi-
mental results of exposure, are made possible through the
integration of target information into the predictive model.

Conclusions

We have investigated the change of average external predictive
power for toxicity classification models using various combi-
nations of (i) chemical descriptors (derived from compounds’
structures and computed physiochemical properties), (ii)
protein target descriptors (derived from a validated in silico
predictive model trained on the wealth of experimental bio-
activity available in ChEMBL), and (iii) cytotoxicity descriptorsT
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(derived from the National Toxicology Program’s qHTS studies
on 13 cell lines). This study suggests that, although non-
traditional descriptor domains have limited utility in the building
of predictive models by themselves, the accuracy of external
prediction is enhanced through the use of multiple hetero-
geneous descriptor types along with the chemical descriptors
used in conventional QSAR approaches.

The notion that more, varied bioactivity information should
furnish more accurate toxicity predictions is an intuitive one.
However, the evidence we have provided for the increased pre-
dictive accuracy of models built on a tripartite descriptor set,
along with the utilization of an in silico approach to the pro-
vision of target-affinity information, should encourage the use
of this integrative technique in future predictive toxicological
studies both for its predictive power and demonstrated practi-
cality. We have further illustrated that a heterogeneous model
has a broader applicability domain, being able to correctly

classify chemically dissimilar compounds that a solely chem-
istry-based model cannot, and provides more interpretable
results than comparable homogenous models. Finally, we have
found that including different data domains affords models
which display differing degrees of sensitivity and selectivity
imbalance (for example, the models built using only cytotoxi-
city descriptors have very strong selectivity yet poor sensitivity;
models built using chemical descriptors have more balanced
sensitivity and selectivity). This is of particular relevance to
practical applications of this methodology: depending on
whether efficacy or safety is the first priority, certain descriptor
domains may be more useful than others.

The greatest limitation of this study is that only 367 struc-
tures were utilised in the modelling and testing runs; future
work will require a larger dataset, which will amongst other
benefits facilitate a more precise measurement of the models’
applicability domains. Initial explorative attempts to classify

Table 5 Comparison of a toxic compound that was classified with 100% accuracy by the tripartite models with its 5 nearest non-toxic neighbours
in chemical space that were similarly perfectly predicted. These compounds give an example of a toxicity which is best predicted using non-chemi-
cal descriptors. The implicated protein targets are those whose predicted interaction likelihood exhibit the largest numerical increase in value going
from the nontoxic to the toxic compound. This indicates an increased likelihood of interaction with the toxic compound in comparison to the non-
toxic, giving clues towards the toxic mode of action. Protein targets which appear three or more times are italicised

Structure and name Implicated protein targets

Toxic compound n/a

Non-toxic neighbors 1. Protein kinase C zeta type
2. Vesicular acetylcholine transporter
3. Macrophage metalloelastase
4. Bombesin receptor subtype 3
5. Heat shock protein HSP 90 beta

1. Vesicular acetylcholine transporter
2. Somatostatin receptor type 4
3. Protein kinase C zeta type
4. Chymase
5. Macrophage metalloelastase

1. Vesicular acetylcholine transporter
2. Histamine H2 receptor
3. Multidrug resistance protein 1
4. Macrophage metalloelastase
5. Sodium and chloride dependent glycine transporter 1

1. Histamine H2 receptor
2. Bombesin receptor subtype 3
3. Heat shock protein HSP 90 beta
4. Caspase 8
5. KiSS 1 receptor

1. Histamine H2 receptor
2. Vesicular acetylcholine transporter
3. Macrophage metalloelastase
4. Sodium and chloride dependent glycine transporter 1
5. Chymase

Paper Toxicology Research

892 | Toxicol. Res., 2016, 5, 883–894 This journal is © The Royal Society of Chemistry 2016

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
M

ar
ch

 2
01

6.
 D

ow
nl

oa
de

d 
on

 7
/5

/2
02

4 
8:

43
:2

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5tx00406c


the large number of compounds of marginal toxicity, currently
not utilised, were not successful.

In future work, an exploration of how dimensionality
reduction might best be applied to a heterogeneous dataset
would be valuable. Simple co-correlation analysis, while com-
putationally facile, is unlikely to produce an optimum subset
of descriptors from each domain. In addition, the methodo-
logy behind the selection of qHTS cell lines has not been con-
sidered in this study. An optimally-selected qHTS dataset,
comprising assays identified as highly predictive of in vivo toxi-
city, would afford more predictive cytotoxicity descriptors, both
in isolation and in combination with other descriptor sets.

Nonetheless, as has been demonstrated in the present
study, with the advent of predictive, validated in silico methods
for predicting protein–ligand affinities and phenotypic out-
comes, the feasibility and utility of constructing toxicological
prediction models based on heterogeneous bioactivity data is
increasing. The inclusion of cytotoxicity data has been shown
to provide sufficient increases in accuracy and interpretability
to justify the added complexity of acquiring the experimental
data. The inclusion of protein target data, generated in silico
affords predictive models with information relevant to the
complex metabolic and signalling pathways with which the
compounds interact in vivo, subsequent to initial exposure.
Unless metabolism can be reliably accounted for within com-
putational toxicology, in vivo testing will still be necessary to
identify metabolites for future profiling.3

It is therefore hoped that the methodology of creating integra-
tive models such as those investigated in this study will be
further explored and improved, including investigating the use of
further data domains such as pathways and metabolites. Such
modelling approaches may eventually develop to become a power-
ful tool in the drug discovery and toxicity screening pipelines.
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