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Phase separation and coexistence of
hydrodynamically interacting microswimmersf

Johannes Blaschke,*® Maurice Maurer,® Karthik Menon,? Andreas Zttl and
Holger Stark*?

A striking feature of the collective behavior of spherical microswimmers is that for sufficiently strong
self-propulsion they phase-separate into a dense cluster coexisting with a low-density disordered
surrounding. Extending our previous work, we use the squirmer as a model swimmer and the particle-
based simulation method of multi-particle collision dynamics to explore the influence of hydrodynamics
on their phase behavior in a quasi-two-dimensional geometry. The coarsening dynamics towards
the phase-separated state is diffusive in an intermediate time regime followed by a final ballistic
compactification of the dense cluster. We determine the binodal lines in a phase diagram of Péclet number
versus density. Interestingly, the gas binodals are shifted to smaller densities for increasing mean density or
dense-cluster size, which we explain using a recently introduced pressure balance [S. C. Takatori, et al,
Phys. Rev. Lett. 2014, 113, 028103] extended by a hydrodynamic contribution. Furthermore, we find that
for pushers and pullers the binodal line is shifted to larger Péclet numbers compared to neutral
squirmers. Finally, when lowering the Péclet number, the dense phase transforms from a hexagonal
“solid” to a disordered “fluid” state.

1 Introduction

Collective dynamics due to the active motion of microorganisms
and artificial microswimmers has received a lot of attention
among physicists'™® as it is relevant both to real world
applications®®™® as well as for posing fundamental questions
in non-equilibrium statistical physics.”*** From the perspective
of physics, a unifying feature of microorganisms and artificial
microswimmers is that they propel themselves autonomously
through a surrounding fluid. As they are constantly driven out
of equilibrium, understanding the collective properties of
systems comprised of many swimmers is an important field
of ongoing research in statistical physics.

One of the most striking features of swimmer systems is
motility-induced phase separation,'* where stable clusters of
swimmers form due to their active motion alone and without
any attractive forces. The question of motility-induced phase
separation has been treated theoretically using so-called active
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Brownian particles, which perform a persistent random walk and
interact sterically only.'"">™° However, real microswimmers such
as ciliated microorganisms,” catalytic Janus particles,”**'** or
active emulsion droplets***” employ propulsion mechanisms
reliant on hydrodynamics. Thus nearby microswimmers can
affect each other’s velocity and orientation, which can poten-
tially alter their collective behaviour depending on the details of
their hydrodynamic interactions.>®

Biological microswimmers employ non-reciprocal cell-body
deformations or the collective dynamics of flagella or cilia in
order to propel themselves,> whereas active colloids and droplets
move forward by creating a slip velocity close to their surface."
The essential features of both of these self-propulsion mechan-
isms are captured by the so-called “squirmer” model,**>* which
we shall use to generate our hydrodynamic propulsion.

For phase separating systems, it is common to construct the
binodal line in order to determine the phase coexistence region.
While there have been many studies quantifying the phase-
coexistence regime for active Brownian particles,""***33>738 to list
just a few of them, none of these have considered hydrodynamic
interactions between the swimmers. Several recent works studied
the collective dynamics of hydrodynamic swimmers,**™** but
did not look at phase separation.

In our previous study, we examined the collective dynamics and
clustering of hydrodynamic squirmers in a quasi-two-dimensional
geometry using the method of multi-particle collision dynamics
(MPCD) to explicitly simulate the fluid environment.*® Due to
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computational limitations, we were restricted to 208 swimmers,
which was insufficient to quantify the first-order phase-separation
transition. Hence, we built on this study and extended the
simulations to thousands of squirmers by implementing a
parallelized version on 1008 processor cores. This allows us
to investigate the dynamics of a sufficiently large number of
squirmers in order to quantitatively resolve phase separation
into a dilute gas and a dense phase.

In the following we show phase-separated squirmer systems
and explain how we analyze them to obtain the area fractions of
the dilute and dense phases. After illustrating the coarsening
dynamics towards phase separation, we quantify the coexistence
region bounded by the binodal line in a diagram Péclet number
versus density. Interestingly, the binodal lines differ for varying mean
density. We explain this phenomenon as a true hydrodynamic
signature using a pressure balance. In particular, we use the
swim pressure introduced in ref. 9 and extend the approach of
ref. 9 and 10 by including a hydrodynamic pressure generated
by squirmers at the rim of the dense cluster. The binodal line
is shifted towards larger Péclet numbers, when the force-
dipole contribution of the squirmer, characterizing pushers
and pullers, is increased. Finally, moving the dense phase from
large Péclet numbers to the critical value, one observes a melting
transition between a hexagonal and a fluid phase. We start with
summarizing computational details.

2 System and methods

Our system consists for N spherical squirmers of radius R,
where N varies from 2116 to 4900 depending on mean area
fraction or density ¢. Squirmers propel themselves by applying
an axisymmetric surface-velocity field,***

Vs = By(1 + pe-tg)[(e-ts)ts — €] (1)

where vy is the slip velocity, rs points from the squirmer centre
to its surface, f; is the unit vector along r;, and € is the
squirmer’s orientation. The constant B; determines the ampli-
tude of the slip velocity and thus its swimming speed v,. For a
single squirmer in a bulk fluid, v, = 2B;/3. We use B; to control
the Péclet number, Pe = Ryy/Dr, as the appropriate thermal
diffusion coefficient Dy is kept constant for all simulations. For
the MPCD fluid and squirmer parameters presented below, we
obtain Pe ~ 3546.4B,. The additional parameter f§ breaks the
symmetry about the squirmer equator. For f§ < 0, the surface field is
more concentrated on the southern hemisphere and the squirmer’s
far field in bulk is that of a pusher. For f > 0 a puller is realized
and a swimmer with = 0 is called a “neutral squirmer”.
Motivated by experiments>**** and following our previous
study,?® the swimmers are bounded by two parallel flat plates.
As in ref. 28 we choose strong confinement with the distance
between the plates being H = 8R/3. We implement the full
hydrodynamic interactions between squirmers and confining
walls using the MPCD simulation technique.*>*® The fluid is
represented by of the order of 107 point-like effective fluid
particles with mass my, velocity vi(t), and position r,%).
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The velocities v,(t) are thermostatted to have a temperature
To. The fluid particles perform alternating streaming and
collision steps. During the streaming step, fluid particles move
ballistically over a time A¢ without interacting with each other
and reach the position

1t + At) = t; + v{t)At. 2)

They do interact with confining boundaries and squirmers,
transferring linear and angular momentum. Interactions with
the confining boundaries implement no-slip boundary condi-
tions via the so-called bounce-back rule,*” while interactions
with squirmers generate the surface field of eqn (1). For each
collision step, particles are sorted into a cubic grid of cell length
ao and with a random offset for each new step. The average
velocity V = (v;) e and centre of mass ¥ = (r;)ey of the particles in
each cell is determined. Within each cell they “collide” according
to the MPCD-AT+a rule,*® which is reminiscent of an Andersen
thermostat and also conserves linear and angular momentum.
Random velocity increments dv; for each particle are sampled
from a Gaussian distribution with variance kgTy/m,. The velocity
increments would give an overall change in momentum
MoAV = mo(8v;) e and angular momentum AL = my((t; — T) X 8V,) cenr-
Hence, we subtract these changes in the velocity increment for
the collision step,

vi(t + Af) = ¥(t) + dv; — AV — (r(¢) — £(8)) x I'AL,
)

where I"" is the inverse of the moment of inertia tensor for the
point-mass distribution of the particles in the cell’s centre-of-
mass frame. Thus, the motion of the fluid particles on the length
scale of the grid corresponds to solutions of the Navier-Stokes
equations”>*®*® including thermal noise. Furthermore, this scheme
accurately reproduces the hydrodynamic flow field of a squirmer**>°

and their interactions including near-field lubrication effects.**"*°

2.1 System parameters

For all simulations discussed here, the fluid and squirmer
malss densities are the same, p = 10my/a,’, and the squirmer
radius is R = 3a,. Together with the streaming-time step
At =0.02a9/my/kpTy, the fluid viscosity becomes #n =
16.05\/moks Ty /ay* taken from ref. 28 and 48. For the bulk fluid
and the parameters stated above, the self-diffusivity of a passive
colloid is Drp = kBT/6TW’]R =1.1x 10’3a0\/kBT0/m0. In the
presence of walls, the self-diffusivity becomes a position-dependent
tensor.”* We measure the self-diffusivity at the centre between the
walls using the Green-Kubo formula. We find that Dy,p & 0.5Drg,
comparable to the result of ref. 51. For a colloid close to the
walls this value can decrease to approximately 0.25Drp due to
the enhanced friction. In the following, we use Dr,p, for a single
particle (particle density ¢ = 0) to define the Péclet number,

R
Pe = l

- Drop(¢p =0) @

The orientation of a squirmer also undergoes rotational
diffusion, for which MPCD gives the rotational diffusion

This journal is © The Royal Society of Chemistry 2016
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coefficient Dr = kgT /8nnR* ~ 10~*\/kgTy/mo/as* in a bulk
fluid, which is also approximately valid in our quasi-two-
dimensional geometry. There, rotational diffusion strongly
depends on the density of squirmers due to the flow field they
create and increases by as much as a factor of 15 in very dense
systems.”® The rotational diffusion coefficient is used to define
the persistence number Pe, = vo/RDg, which compares persis-
tence or run length / = vo/Dy to R.

To summarise, in the following we work with Péclet num-
bers in the range [190, 355], which corresponds to persistence
numbers Pe, in the range [120, 220] or typical run lengths
of single squirmers, [ = v,/Dg, ranging from 120R to 220R.
For high-density simulations without phase separation, where
rotational diffusion is considerably enhanced, we have Pe, = 8
orl = 8R.

3 Results

3.1 Phase separation and coarsening dynamics

For a range of total densities and Péclet numbers, the system
decomposes into a dilute gas and a dense phase. Fig. 1: top, left
shows a typical snapshot of a phase-separated system with
mean area fraction ¢ = 0.64 and at Péclet number Pe = 355
(B1 = 0.1). The two phases are clearly visible: many squirmers

| — squirmer resolved — position resolved

= 1.0 '
0.8
7 04 o

30 —20-10 0 10 20 30°
d/R

0.8 1.0

0 0.2 0.4 0.6

¢

Fig. 1 Top, left: Snapshot of squirmer configuration for 3328 squirmers
with Pe = 355 (B; = 0.1) and ¢ = 0.64 exhibiting coexistence between a
high-density and a low-density phase. The colour code represents the
local density ¢; around the i-th squirmer. Top, right: Corresponding
position-resolved density ¢(x,y) averaged over 3 x 10° MPCD time steps.
Bottom, main plot: Probability distribution of local density ¢; (blue line). For
comparison, the probability of the position-resolved density ¢(x,y) is
shown (green line). Inset: Local density ¢(d) as a function of distance from
an interface, d, measured in units of R. The solid black line is a fit to the
interfacial density predicted by Cahn-Hilliard theory.
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have come together to form a densely packed and system-
spanning cluster, leaving a few squirmers in a much less dense
“gas” phase. For lower ¢, the dense phase consists of fewer
squirmers and thus might not necessarily form system-
spanning clusters. At even lower ¢ phase separation does not
occur and only the pure gas phase is visible. The ESI{ contains
Videos M1 and M2b showing a non phase-separating and
phase-separating squirmer system, respectively. As well as the
onset of phase separation M2a.

To quantify the local density, we construct around each
squirmer a Voronoi cell and determine its area A;. The local
density within this Voronoi cell is therefore ¢; = 1/4;,. A standard
analysis, such as the one used in ref. 35, would be to determine
the probability distribution p(¢;) of local densities ¢; and to
identify the densities of the two coexisting phases from the
expected bimodal distribution. The probability distribution
corresponding to the squirmer snapshot in Fig. 1 is shown in
Fig. 1: bottom by the blue line. The dense phase produces a very
pronounced peak with a very broad tail, which obscures the
signature of the gas phase. This broad tail is due to encounters
between a small number of swimmers in the gas phase forming
small temporary clusters. Thus, some form of temporal averaging
is needed, in order to keep only those dense regions that remain
intact and relatively fixed in place.

Hence we divide the system area into a grid with cell spacing
equal to the squirmer radius R. Each cell is assigned a local
density using a weighted average of the local densities from
those Voronoi cells, which intersect each grid cell. We then
average over time, choosing the averaging interval to be longer
than the life time of temporary clusters, yet short enough
so that permanent clusters seem relatively unchanged. Hence,
we arrive at a position-resolved density ¢(x,y) such as the one
plotted in Fig. 1: top, right. A histogram of the values of ¢(x,y) is
plotted in Fig. 1: bottom, green line, and recovers the peak for
the gas phase.

The color-coded density ¢(x,y) in Fig. 1 also shows a pro-
nounced interfacial region between dense and gas phase. In
order to obtain their densities and distinguish them from the
interface, we determine the interfacial density profile ¢(d),
where |d| is the distance to the nearest point on the interface.
A preliminary position of the interface is determined by requir-
ing that the time-averaged number of neighbours is three.
Variations in this choice simply shift the density profile along
the d-axis, but do not alter its shape. Thus the resulting ¢(d) is
independent of fixing the exact interface position beforehand.
For each grid cell the distance to each point of the estimated
interface is determined and the minimal value is chosen as |d|.
Collecting the statistics for each grid cell then gives ¢(d). The
resulting profile corresponding to the color-coded density
¢(x,y) can be seen in the inset of Fig. 1: bottom. Inspired by
ref. 10 and Cahn-Hilliard theory,** we fit

o (z)den + (rbgas ¢den - ¢gas d— dO
P =5+ tanh( 2w )

(5)

to the profile in the inset (¢f. solid line). This provides values for
the respective densities of gas and dense phase, ¢gas and ¢gen.
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The good quality of the fit is not surprising, as an effective
Cahn-Hilliard equation was formulated for the local density in
systems comprised of active Brownian particles.**'”

Before we introduce the resulting phase diagram, we discuss
the coarsening dynamics from the uniform initial state to the
final phase-separated system. Fig. 2: top illustrates the time
evolution for a system with ¢ = 0.48 and Pe = 355 (B; = 0.1) on
different time scales. Initially (first row) clusters of squirmers
develop in the unstable uniform phase characteristic for
spinodal decomposition. They grow and become denser until
a few clusters remain (second row). These clusters already have
the final density ¢4y Of the dense phase. They show the typical
coarsening dynamics of a phase-separating system due to
diffusive exchange of squirmers between the clusters. Ultimately,
one single cluster remains (third row), the shape of which
becomes more compact over the course of time.

L
— o~ m < n

S S d
t/6 x 105 At

Fig. 2 Top: Time evolution of ¢(x,y). Each successive frame represents
a time marked on the plot of &(t) (bottom panel). The first, second, and
third row are marked by magenta circles, green squares, and red stars,
respectively. Bottom: Characteristic cluster size &(t) as a function of time
(in units of MPCD time step At). Simulation data for ¢ = 0.48 is shown in
the blue solid line. The coarsening dynamics of model H for diffusive
transport, &(t) ~ Y3, and viscous hydrodynamic transport, £(t) ~ t, are
indicated by the dashed and solid black lines, respectively.
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Following ref. 52, we quantify coarsening by determining
the area a(t) of all dense regions and their total perimeter (¢)
as a function of time. The mean domain size then becomes
&(t) = a(t)/1(¢). Fig. 2: bottom compares &(¢) to the different regimes
of the coarsening dynamics for a system with conserved order
parameter including hydrodynamics.>® After the initial formation
of the clusters (the magenta dots refer to the frames in the first
row), the total area a(t) remains constant and all further changes
in ¢ are due to changes in [(¢) alone. In the intermediate regime,
the mean domain size roughly obeys the scaling expected when
diffusive transport dominates, ¢ ~ ¢ (frames in the second row).
This regime lasts less than a decade, since our system size is
relatively small. Former work on the coarsening dynamics of pure
active Brownian particles report a deviation from the scaling
exponent 1/3, measuring 0.255% or 0.28.>* However, our system
is too small to make a clear statement about the exponent. Finally,
the compactification of the single cluster gives rise to clearly
visible, jumplike increases of &(t). For comparison, we give the
expected scaling £ ~ ¢ due to viscous hydrodynamic transport.
This compactification has not been seen for pure active Brownian
particles. Also, in our simulations not all ¢ enter this regime.
Small clusters leave the diffusive transport regime with fairly
circular clusters already. Whereas for ¢ > 0.50 clusters spanning
the whole simulation box are formed. These are stable, either as
“slabs” for ¢ & 0.50 or the gas phase forms a “bubble” at even
larger mean densities. The rapid increase of (t), shown in Fig. 2:
bottom towards the end, therefore requires ¢ < 0.50 and
probably is a finite size effect.

3.2 Phase diagram of neutral squirmers

In Fig. 3: top we plot the densities ¢gos and ¢gen of the
coexisting gas and dense phases in a Pe-¢ diagram, which we
determined for different mean densities ¢. Interestingly, the
resulting binodal lines do not agree. In particular, the gas
binodal is shifted to smaller values ¢, for increasing o.
In contrast, for pure active Brownian particles, the densities
of the two coexisting phases are independent of ¢.'"** For our
geometry we present them in Appendix 5.2. Thus, we suspect
hydrodynamic interactions between the squirmers to cause this
behaviour. For constant Péclet number Fig. 4 demonstrates
how the gas density ¢g.s decreases for larger ¢. Thus, the
cluster of dense phase, which grows in size with increasing ¢,
extracts additional squirmers from the gas phase. Below we
will attribute this behaviour to an additional hydrodynamic
pressure caused by the squirmers at the interface between the
dense and the dilute phase.

The gas binodals in Fig. 3: top roughly run parallel to each
other. Thus, by introducing an effective Péclet number

Pe’ = (1 + ag)Pe (6)

with fit parameter a &~ 0.65, we are able to collapse them on a
single master curve for the binodal line as Fig. 3: bottom
demonstrates. It is tempting to explain the coefficient a by
defining an effective Péclet number using a density-dependent
diffusion coefficient Dy ,p($) = Drop(¢ = 0)/(1 + 2.027¢) in the
definition (4) of the Péclet number. We determined it from the

This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Top: Binodal lines showing the coexistence densities of neutral
squirmers for different mean densities ¢. The magenta points for Pe = 355
correspond to simulations from Fig. 4. Bottom: The rescaled data using the
effective Péclet number Pe’ = (1 + 0.65¢) Pe shows a data collapse for
different ¢. The black line shows a fit to eqn (7). The fitted critical point is
marked by the back diamond.
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Fig. 4 Gas density ¢gas in the phase-separated system plotted versus
mean density ¢ for neutral squirmers with Pe = 355 (B; = 0.1) and Pe = 284
(B, = 0.08).

velocity-auto-correlation function and the Green-Kubo formula
(see also paragraph after eqn (8) and Appendix 5.3). However,
the prediction of 2.027 for the coefficient a cannot explain the
reported data collapse.
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In order to estimate the position of the critical point
(¢+,Pe."), we fit"*

/ U
o)) o
to the gas-binodal in Fig. 3: bottom. The ESI{ contains Videos
M3 and M4 of the dynamics of the position-resolved density
¢(x,y) inside the phase-coexistence regime and outside of it
close to the critical point.

For a system in mechanical equilibrium the total pressure in
the coexisting gas and dense phases has to be the same. We now
apply this strategy to our system of phase-separating squirmers
in order to understand why the binodals depend on the mean
density. For active Brownian particles without any hydrodynamic
interactions, the pressure balance was first proposed in ref. 9 by
introducing a total pressure consisting of a steric and an active
contribution: p = p® + p®. This pressure balance was then used
in the context of phase separation in ref. 9, 10, 16 and 54-56.
The steric pressure results from direct interactions between the

squirmers, p(*) = <Z Ty F;,»>/(6V).57 Here, 1; = 1; — 1; is the
i

W=

distance vector from swimmer j to swimmer i, F;; the force with
which squirmer j acts on i, V is the volume of a uniform system,
and (---) means temporal average. Swimmers moving with
constant velocity v, along the unit vector €; also generate a swim
pressure:’

N

f V N

R T R ®)
i=1

where y, is a friction coefficient connected to energy dissipated by
the swimmer in its fluid environment. We note here that the swim
pressure is only defined over times, which are long compared to
1/Dg, therefore the average (- - -) needs to be taken over sufficiently
long times.>® As swimmers move, while this averaging is taking
place, p® becomes “smeared out” and therefore describes the
active pressure in the volume V and not at a point.}

Due to hydrodynamic interactions with bounding walls and
other squirmers, the friction coefficient in eqn (8) depends not
only on the squirmer’s position but also the position of every
other squirmer. Hence, it is not possible to know v, precisely.
To arrive at a sort of mean-field approximation for yy(¢), we use
the Green-Kubo formula and determine a self-diffusion coeffi-
cient Dy ,p(¢) from the velocity-auto-correlation function of a
passive particle with radius R using the velocity components in
the plane of the quasi-two-dimensional geometry. The result is
plotted in Fig. 11 of Appendix 5.3 and can be well approximated
by D1 »p(¢) = Dr2p(¢ = 0)/(1 + 2.027¢). We then use the Einstein
relation, yo(¢) = kgT/Dr2p(¢), to arrive at a density-dependent
friction coefficient. However, the following results only change

+ One can argue that the linear exention of the volume V should be larger than
the persistence length of the swimmer. However, if one averages over a suffi-
ciently long time so that a sufficient number of swimmers enter and leave V, this
requirment might be relaxed. This needs to be checked more carefully in a future
investigation.
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little compared to working with a constant y, = kgT/Dr »p(¢ = 0)
for all densities.

In a dilute gas of non-interacting Brownian particles, orien-
tation decorrelates exponentially on the decorrelation time 27,
and one obtains from eqn (8)°

ng) = pgasfry0v02/6 ~ pgaspezy (9)

where pg,s is number density. This active gas pressure is
controlled by the Péclet number. It holds the dense phase of
active Brownian particles together by preventing them from
swimming apart.

We are able to calculate steric and the swim pressure of
eqn (8) for the local neighbourhood of each squirmer (see
Appendix in Section 5 for details). Fig. 5: top shows these local
pressure values as a function of the distance from the gas-
cluster interface. In light of the discussion about the swim
pressure following eqn (8), its pressure values close to the
interface have to be treated with caution. But they are not
important for the following. Outside the dense phase, d < 0,
the steric pressure is low due to very few contacts between
squirmers or a squirmer and a bounding wall. And when they do
occur, they persist for only a short time. On the other hand, the

é swim pressure
41 ¢ steric pressure
¢ total pressure
— 3f
= e P T
~— | T e PR T TN
& oL
1 ¢
- gasphase gj dense phase
0 s s s ‘
-50 -40 -30 =20 -10 O 10 20 30 40
d/R
3.0 , : : : , .
2.5} . |
=
Q 2.0] |
+
B |
<
1.0 _

0. ‘ ‘ ‘ ‘ ‘ '
030 035 040 045 050 0.55 0.60 065

¢

Fig. 5 Top: Local pressure values plotted across the interface between
gas and dense phase for Pe = 355 (B; = 0.1) and ¢ = 0.51. Distance from the
interface d is measured in units of squirmer radius R. d > O represents the
interior of the cluster formed by the dense phase. Bottom: Total pressure
jump AP + p®) when going into the dense phase plotted versus ¢. The
black line shows the fit Ap(¢) = 5.1¢ — 0.95.
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local swim pressure in the gas phase is large as swimmers can
move unhindered. Inside the cluster, d > 0, squirmers are in
constant contact with their neighbours and the confining walls.
This leads to a significantly higher steric pressure. On the other
hand, the squirmer’s swimming motion is hindered by the
neighbours. Swimming motion and actual displacement are
much less correlated and the swim pressure is greatly reduced.

However, contrary to what is expected for mechanical equi-
librium, the total pressure p = p® + p® plotted in Fig. 5: top is
not the same for the gas and the dense phase. Furthermore,
in Fig. 5: bottom we see that this total pressure difference
Ap = paen — Pgas across the phase interface increases with
increasing ¢. Thus, there must be an additional negative pressure
stabilizing this interface. When introducing the swim pressure,
the authors of ref. 9 already remarked that for swimmers
swimming in a fluid environment, the hydrodynamic stresslet
induces an additional hydrodynamic pressure. In the following
we elaborate on this idea for our special geometry and demon-
strate that indeed we are able to justify a negative pressure
difference between the dense and the gas phase.

It is not possible to give a complete quantitative theory for
the negative hydrodynamic pressure produced by the dense
cluster of squirmers. Instead, we present here an approximate
treatment, which contains the essential ideas. A squirmer at
position r, and confined between two plates generates the flow
field of a source dipole with the approximate dipole moment

6 = 2nR*,.*%* It is accompanied by the pressure field

1 o-(r—r)
2nG |r—r0‘2 ’

p(r) = (10)

where G ~ H*/n measures the system’s confinement with H the
plate distance and # viscosity. To be concrete, we use the value
for a Poiseuille flow in MPCD units, G = H*/12n ~ 1/3.

Now, we consider a circular cluster of squirmers and replace
the dipole moment ¢ by a density of source dipoles. Further-
more, we find that on average the squirmers have a tendency to
point radially inwards towards the center, especially at the rim
of a cluster. Therefore, we introduce a source dipole density
G = (o-f.)f., where t. is a unit vector pointing from the squirmer
to the cluster center. The radial dipole density (6-f.) across the
interface from the gas to the dense phase is plotted in Fig. 6 for
different ¢. This confirms the preferred radial alignment at the
rim of the dense cluster, whereas in the interior the squirmers
point towards the bounding walls, on average, since (¢-f.) is
zero. We calculate the pressure generated by the dipole density
in two steps. First, we integrate along a circle of radius r, to
obtain pressure per unit length:

1 ff)ﬁ - (r—rp)
;) = ———p——ds 11
p( ) G |l' _ rO‘Z ( )
With 1, = (rocos ¢, rosing), cos¢ = ryr, and r, = —rof. one
obtains
(6 - f'c>(r0)r” o — rcos @
r;rg) = rod 12
p(x; o) G Jo 2412 — 2rrgcos @ ¢ (12)
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Fig. 6 Top: Radial source-dipole density plotted versus distance from the
cluster interface, d, measured in units of squirmer radius R for different
mean densities ¢. Inset: Magnitude of resulting hydrodynamic pressure
difference versus ¢. The solid line shows a fit —Ap™ = 4.72¢ — 1.04.

which can be integrated to

(6 - 7)(ro) { n
2nG

r<ry

p(r;ry) = — (13)

0 r>rg

Thus inside a ring of source dipoles pointing radially inwards,
pressure is constant and negative, while outside of the ring it is
zero. Second, we integrate over the radial coordinate and obtain
the constant hydrodynamic pressure difference between cluster
interior and exterior,

1 (%
ap = | o nyan,

al (14

where R. is the cluster radius. This negative pressure should
cancel the difference of the total pressure between dense and
gas phases, which is illustrated in Fig. 5: top.

In summary, our argument is as follows: any net polar order
of swimmers is accompanied by a jump in solvent pressure, a
fact that has also been reported by ref. 60. In our case, this is
due to the squirmers at the edge of the cluster: the hydro-
dynamic pressure difference between cluster interior and exterior
is necessary to stop the flow initiated by the squirmers, which try
to pump fluid out of the cluster interior.

The inset in Fig. 6 shows the hydrodynamic pressure using the
radial source-dipole density (-t} from the main plot. Its absolute
value increases linearly with cluster size or ¢, which results from
the stronger radial alignment as the cluster size increases. The
linear increase of |Ap™| coincides with the linear increase of
AP® + p@) plotted in Fig. 5: bottom, however the slope is by a
factor of 1.1 too low. This is understandable since we approximate
the squirmers in the dense cluster by point-like source dipoles
with an approximate dipole moment. We only calculated Ap™ up
to ¢ = 0.48, where the dense clusters are nearly circular. Beyond
this mean density, they become elongated and the radial alignhment
of the squirmers cannot clearly be defined.

Thus our claim is that by introducing the negative hydrodynamic
pressure generated by squirmes swimming into the cluster at
its rim, we are able to maintain mechanical equilibrium.
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Namely, by defining the total pressure p = p' + p@ + p® with
the hydrodynamic pressure included, this total pressure should
be constant across the interface of gas and dense phase. Our
observation that |Ap®™| increases with cluster size and thus
with ¢, explains the different binodals in Fig. 5 and why we can
collapse all of them on a single master curve with the help of
the effective Péclet number from eqn (6). For an increased
|Ap™|, a lower Ap® o ¢gas is required to maintain the inter-
face and thus ¢, is reduced.

For phase-separating systems, interface curvature leads to a
Laplace pressure and can result in a shift of the coexistence
densities.®" We point out that this effect cannot be responsible
for the shifted binodals as well as the pressure jump in Fig. 5:
bottom. First, the Laplace pressure changes signs as one goes
from a droplet to a bubble configuration. In particular, the
pressure jump in Fig. 5: top was determined for the “slab”
configuration with nearly straight interfaces, where the Laplace
pressure should vanish. Second, the coexistence densities of
the dilute and dense phase in the middle row of Fig. 2: top do
not change while coarsening. However, if Laplace pressure were
important in our system, the densities would change since the
curvature of the interfaces changes.

Until now we have only examined neutral squirmers. In
the following we present binodal lines for different squirmer
parameter f to demonstrate how pushers and pullers effect the
phase-coexistence region of microswimmers.

3.3 Binodal lines of pushers and pullers

The flow field around squirmers is strongly controlled by the
dipole strength f used in our swimmer model. For § # 0, the
flow field of a single squirmer in a bulk fluid is reminiscent of
pushers (8 < 0) and pullers (8 > 0)."°* It has a strong effect
on how swimmers reorient due to nearby surfaces or other
squirmers as demonstrated in ref. 1, 28 and 62. The qualitative
effect of increasing || has been shown in our earlier work®® to
largely suppress phase separation, requiring systems of increasing
¢ in order for stable clusters to form.

The binodal lines for different f are compared to the
neutral-swimmer case in Fig. 7 for pushers (top panel) and
pullers (bottom panel). The overall trend is that for increasing
|B| the coexistence regime becomes smaller. For pushers, one
realizes very nicely how the binodals are mainly shifted up,
thereby increasing the critical Péclet number. The same
applies to pullers, however, the gas binodals are also deformed
compared to = 0. We observe that puller squirmers are more
mobile in the dense phase compared to pushers. Therefore, the
corresponding binodals are shifted to smaller ¢.

For pushers and pullers in full three dimensions sponta-
neous polar order was observed for small but non-zero f$.*°
This results in a net motion of swimmers along a common
direction. We do not find such a net motion for small f in
our simulations. This might be due to the fact that in our quasi-
two-dimensional geometry the far fields of neutral and non-
neutral squirmers both decay as 1/7>.**° Thus, squirmers with
small f # 0 do not have a sufficiently different far field
compared to neutral squirmers.

Soft Matter, 2016, 12, 9821-9831 | 9827
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Fig. 7 Binodal lines of pushers (top panel) and pullers (bottom panel) for
different dipole strengths f. For reference, the data from Fig. 3: bottom is
shown as black.

3.4 Melting of the cluster phase

In the region below the critical Péclet number in Fig. 3: bottom
the phase is isotropic. On the other hand, at large effective
Péclet numbers we observe hexagonal order in the dense phase,
which hence has to undergo a melting transition if the Péclet
number is reduced. It is not our intention to present a thorough
discussion of this subtle phenomenon but to only give an
indication for melting.

The dense branch of the binodal lines of neutral squirmers
and of pushers (see Fig. 7: top) reveal a similar trend. At Pe’ =
400 and below, the density of the dense phase decreases and
stabilizes at a lower value around Pe’ ~ 350. In particular, this
feature is clearly seen for neutral squirmers and coincides with
a loss of hexagonal order in the cluster. As in ref. 28 we
introduce the bond parameter |gq|> to measure local sixfold
bond-orientational order around a squirmer. In Fig. 8 we plot
the probability distribution for |g¢|* in the dense phase for a
range of Pe’. For Pe’ > 402 a peak at |gs|*> ~ 1 dominates the
distribution and indicates hexagonal order in the dense phase.
The hexagonal domains are stable over time with only short
perturbations when defects and vacancies move through
the hexagonal lattice due to the random component of the
squirmers’ motions. These perturbations slightly reduce the
time-averaged |gs|* and shift the peak position below 1.

9828 | Soft Matter, 2016, 12, 9821-9831

View Article Online

Soft Matter

14 — Pe’ =502
12} — Pe' =452
N L
1ol Pe’ = 402
& ol Pe’ = 352
& 7 — Pe'=301
= 6
4l
2+
0 L ! ! !
03 04 05 06 07 08 09 10
2
|96

Fig. 8 Probability distribution of the six-fold bond parameter |q6|2 within
the cluster phase for ¢ = 0.64 and a range of effective Péclet numbers Pe’.

Below Pe’ > 402 the sharp peak in the distribution function
disappears indicating a melting transition with a loss of hexagonal
order. In the simulations we still observe stable clusters, which now
form fluid droplets. During the melting transition we also observe
an increase of the mobility of the squirmers by a factor of 5-10,
when monitoring the mean-square displacement in the dense
phase. The ESIf contains Videos M5 and M6 showing the
hexagonal and fluid dense phase, respectively. In Video M6
(ESIT) we see that, although hexagonal patches exist, they are
not stable over time. Finally, when lowering Pe’ towards the
critical point, the fluid cluster “‘evaporates” as the system exits
the phase-coexistence regime.

4 Summary and conclusion

We have studied the phase separation of model hydrodynamic
microswimmers called squirmers in quasi-two-dimensional
confinement extending our previous investigations.*® The full
three-dimensional hydrodynamics was simulated in order to
accurately capture the squirmer interactions. This makes our
simulations a realistic representation of real-world artificial
and biological microswimmers. By employing a parallelized
implementation of the MPCD algorithm on over 1008 CPU cores,
we were able to simulate thousands of squirmers, allowing
us to quantitatively determine the binodal lines for different
mean densities ¢ and squirmer parameters fi. The coarsening
dynamics towards the phase-separated system shows a char-
acteristic intermediate diffusive regime and a final rather
ballistic regime due to compactification of the dense squirmer
cluster. However, most strikingly, we found that the position of
the binodal lines is strongly influenced by ¢. This effect has
not been observed for active Brownian particles, which only
interact sterically, and thus is of real hydrodynamic origin. We
were able to collapse the different binodals on a single master
curve by introducing an effective Péclet number. Extending
the mechanical pressure balance of ref. 9 and 10 by a hydro-
dynamic pressure due to the squirmer flow field, the reason for
the different binodals became apparent.
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We also explored the dependence of the binodal line on f, a
parameter which allows us to tune the swimmer type and their
flow fields between pushers and pullers. We found that in all
cases going to strong pushers or pullers suppresses phase separa-
tion by shifting the phase-coexistence region to larger Péclet
numbers. The shape of the coexistence region does, however,
depend on whether the squirmers are pushers or pullers.

Finally, we examined the structure of the dense phase as the
squirmers’ swimming speed, the Péclet number, is reduced. We
find that fast squirmers in the dense phase form a hexagonal
cluster, which melts with decreasing Péclet number into a fluid
cluster. This is expected since close to the critical Péclet
number the swimmer fluid is isotropic.

5 Appendix
5.1 Position-resolved time averaging

In order to associate an average quantity to a position, one
commonly divides up the system into a grid. We call each cell of
the grid a “pixel”. A spatially-resolved average can thus be
found by simply averaging over the squirmers in each pixel.
Since we have only a few thousand squirmers, each pixel would
need to be relatively large in order to capture enough squirmers
per pixel. This would prevent the accurate resolution of the
phase interface.

We will use the local density to illustrate our method. First
we partition the system into its Voronoi cells. Each Voronoi cell
contains a single squirmer, and thus its local density is ¢; = 1/4;
where 4; is the area of the i-th Voronoi cell. Our grid of pixels is
then assigned a local density

d’(ri,/’): Z Wi

keoverlap

(15)

where r;; is the position of the pixel with indices 7 and j. The
sum is taken over those Voronoi cells overlapping with the
square boundaries of the pixel. ¢ is the local density of
Voronoi cell k, and wy = Goyeriap/@pixel 18 @ weight equal to the
Voronoi cell’s overlap area @oyeriap With the pixel normalized by
the pixel area apixer. An example of this is shown in Fig. 9.

Fig. 9 lllustration for the spatially-resolved time average of local density. Each
Voronoi cell with area A; is assigned a local density ¢; = 1/A; (colorbar). The
average density at a pixel (green square) is the weighted average of the local
density in all overlapping Voronoi cells, based on the degree of overlap.
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Fig. 10 Comparison between binodals for active Brownian particles (ABP)
and the binodals for squirmers (HI) from Fig. 3. Mean densities and Péclet
numbers, as well as simulation box size and squirmer radius correspond to
the range used for the full hydrodynamic simulations.

All time averages are taken with respect to a specific spatial
position. Due to the motion of the squirmers, the time averages
of ¢(r;;) eventually wash out the structure of the Voronoi
construction, leaving only those density inhomogeneities that
are stationary in space. We use the same construction for
calculating local pressure and |gg|> values.

5.2 Comparison with active brownian particles

Fig. 10 compares the binodals from Fig. 3 with those for active
Brownian particles in quasi two dimensions. Brownian dynamics
simulations where conducted for the same range of parameters and
the same geometry as the full hydrodynamic simulations. Similarly
to simulations conducted in two dimensions'' for the range of
Péclet numbers simulated, the coexistence densities for active
Brownian particles did not vary much. We also note that the
binodals for two different mean densities ¢ = 0.41 and ¢ = 0.70
lie on top of each other. For comparison, the binodals for the
hydrodynamically interacting (HI) squirmers from Fig. 3 are shown.

5.3 Position-resolved swim and steric pressure

Before we explain, how we calculate the pressure values, we
present in the inset of Fig. 11 the velocity-auto-correlation
function for the in-plane velocity components of a passive
particle, determined in MPCD simulations for different mean
densities of passive particles. The self-diffusion coefficient
Drop(¢) = [(v(t)-v(0))dt/2kgT is then plotted in the main
graph of Fig. 11 and fitted by Dr,p(¢) = Drop(¢p = 0)/(1 + 2.027¢).
Using the Einstein relation, we obtain a density-dependent
friction coefficient, yo(¢) = kgT/Dron().

Now, we apply eqn (8) to the individual Voronoi cells and its
surround neighbours (¢f Fig. 12). Our system volume now is
Vi & HA, i.e., the height of the system H times the 2D-Voronoi cell
area A; and the neighbours are the immediate neighbours in
terms of the Voronoi cell. On this level, the force generating the
active motion Fgyim = 7¢v; of neighbouring squirmers will act on
the central Voronoi cell, ie. inducing a pressure on its “walls”.
There is an additional subtlety here: the position vectors r; of the
neighboring squirmers always have to start from the central
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)
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JAr. >

Fig. 12 Illustration of the swim pressure in the central Voronoi cell
(central particle colored in red). The coordinate system is centred at the
central particle. Its Voronoi cell has a volume V;. Nearby particles exert a

swim pressure y0v0<2é,<rj>/3V,- “on” the Voronoi cell of the central
J

particle, where j runs over all neighboring Voronoi cells.

swimmer, for which local pressure is calculated, otherwise shear
terms would appear in the derivation of eqn (8).*> Furthermore,
the mean velocity also needs to be subtracted from the indivi-
dual swimmer velocities. Thus we are performing calculations
in the centre-of-mass frame of the neighbourhood of each
squirmer. We reduce the amount of fluctuations by taking the
time average for each pixel (¢f previous subsection on spatial
averaging). This time average is longer than the decorrelation
time Di " of the swimmers as required by eqn (8).

Similarly, we use the Voronoi cells to also introduce a local
steric pressure following ref. 57. The steric forces acting on one
squirmer include forces from its neighbors and also from the
bounding walls.
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